CN108667306B - 一种同步整流电路及方法 - Google Patents

一种同步整流电路及方法 Download PDF

Info

Publication number
CN108667306B
CN108667306B CN201810471164.0A CN201810471164A CN108667306B CN 108667306 B CN108667306 B CN 108667306B CN 201810471164 A CN201810471164 A CN 201810471164A CN 108667306 B CN108667306 B CN 108667306B
Authority
CN
China
Prior art keywords
circuit
synchronous rectification
output
resistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810471164.0A
Other languages
English (en)
Other versions
CN108667306A (zh
Inventor
施其彪
温旭辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN201810471164.0A priority Critical patent/CN108667306B/zh
Publication of CN108667306A publication Critical patent/CN108667306A/zh
Application granted granted Critical
Publication of CN108667306B publication Critical patent/CN108667306B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种同步整流电路及方法,将流过同步整流MOSFET的电流信号转换为电压信号输出至信号放大电路;当信号放大电路输出信号大于滞环比较器电路的正向阈值电压时,滞环比较器电路输出饱和正压使同步整流MOSFET开通,小于负向阈值电压时,输出饱和负压使同步整流MOSFET关断;光耦隔离电路的输入连接原边PWM控制器的输出端,当原边PWM控制器的输出端输出的PWM信号为饱和正压时,光耦隔离电路输出饱和负压使同步整流MOSFET关断,当原边PWM控制器的输出端输出的PWM信号为饱和负压时,同步整流MOSFET关断控制电路输出为高阻态,此时同步整流MOSFET的开通关断由滞环比较器电路的输出电压决定,保证了原边PWM控制器的输出端输出的PWM信号为饱和正压时同步整流MOSFET保持关断状态。

