CN108665105A - 一种导水裂缝带发育高度预计方法 - Google Patents

一种导水裂缝带发育高度预计方法 Download PDF

Info

Publication number
CN108665105A
CN108665105A CN201810460816.0A CN201810460816A CN108665105A CN 108665105 A CN108665105 A CN 108665105A CN 201810460816 A CN201810460816 A CN 201810460816A CN 108665105 A CN108665105 A CN 108665105A
Authority
CN
China
Prior art keywords
rock stratum
overlying plate
overlying
plate rock
jth layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810460816.0A
Other languages
English (en)
Other versions
CN108665105B (zh
Inventor
李文平
刘士亮
王启庆
杨志
胡彦博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201810460816.0A priority Critical patent/CN108665105B/zh
Publication of CN108665105A publication Critical patent/CN108665105A/zh
Application granted granted Critical
Publication of CN108665105B publication Critical patent/CN108665105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Husbandry (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Development Economics (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种基于覆岩结构特征的侏罗系煤层开采导水裂缝带发育高度理论预计方法,属于防治矿井突水领域,该方法包括:S1.对侏罗系煤层地质条件进行精细探测,获取相关覆岩岩层结构特征及其物理力学参数;S2.基于覆岩结构特征和西部大型走向长壁工作面开采实践的认识,构建上覆板状岩层挠度函数和自由空间高度函数;S3.代入覆岩结构特征相关参数,计算上覆各岩层的极限挠度和相对应板状岩层下部自由空间高度;S4.进行导水裂缝带发育高度判断。本发明方法依据明确,实施简单易行,能够有效提高中国西部侏罗系煤层开采导水裂缝带发育高度的预测精度,为矿井防治水决策提供理论参考。

Description

一种导水裂缝带发育高度预计方法
技术领域
本发明涉及防治矿井突水领域,尤其涉及一种基于覆岩结构特征的 侏罗系煤层开采导水裂缝带发育高度理论预计方法。
背景技术
我国煤炭资源开采重心已逐步转移到西北部生态环境脆弱的干旱半 干旱地区。随着西北煤炭开采规模的不断扩大,开采对水资源的破坏和 影响,产生井下突水灾害及其诱发的地表生态环境问题,已严重影响区 域经济可持续发展甚至社会稳定。因此,准确预计导水裂缝带发育高度, 对西北部侏罗系煤层安全开采和生态环境保护意义重大。
目前煤层开采导水裂缝带发育高度预计,实际工程中主要采用《煤 矿防治水规定》、《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采 规程》等基于东部石炭-二叠开采实测值总结的经验计算公式;也有采用 现场实测、数值或物理模拟等方法综合研究确定。尽管导水裂缝带发育 规律研究取得了多方面的进展,但至今尚缺乏基于侏罗系煤层覆岩结构 特征的导水裂缝带高度预测理论。