Description

一种同步整流电路及方法
技术领域
本发明涉及开关电源领域,尤其涉及一种同步整流电路及方法。
背景技术
随着电子技术的发展,电子系统对供电电源的要求越来越高,高效率、高性能的开关电源技术得到越来越广泛的应用。传统的隔离式开关电源多采用二极管进行副边整流,如图1所示。由于二极管本身存在一定的管压降,当副边电流较大时就会产生较大的功率损耗,进而导致电源的效率难以提高。
为解决二极管损耗较大的问题,近年来同步整流技术被广泛研究和应用,采用MOSFET替代二极管进行整流,由于MOSFET导通损耗比二极管低很多,电源效率可以得到显著提高。如图2所示为典型的同步整流单端正激变换器,两个同步整流MOSFET代替传统的二极管对副边进行整流,同步整流MOSFET的开通和关断由变压器副边绕组两端的电压来控制。这种现有的同步整流电路简单,但是在实际电源产品中,由于变压器漏感以及寄生电感和寄生电容等非理想因素的存在,变压器副边绕组两端的电压会出现振荡,进而影响对同步整流MOSFET的控制,容易造成同步整流MOSFET的误开通进而损坏电源或影响电源效率。
发明内容
本发明的技术解决问题:克服现有技术的不足,提供一种同步整流电路及方法,实现可靠的副边MOSFET同步整流,提高电源效率。
为达到上述目的,本发明采取的解决方案是:
一种同步整流电路,包括电流采样电路,信号放大电路,滞环比较器电路,光耦隔离电路。所述的电流采样电路的输入端连接副边地,电流采样电路的输出端与同步整流MOSFET的源极连接。所述的信号放大电路的负向输入端连接电流采样电路的输出端,信号放大电路的输出端连接滞环比较器电路的正向输入端,滞环比较器电路的输出端连接同步整流MOSFET的栅极。所述光耦隔离电路的输入端连接原边PWM控制器的PWM信号输出端,光耦隔离电路的输出端连接同步整流MOSFET的栅极。
所述的电流采样电路对通过同步整流MOSFET的电流进行采样,并将电流信号转换为电压信号。所述的信号放大电路对电流采样电路输出的电压信号进行反向放大。信号放大电路的输出信号叠加到滞环比较器电路的正向输入端,与滞环比较器电路的负向输入端的参考电压进行比较,当大于负向输入端的参考电压信号时,所述滞环比较器电路输出饱和正压,小于负向输入端信号时,输出饱和负压并形成滞环。当同步整流MOSFET上通过的电流大于参考值时,滞环比较器电路输出稳定的饱和正压开通同步整流MOSFET。所述光耦隔离电路输入端与原边的PWM控制器输出端连接,当PWM控制器输出端输出的PWM信号为饱和正压时,光耦隔离电路的输出端输出饱和负压,光耦隔离电路输出的饱和负压可以有效关断同步整流MOSFET。
本发明与现有技术相比的有益效果:
(1)本发明的同步整流电路中,经过电流采样电路,信号放大电路,滞环比较器电路的作用,根据同步整流MOSFET上通过的电流信号控制同步整流MOSFET的开通。经过光耦隔离电路的作用,根据原边PWM控制器的输出PWM信号控制同步整流MOSFET的关断。由于同步整流MOSFET上通过的电流信号和原边PWM控制器的输出PWM信号均为稳定的信号,没有振荡,因而可以可靠地控制同步整流MOSFET的开通和关断,不受电路寄生参数引起的电压振荡的影响。
(2)本发明涉及一种同步整流电路,包括电流采样电路,信号放大电路,滞环比较器电路和光耦隔离电路。电流采样电路与同步整流MOSFET串联,将流过同步整流MOSFET的电流信号转换为电压信号输出至信号放大电路。信号放大电路对电流采样电路输出的电压信号进行反向放大后输出至滞环比较器电路。当信号放大电路输出信号大于滞环比较器电路的正向阈值电压时,滞环比较器电路输出饱和正压使同步整流MOSFET开通,小于负向阈值电压时,输出饱和负压使同步整流MOSFET关断,保证了同步整流MOSFET根据电流信号正常的开通不会受到电流信号噪声的影响。光耦隔离电路的输入连接原边PWM控制器的输出端,当原边PWM控制器的输出端输出的PWM信号为饱和正压时,光耦隔离电路输出饱和负压使同步整流MOSFET关断,当原边PWM控制器的输出端输出的PWM信号为饱和负压时,同步整流MOSFET关断控制电路输出为高阻态,此时同步整流MOSFET的开通关断由滞环比较器电路的输出电压决定,保证了原边PWM控制器的输出端输出的PWM信号为饱和正压时同步整流MOSFET保持关断状态。因此本发明的同步整流电路及方法可以更稳定地控制同步整流MOSFET的开通和关断,能够避免电路中的寄生参数引起的电压振荡造成的同步整流MOSFET误开通导致的效率降低,从而提高了电源效率并降低了故障风险。
附图说明
图1传统单端正激变换器的电路原理图;
图2传统同步整流单端正激变换器的电路原理图;
图3新型同步整流单端正激变换器的电路原理图;