由于侏罗系煤层和石炭-二叠系煤层的开采裂采比即导水裂缝带高度 与煤层厚度之比存在明显差异,因此规程中的经验公式在侏罗系煤层开 采中的不适用性,不能按规程中的方法确定导水裂缝带高度,所以,针 对西北侏罗系煤层开采导致的导水裂缝带发育高度进行理论预计,目前 还缺乏适宜性研究;由此可见,现有技术有待于进一步改进和提高。
发明内容
本发明的目的在于提供一种导水裂缝带发育高度预计方法,旨在有 效提高中国西部侏罗系煤层开采导水裂缝带发育高度的预测精度,为矿 井防治水决策提供理论参考依据。
本发明所采用的技术方案为:
本发明提供了一种导水裂缝带发育高度预计方法,包括以下步骤,
S1.对侏罗系煤层地质条件进行精细探测,获取覆岩岩层结构特征及 覆岩岩层结构的相关物理力学参数;
S2.基于覆岩结构特征和西部大型走向长壁工作面开采实践的认识, 构建上覆板状岩层挠度函数和自由空间高度函数;
S3.将覆岩结构特征相关参数代入上覆板状岩层挠度函数和自由空间 高度函数,计算各上覆岩岩层的极限挠度和相对应板状岩层下部自由空 间高度;
S4.进行导水裂缝带发育高度判断。
优选地,在步骤S1中,获取覆岩岩层结构特征过程为:通过野外观 测对比西部侏罗系煤层与东部石炭-二叠系煤层覆岩结构差异性。
优选地,在步骤S1中,覆岩结构特征相关物理力学参数,包括上覆 板状岩层厚度h、上覆板状岩层埋藏深度H、上覆板状岩层泊松比μ、上 覆板状岩层走向长度a、上覆板状岩层走向宽度b、上覆板状岩层容重γ、 上覆板状岩层拉应力σt、上覆板状岩层煤层采高M、上覆板状岩层碎胀 系数k。
优选地,上覆板状岩层厚度h、埋藏深度H和煤层采高M主要通过 钻孔取芯编录获取;上覆板状岩层泊松比μ、上覆板状岩层容重γ、上覆 板状岩层拉应力σt和上覆板状岩层碎胀系数k通过钻孔获得的岩芯做室 内试验获得;上覆板状岩层走向长度a和宽度b通过采煤工作面应力降 低区走向长度和宽度确定。
优选地,在步骤S2中,采空区上覆板状岩层第l层挠度函数计算公 式如下:
式中:ωl为上覆板状岩层第l层挠度,al为上覆板状岩层第l层走向 长度,m;bl为上覆板状岩层第l层走向宽度,m;γl为上覆板状岩层第l 层容重,kN/m3;Hl为上覆板状岩层第l层埋藏深度,m;Dl为上覆板状 岩层第l层弯曲刚度,hl为上覆板状岩层第l层厚度,m; μl为上覆板状岩层第l层泊松比;El为上覆板状岩层第l层弹性模量,MPa。
优选地,在步骤S2中,板状岩层的挠度函数达到最大值并不代表岩 层破断,需进一步计算板状岩层的极限挠度。
优选地,板状岩层极限挠度的计算方法如下:
设第j层板状岩层极限尺寸为[aj]max和[bj]max,极限尺寸[aj]max、[bj]max取 决于自身岩石的物理力学性质、厚度、所受载荷等因素,其破坏条件是 当岩石的最大拉应力值大于其极限抗拉强度时,即σt>[σt]时,板状岩层 在其中心位置发生断裂,此时的岩板尺寸[aj]max、[bj]max为极限尺寸,如下 式:
式中:kj为上覆板状岩层第j层的形状系数, kj=0.00302(aj/bj)3-0.03567(aj/bj)2+0.13953(aj/bj)-0.05859 ;[aj]max为上覆板状岩层第j层走向极限长度,m;[bj]max为上覆板状岩层 第j层的极限宽度,m;aj为上覆板状岩层第j层走向长度m;bj为上 覆板状岩层第j层走向宽度;[σt]j为上覆板状岩层第j层极限抗拉强度, MPa;hj为上覆板状岩层第j层厚度,m;qj为上覆板状岩层第j层受到 的载荷,MPa;
结合上覆板状岩层挠度函数,得出上覆板状岩层第j层极限挠度函数 如下式:
式中:[ω]j为上覆板状岩层第j层极限挠度;[aj]max为上覆板状岩层第j 层走向极限长度,m;[bj]max为上覆板状岩层第j层走向极限宽度,m;γj为上覆板状岩层第j层容重,kN/m3;Hj为上覆板状岩层第j层埋藏深度, m;Dj为上覆板状岩层第j层弯曲刚度,hj为上覆板状岩层 第j层厚度,m;μj为上覆板状岩层第j层泊松比;Ej为上覆板状岩层第 j层弹性模量,MPa。
优选地,在步骤S2中,自由空间是煤层开采后形成的,将由上覆板 状岩层的碎胀特性来填充。且只有导水裂缝带的岩层发生碎胀,而弯曲 下沉带岩层不发生体积上的变化,则各岩层下的自由空间高度函数,如 下式所示:
式中:Si为上覆板状岩层第i层自由空间高度;M为上覆板状岩层煤 层采高;hj为上覆板状岩层第j层岩层厚度;kj为上覆板状岩层第j层碎 胀系数,其中,1≤i<j≤n。
优选地,在步骤S4中,对导水裂缝带发育高度判断,步骤如下:
S41.若上覆板状岩层极限挠度小于其下部自由空间高度,则裂缝继续 发育,重复步骤S3;
S42.若上覆板状岩层极限挠度大于其下部自由空间高度,则裂缝停止 发育,输出该岩层厚度数值并将所有输出数值进行求和累加,作为煤层 导水裂缝带发育高度。
优选地,以上任一所述的导水裂缝带发育高度预计方法适用于中国 西部地区的基于覆岩结构特征的侏罗系煤层。
与现有技术相比,本申请的技术效果:
本发明克服现有技术的不足,提供了一种基于覆岩结构特征的侏罗 系煤层开采导水裂缝带发育高度理论预计方法,本发明通过对侏罗系煤 层地质条件进行精细探测,获取覆岩岩层结构特征及覆岩岩层结构的相 关物理力学参数;通过对基于覆岩结构特征和西部大型走向长壁工作面 开采实践的认识,构建上覆板状岩层挠度函数和自由空间高度函数;通 过代入覆岩结构特征相关参数,计算上覆各岩层的极限挠度和相对应板 状岩层下部自由空间高度;最后进行导水裂缝带发育高度判断。该方法 依据明确,实施简单易行,能够有效提高中国西部侏罗系煤层开采导水 裂缝带发育高度的预测精度,为矿井防治水决策提供理论参考。
本发明中,上述各技术方案之间还可以相互组合,以实现更多的优 选组合方案。本发明的其他特征和优点将在随后的说明书中阐述,并且, 部分优点可从说明书中变得显而易见,或者通过实施本发明而了解。本 发明的目的和其他优点可通过说明书、权利要求书以及附图中所特别指 出的内容中来实现和获得。
附图说明
图1是本发明中煤层开采导水裂缝带发育高度理论预计方法的步骤 流程图;
图2a是本发明中侏罗系煤层覆岩典型整体状结构示意图;
图2b是本发明中石炭二叠系煤层覆岩典型块状结构示意图;
图3是本发明中工作面前后支承压力分布及覆岩构成示意图;
图4a是本发明中岩层薄板力学模型俯视图;
图4b是本发明中岩层薄板力学模型A-A剖面图。
其中:a-上覆板状岩层走向长度(工作面应力降低区走向长度);b- 上覆板状岩层走向宽度(工作面倾向长度);γ-上覆板状岩层容重;H- 上覆板状岩层埋藏深度;h-上覆板状岩层厚度。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本 申请一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用 于限定本发明的范围。
本发明所提供的一种基于覆岩结构特征的侏罗系煤层开采导水裂缝 带发育高度理论预计方法:
S1.对侏罗系煤层地质条件进行精细探测,获取相关覆岩结构特征及 其相关物理力学参数:
覆岩岩层结构特征主要是通过野外观测对比西部侏罗系煤层与东部 石炭-二叠系煤层覆岩结构差异性,东部石炭-二叠系煤层覆岩结构呈块状 结构(如图2b所示),而侏罗系煤层覆岩结构呈整体层状结构(如图2a 所示);
所述覆岩结构特征参数,主要包括上覆板状岩层厚度h、上覆板状岩 层埋藏深度H、上覆板状岩层泊松比μ、采空区上覆板状岩层走向长度a 和宽度b、上覆板状岩层容重γ、上覆板状岩层拉应力σt、上覆板状岩层 煤层采高M。其中上覆板状岩层厚度h、埋藏深度H和煤层采高M主要 通过钻孔取芯编录获取;上覆板状岩层泊松比μ、上覆板状岩层容重γ、 上覆板状岩层拉应力σt和上覆板状岩层碎胀系数k,通过钻孔获得的岩芯 做室内试验获得;采空区上覆板状岩层走向长度a和宽度b分别通过采 煤工作面应力降低区走向长度和宽度确定。