图4滞环比较器电路的工作特性曲线。
具体实施方式
下面结合附图和具体实施方式进一步说明本发明。
图3所示为本发明同步整流电路的实施例。如图3所示,本发明同步整流电路包括电流采样电路1,信号放大电路2,滞环比较器电路3和光耦隔离电路4。
电流采样电路1由第一电阻R1组成,第一电阻R1的一端连接副边GND,另一端连接同步整流MOSFET Q3的源极。第一电阻R1与同步整流MOSFET Q3形成串联关系,通过第一电阻R1上的电流与通过同步整流MOSFET Q3上的电流相等,第一电阻R1将通过MOSFET Q3上的电流信号Imosfet转化为电压信号Visense输出,输出电压信号Visense为:
Visense=R1*Imosfet
信号放大电路2由正饱和电源VCC,副边地GND,运算放大器U1、第二电阻R2、第三电阻R3组成。信号放大电路2的反向输入端接收电流采样电路1输出的电压信号Visense并进行反向放大,输出放大后的电压信号Visense1
Figure BDA0001663281550000031
滞环比较器电路3由正饱和电源VCC,副边地GND,比较器U2,第四电阻R4,第五电阻R5,第六电阻R6,第七电阻R7和第八电阻R8组成。第四电阻R4一端连接信号放大电路2的输出端,另一端连接比较器U2的正向端。第五电阻R5的一端与比较器U2的输出端连接,另一端与比较器U2的正向端连接。第六电阻R6一端连接正饱和电源VCC,另一端连接比较器U2的反向端。第七电阻R7一端连接副边GND,另一端连接比较器U2的反向端。第八电阻R8一端连接比较器U2的输出端,另一端连接同步整流MOSFET Q3的栅极。
正饱和电源VCC经串联的第六电阻R6和第七电阻R7分压,得到滞环比较器电路的参考电压Vref
Figure BDA0001663281550000032
比较器U2的正向端电压与参考Vref进行比较,当比较器U2的正向端电压大于Vref时,比较器U2输出饱和正压VCC,当比较器U2的正向端电压小于Vref时,比较器U2输出为0。根据电路原理计算可以得到滞环比较器的正向阈值电压VH和反向阈值电压VL分别为:
Figure BDA0001663281550000033
Figure BDA0001663281550000041
如图4所示为滞环比较器电路3的工作特性曲线,当滞环比较器电路3的输入端电压Visense1大于VH时,滞环比较器输出饱和正压VCC;当滞环比较器的输入电压Visense1小于VL时,滞环比较器输出为0,形成滞环电路。
综合以上公式可以得到使滞环比较器电路3输出饱和正压的同步整流MOSFET电流阈值Ion为:
Figure BDA0001663281550000042
当同步整流MOSFET Q3上通过的电流大于Ion时,滞环比较器电路3输出饱和正压VCC,使同步整流MOSFET Q3开通,且由于滞环电路的作用,滞环比较器电路3的输出端电压不受瞬间的电流波动及干扰信号的影响。
光耦隔离电路4由正饱和电源VCC,副边地GND,原边地GND_IN,光电耦合器U3,第九电阻R9,第十电阻R10和二极管D2组成。光电耦合器U3将原边信号传递至副边,光电耦合器U3的发光二极管阴极连接原边地GND_IN,发光二极管的阳极连接第九电阻R9的一端,第九电阻R9的另一端连接原边PWM控制器的输出端。光电耦合器U3的光敏接收晶体管的发射极连接副边地GND,光敏接收晶体管的集电极连接第十电阻R10的一端,第十电阻R10的另一端连接正饱和电源VCC。二极管D2的阴极连接光电耦合器U3的光敏接收晶体管的集电极,二极管D2的阳极连接同步整流MOSFET Q3的栅极。
当原边PWM控制器输出的PWM信号为饱和负压时,光电耦合器U3的光敏接收晶体管的集电极电压为饱和正压VCC,二极管D2被截止,同步整流MOSFET Q3的栅极电压等于滞环比较器电路的输出电压。当原边PWM控制器输出的PWM信号为饱和正压时,光电耦合器U3的光敏接收晶体管的集电极电压为0,经过二极管D2将同步整流MOSFET Q3的栅极电压箝位至二极管D2的管压降,使同步整流MOSFET Q3关断。
综上所述,本发明实施例的同步整流电路,经过电流采样电路1,信号放大电路2和滞环比较器电路3的作用控制同步整流MOSFET的开通,经过光耦隔离电路4的作用控制同步整流MOSFET的关断,从而可靠地实现了MOSFET同步整流,不受电路寄生参数引起的电压振荡的影响。
以上虽然描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明原理和实现的前提下,可以对这些实施方案做出多种变更或修改,因此,本发明的保护范围由所附权利要求书限定。