S2.如图3-4所示,基于侏罗系煤层覆岩结构呈整体层状结构的特征, 可以使用弹性力学中的板状理论;又考虑到侏罗系煤层工作面的宽度普 遍较大(一般大于180m),且工作面上覆每个岩层厚度小于36m,即工 作面的宽度与各个岩层厚度的比值小于1/5,所以可以应用板状理论中的 薄板理论。为此,基于薄板理论,采空区上覆板状岩层第l层挠度函数计 算公式如下:
式中:ωl为上覆板状岩层第l层挠度,al为上覆板状岩层第l层走向 长度(工作面应力降低区走向长度),m;bl为上覆板状岩层第l层走向宽 度(工作面倾向长度),m;γl为上覆板状岩层第l层容重,kN/m3;Hl为 上覆板状岩层第l层埋藏深度,m;Dl为上覆板状岩层第l层弯曲刚度, hl为上覆板状岩层第l层厚度,m;μl为上覆板状岩层第 l层泊松比;El为上覆板状岩层第l层弹性模量,MPa。
上述板状岩层的挠度函数达到最大值并不代表岩层破断,需进一步 计算板状岩层的极限挠度,其方法如下:
设第j层板状岩层极限尺寸为[aj]max和[bj]max,极限尺寸[aj]max、[bj]max取 决于自身岩石的物理力学性质、厚度、所受载荷等因素,其破坏条件是 当岩石的最大拉应力值大于其极限抗拉强度时,即σt>[σt]时,板状岩层 在其中心位置发生断裂,此时的岩板尺寸[aj]max、[bj]max为极限尺寸,如下 式:
式中:kj为上覆板状岩层第j层的形状系数, kj=0.00302(aj/bj)3-0.03567(aj/bj)2+0.13953(aj/bj)-0.05859 ;[aj]max为上覆板状岩层第j层走向极限长度,m;[bj]max为上覆板状岩层 第j层的极限宽度,m;aj为上覆板状岩层第j层走向长度m;bj为上 覆板状岩层第j层走向宽度;[σt]j为上覆板状岩层第j层极限抗拉强度, MPa;hj为上覆板状岩层第j层厚度,m;qj为上覆板状岩层第j层受到 的载荷,MPa。
结合上覆板状岩层挠度函数,得出上覆板状岩层第j层极限挠度函数 如下式:
式中:[ω]j为上覆板状岩层第j层极限挠度;[aj]max为上覆板状岩层第j 层走向极限长度,m;[bj]max为上覆板状岩层第j层走向极限宽度,m;γj为上覆板状岩层第j层容重,kN/m3;Hj为上覆板状岩层第j层埋藏深度, m;Dj为上覆板状岩层第j层弯曲刚度,hj为上覆板状岩层 第j层厚度,m;μj为上覆板状岩层第j层泊松比;Ej为上覆板状岩层第 j层弹性模量,MPa。
自由空间是煤层开采后形成的,将由上覆板状岩层的碎胀特性来填 充。且只有导水裂缝带的岩层发生碎胀,而弯曲下沉带岩层不发生体积 上的变化,则各岩层下的自由空间高度函数,如下式所示:
式中:Si为上覆板状岩层第i层自由空间高度;M为上覆板状岩层煤 层采高;hj为上覆板状岩层第j层岩层厚度;kj为上覆板状岩层第j层碎 胀系数,其中,1≤i<j≤n。
S3.代入覆岩结构特征相关参数,计算上覆各岩层的极限挠度和相对 应板状岩层下部自由空间高度。
S4.进行导水裂缝带发育高度判断,步骤如下:
S41.若岩层极限挠度小于其下部自由空间高度,则裂缝继续发育,重 复步骤S3和S4;
S42.若岩层极限挠度大于其下部自由空间高度,则裂缝停止发育,输 出该岩层厚度数值并将所有输出数值进行求和累加,作为煤层导水裂缝 带发育高度。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合 附图和具体实施例对本发明作进一步详细的说明。
实施例一
榆阳煤矿位于陕北侏罗系煤田榆横矿区北区的红石峡井田中部。 2304综采工作面倾斜长度200m,采厚3.5m,平均倾角0.28°,煤层埋深 190~210m。根据矿压观测资料,应力降低区走向长度为200m。中砂岩、 泥岩、粉砂岩和细砂岩的碎胀系数分别为1.021、1.032、1.025和1.030。 如表1是2304工作面钻孔揭露的岩层结构及室内力学试验参数。基于上 述推导的导水裂隙带高度预计力学模型,对榆阳煤矿2304工作面的导水 裂隙带发育高度进行了理论预计。
以3煤上方的第二岩层中砂岩层为例,进行详细说明:首先,计算 [a2]max和[b2]max,即将h2=9.9m,a2=b2=200m,[σt]2=0.98MPa,q2=γ2H2=36.4 kN/m3×183.7m=6686.68MPa,代入中,得出 [a2]max=[b2]max=26.87m;其次,计算岩层极限挠度函数的最大值[ω2]max过程 如下:
将[a2]max=[b2]max=26.87m,q2=6686.68MPa,E2=7600MPa,μ2=0.26, h2=9.9m,代入
中,基于Matlab平台,计算出岩层极限挠度函数的最大值[ω2]max=2.28m;然后,计算自由空间高度S1,将M=3.5m,h2=9.9m, k2=1.021,j=2,i=1,代入中,得出S1=3.371m;最后, 对比岩层极限挠度函数的最大值[ω2]max=2.28m和自由空间高度S1=3.371 m,即S1=3.371m>[ω2]max=2.28m,该岩层破断,则裂缝继续发育。类似 的,计算每一个岩层,得出各个岩层破坏状态,见表1。经计算,导水裂 隙带发育预计高度为83.2m。为了验证该方法的准确性,对2304综采工 作面进行了现场实测。通过观测钻孔冲洗液的漏失量以及钻孔内水位变 化,确定出导水裂缝带发育高度为84.3m。两者得出的结果基本一致,从 而验证了该方法的准确性。
表1覆岩各岩层特征、物理力学参数及破坏状态
事实证明,该施工方法不仅具有良好的实用性,还依据明确,实施 简单易行,能够有效提高中国西部侏罗系煤层开采导水裂缝带发育高度 的预测精度,为矿井防治水决策提供理论参考。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围 并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范 围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种导水裂缝带发育高度预计方法,其特征在于,包括以下步骤,
S1.对侏罗系煤层地质条件进行精细探测,获取覆岩岩层结构特征及覆岩岩层结构的相关物理力学参数;
S2.基于覆岩结构特征,构建上覆板状岩层挠度函数和自由空间高度函数;
S3.将覆岩结构特征相关参数代入上覆板状岩层挠度函数和自由空间高度函数,计算各上覆岩岩层的极限挠度和相对应板状岩层下部自由空间高度;
S4.进行导水裂缝带发育高度判断。
2.如权利要求1所述的导水裂缝带发育高度预计方法,其特征在于,在步骤S1中,所述获取覆岩岩层结构特征过程为:通过野外观测对比西部侏罗系煤层与东部石炭-二叠系煤层覆岩结构差异性。
3.如权利要求1所述的导水裂缝带发育高度预计方法,其特征在于,在步骤S1中,所述覆岩结构特征相关物理力学参数,包括上覆板状岩层厚度h、上覆板状岩层埋藏深度H、上覆板状岩层泊松比μ、上覆板状岩层走向长度a、上覆板状岩层走向宽度b、上覆板状岩层容重γ、上覆板状岩层拉应力σt、上覆板状岩层煤层采高M、上覆板状岩层碎胀系数k。
4.根据权利要求3所述的导水裂缝带发育高度预计方法,其特征在于,上覆板状岩层厚度h、埋藏深度H和煤层采高M主要通过钻孔取芯编录获取;上覆板状岩层泊松比μ、上覆板状岩层容重γ、上覆板状岩层拉应力σt和上覆板状岩层碎胀系数k通过钻孔获得的岩芯做室内试验获得;上覆板状岩层走向长度a和宽度b通过采煤工作面应力降低区走向长度和宽度确定。
5.如权利要求1所述的导水裂缝带发育高度预计方法,其特征在于,在步骤S2中,采空区上覆板状岩层第l层挠度函数计算公式如下:
式中:ωl为上覆板状岩层第l层挠度,al为上覆板状岩层第l层走向长度,m;bl为上覆板状岩层第l层走向宽度,m;γl为上覆板状岩层第l层容重,kN/m3;Hl为上覆板状岩层第l层埋藏深度,m;Dl为上覆板状岩层第l层弯曲刚度,hl为上覆板状岩层第l层厚度,m;μl为上覆板状岩层第l层泊松比;El为上覆板状岩层第l层弹性模量,MPa。
6.如权利要求1所述的导水裂缝带发育高度预计方法,其特征在于,在步骤S2中,所述板状岩层的挠度函数达到最大值并不代表岩层破断,需进一步计算板状岩层层的极限挠度。
7.如权利要求6所述的导水裂缝带发育高度预计方法,其特征在于:所述板状岩层层极限挠度的计算方法如下:
设第j层板状岩层极限尺寸为[aj]max和[bj]max,极限尺寸[aj]max、[bj]max取决于自身岩石的物理力学性质、厚度、所受载荷等因素,其破坏条件是当岩石的最大拉应力值大于其极限抗拉强度时,即σt>[σt]时,板状岩层在其中心位置发生断裂,此时的岩板尺寸[aj]max、[bj]max为极限尺寸,如下式:
式中:kj为上覆板状岩层第j层的形状系数,kj=0.00302(aj/bj)3-0.03567(aj/bj)2+0.13953(aj/bj)-0.05859;[aj]max为上覆板状岩层第j层走向极限长度,m;[bj]max为上覆板状岩层第j层的极限宽度,m;aj为上覆板状岩层第j层走向长度m;bj为上覆板状岩层第j层走向宽度;[σt]j为上覆板状岩层第j层极限抗拉强度,MPa;hj为上覆板状岩层第j层厚度,m;qj为上覆板状岩层第j层受到的载荷,MPa;
结合上覆板状岩层挠度函数,得出上覆板状岩层第j层极限挠度函数如下式:
式中:[ω]j为上覆板状岩层第j层极限挠度;[aj]max为上覆板状岩层第j层走向极限长度,m;[bj]max为上覆板状岩层第j层走向极限宽度,m;γj为上覆板状岩层第j层容重,kN/m3;Hj为上覆板状岩层第j层埋藏深度,m;Dj为上覆板状岩层第j层弯曲刚度,hj为上覆板状岩层第j层厚度,m;μj为上覆板状岩层第j层泊松比;Ej为上覆板状岩层第j层弹性模量,MPa。
8.如权利要求1所述的导水裂缝带发育高度预计方法,其特征在于,在步骤S2中,所述自由空间是煤层开采后形成的,将由上覆板状岩层的碎胀特性来填充。且只有导水裂缝带的岩层发生碎胀,而弯曲下沉带岩层不发生体积上的变化,则各岩层下的自由空间高度函数,如下式所示:
式中:Si为上覆板状岩层第i层自由空间高度;M为上覆板状岩层煤层采高;hj为上覆板状岩层第j层岩层厚度;kj为上覆板状岩层第j层碎胀系数,其中,1≤i<j≤n。
9.根据权利1所述的导水裂缝带发育高度预计方法,其特征在于,在步骤S4中,对导水裂缝带发育高度判断,步骤如下:
S41.若上覆板状岩层极限挠度小于其下部自由空间高度,则裂缝继续发育,重复步骤S3;
S42.若上覆板状岩层极限挠度大于其下部自由空间高度,则裂缝停止发育,输出该岩层厚度数值并将所有输出数值进行求和累加,作为煤层导水裂缝带发育高度。
10.根据权利要求1-9任一所述的导水裂缝带发育高度预计方法,其特征在于,所述方法适用于中国西部地区的基于覆岩结构特征的侏罗系煤层。
CN201810460816.0A 2018-05-15 2018-05-15 一种导水裂缝带发育高度预计方法 Active CN108665105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810460816.0A CN108665105B (zh) 2018-05-15 2018-05-15 一种导水裂缝带发育高度预计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810460816.0A CN108665105B (zh) 2018-05-15 2018-05-15 一种导水裂缝带发育高度预计方法

Publications (2)

Publication Number Publication Date
CN108665105A true CN108665105A (zh) 2018-10-16
CN108665105B CN108665105B (zh) 2021-04-20

Family

ID=63778533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810460816.0A Active CN108665105B (zh) 2018-05-15 2018-05-15 一种导水裂缝带发育高度预计方法

Country Status (1)

Country Link
CN (1) CN108665105B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611084A (zh) * 2018-11-20 2019-04-12 中国矿业大学 一种釆动覆岩可积水离层位置判别方法
CN110107284A (zh) * 2019-04-28 2019-08-09 扎赉诺尔煤业有限责任公司 一种通过水压探测导水裂隙带高度的钻测系统及方法
CN110489928A (zh) * 2019-09-05 2019-11-22 山东大学 浅埋煤层矿区导水裂隙带发育高度预计方法及系统
CN111854667A (zh) * 2020-07-28 2020-10-30 东华理工大学 一种基于地质力学的覆岩导水裂缝带高度预计方法
CN113010993A (zh) * 2021-01-19 2021-06-22 鄂尔多斯市华兴能源有限责任公司 一种厚冲积层矿区导水裂缝带高度预测方法
CN113217103A (zh) * 2021-05-18 2021-08-06 华北科技学院(中国煤矿安全技术培训中心) 一种识别离层突水的方法
CN114184153A (zh) * 2021-12-06 2022-03-15 中国矿业大学 基于光纤及渗压计的采场覆岩及土层复合导高监测方法
CN114329922A (zh) * 2021-12-06 2022-04-12 中国地质科学院地质力学研究所 基于结构性覆岩的导水裂隙带高度确定方法
CN115130311A (zh) * 2022-07-04 2022-09-30 河南大学 一种煤层覆岩离层突水灾害判定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989405A (zh) * 2015-06-12 2015-10-21 北京科技大学 大倾角煤层开采冲击地压定向防治方法
CN105332738A (zh) * 2015-08-24 2016-02-17 西安科技大学 一种采煤沉陷灾变发生的预警方法
CN106446535A (zh) * 2016-09-14 2017-02-22 中国矿业大学(北京) 多煤层开采下组煤顶板裂隙发育高度计算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989405A (zh) * 2015-06-12 2015-10-21 北京科技大学 大倾角煤层开采冲击地压定向防治方法
CN105332738A (zh) * 2015-08-24 2016-02-17 西安科技大学 一种采煤沉陷灾变发生的预警方法
CN106446535A (zh) * 2016-09-14 2017-02-22 中国矿业大学(北京) 多煤层开采下组煤顶板裂隙发育高度计算方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611084B (zh) * 2018-11-20 2021-10-22 中国矿业大学 一种采动覆岩可积水离层位置判别方法
CN109611084A (zh) * 2018-11-20 2019-04-12 中国矿业大学 一种釆动覆岩可积水离层位置判别方法
CN110107284A (zh) * 2019-04-28 2019-08-09 扎赉诺尔煤业有限责任公司 一种通过水压探测导水裂隙带高度的钻测系统及方法
CN110489928A (zh) * 2019-09-05 2019-11-22 山东大学 浅埋煤层矿区导水裂隙带发育高度预计方法及系统
CN111854667A (zh) * 2020-07-28 2020-10-30 东华理工大学 一种基于地质力学的覆岩导水裂缝带高度预计方法
CN111854667B (zh) * 2020-07-28 2021-12-21 东华理工大学 一种基于地质力学的覆岩导水裂缝带高度预计方法
CN113010993A (zh) * 2021-01-19 2021-06-22 鄂尔多斯市华兴能源有限责任公司 一种厚冲积层矿区导水