Claims (6)

1.一种同步整流电路,其特征在于包括:电流采样电路(1),信号放大电路(2),滞环比较器电路(3)和光耦隔离电路(4);电流采样电路(1)的输入端连接副边地GND,电流采样电路(1)的输出端与同步整流MOSFET的源极连接;信号放大电路(2)的负向输入端连接电流采样电路(1)的输出端,信号放大电路(2)的输出端连接滞环比较器电路(3)的正向输入端,滞环比较器电路的输出端连接同步整流MOSFET的栅极;光耦隔离电路(4)的输入端连接原边PWM控制器的PWM信号输出端,光耦隔离电路(4)的输出端连接同步整流MOSFET的栅极;
所述光耦隔离电路(4)由正饱和电源VCC,副边地GND,原边地GND_IN,光电耦合器U3,第九电阻R9,第十电阻R10和二极管D2组成;光电耦合器U3的发光二极管阴极连接原边地GND_IN,发光二极管的阳极连接第九电阻R9的一端,第九电阻R9的另一端连接原边PWM控制器的输出端;光电耦合器U3的光敏接收晶体管的发射极连接副边地GND,光敏接收晶体管的集电极连接第十电阻R10的一端,第十电阻R10的另一端连接正饱和电源VCC;二极管D2的阴极连接光电耦合器U3的光敏接收晶体管的集电极,二极管D2的阳极连接同步整流MOSFET的栅极;当原边PWM控制器输出的PWM信号为饱和负压时,光电耦合器U3的光敏接收晶体管的集电极电压为饱和正压VCC,二极管D2被截止,同步整流MOSFET的的开通和关断仅由滞环比较器电路(3)的输出控制;当原边PWM控制器输出的PWM信号为饱和正压时,光电耦合器U3的光敏接收晶体管的集电极电压为0,经过二极管D2将同步整流MOSFET的栅极电压箝位至二极管D2的管压降,控制同步整流MOSFET关断。
2.根据权利要求1所述的同步整流电路,其特征在于:所述电流采样电路(1)由第一电阻R1组成,第一电阻R1的一端连接副边地GND,另一端连接同步整流MOSFET的源极。
3.根据权利要求1所述的同步整流电路,其特征在于:所述信号放大电路(2)由正饱和电源VCC,副边地GND,运算放大器U1、第二电阻R2、第三电阻R3组成;信号放大电路(2)的输入连接电流采样电路(1)的输出,对电流采样信号进行放大。
4.根据权利要求1所述的同步整流电路,其特征在于:所述滞环比较器电路(3)由正饱和电源VCC,副边地GND,比较器U2,第四电阻R4,第五电阻R5,第六电阻R6,第七电阻R7和第八电阻R8组成;第四电阻R4一端连接信号放大电路(2)的输出端,另一端连接比较器U2的正向端;第五电阻R5的一端与比较器U2的输出端连接,另一端与比较器U2的正向端连接;第六电阻R6一端连接正饱和电源VCC,另一端连接比较器U2的反向端;第七电阻R7一端连接副边GND,另一端连接比较器U2的反向端;第八电阻R8一端连接比较器U2的输出端,另一端连接同步整流MOSFET的栅极。
5.根据权利要求1所述的同步整流电路,其特征在于:当通过同步整流MOSFET的电流大于参考值时,经过电流采样电路(1),信号放大电路(2)和滞环比较器电路(3)的作用,控制同步整流MOSFET开通。
6.一种同步整流方法,其特征在于:电流采样电路与同步整流MOSFET串联,将流过同步整流MOSFET的电流信号转换为电压信号输出至信号放大电路;信号放大电路对电流采样电路输出的电压信号进行反向放大后输出至滞环比较器电路;当信号放大电路输出信号大于滞环比较器电路的正向阈值电压时,滞环比较器电路输出饱和正压使同步整流MOSFET开通,小于负向阈值电压时,输出饱和负压使同步整流MOSFET关断,保证了同步整流MOSFET根据电流信号正常的开通不会受到电流信号噪声的影响;光耦隔离电路的输入连接原边PWM控制器的输出端,当原边PWM控制器的输出端输出的PWM信号为饱和正压时,光耦隔离电路输出饱和负压使同步整流MOSFET关断,当原边PWM控制器的输出端输出的PWM信号为饱和负压时,同步整流MOSFET关断控制电路输出为高阻态,此时同步整流MOSFET的开通关断由滞环比较器电路的输出电压决定,保证了原边PWM控制器的输出端输出的PWM信号为饱和正压时同步整流MOSFET保持关断状态。
CN201810471164.0A 2018-05-17 2018-05-17 一种同步整流电路及方法 Active CN108667306B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810471164.0A CN108667306B (zh) 2018-05-17 2018-05-17 一种同步整流电路及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810471164.0A CN108667306B (zh) 2018-05-17 2018-05-17 一种同步整流电路及方法

Publications (2)

Publication Number Publication Date
CN108667306A CN108667306A (zh) 2018-10-16
CN108667306B true CN108667306B (zh) 2020-08-04

Family

ID=63779933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810471164.0A Active CN108667306B (zh) 2018-05-17 2018-05-17 一种同步整流电路及方法

Country Status (1)

Country Link
CN (1) CN108667306B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980600B (zh) * 2018-12-28 2021-03-02 中国船舶重工集团公司第七二三研究所 一种tr组件供电的负偏压保护电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147478A (en) * 1999-09-17 2000-11-14 Texas Instruments Incorporated Hysteretic regulator and control method having switching frequency independent from output filter
US6853565B1 (en) * 2003-05-23 2005-02-08 Linear Technology Corporation Voltage overshoot reduction circuits
CN104956576B (zh) * 2013-02-08 2017-10-20 株式会社村田制作所 Dc‑dc转换器
CN103701305B (zh) * 2013-12-03 2016-03-23 天津航空机电有限公司 一种同步整流电路及实现方法
CN205249052U (zh) * 2015-11-18 2016-05-18 广州金升阳科技有限公司 同步整流控制装置及开关电源
CN107623512B (zh) * 2017-08-29 2020-08-04 中国科学院电工研究所 一种有源密勒箝位保护电路

Also Published As

Publication number Publication date
CN108667306A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
TWI448064B (zh) 智能驅動電路、同步整流管驅動電路以及返馳式轉換器驅動方法
CN105356728A (zh) 隔离驱动电路
WO2024066495A1 (zh) 一种利用辅助绕组实现Flyblack开关电源ZVS的电路
CN210053349U (zh) 一种用于开关电源的电流调制器
CN208589920U (zh) 一种隔离型宽范围稳压电源电路
CN111293863A (zh) 双向开关浮地驱动电路及其多路开关驱动电路
CN108667306B (zh) 一种同步整流电路及方法
CN102035394A (zh) 一种正激拓扑同步整流驱动电路
CN209930165U (zh) 一种运用驱动绕组的同步整流装置
CN115333379A (zh) 一种应用于电力产品的串联双反激转换器
CN110048680B (zh) 一种低压差大功率复合pmos管等效电路
CN205377643U (zh) 隔离驱动电路
CN212935791U (zh) 一种按摩椅电源
CN109921649B (zh) 一种桥式直流变换器
CN113938036A (zh) 用于单端反激同步整流驱动的磁隔离互补信号发生电路
CN102480242A (zh) 一种推挽变换器及推挽拓扑led驱动电路
CN113708635A (zh) 反激变换器的切换方法及控制装置
CN221886300U (zh) 一种同步整流电路
CN116780862B (zh) 一种适用于反激变换器副边高侧同步整流的供电斩波电路
WO2018157458A1 (zh) 一种电压吸收电路
CN205105105U (zh) 小功率辅助电源
CN116455236B (zh) 一种高效率隔离电路
CN210867489U (zh) 一种开关电源的电压反馈电路及具有该反馈电路的开关电源
TWI724794B (zh) 電壓轉換裝置
CN203522155U (zh) 新型反激变换器输入过压保护电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant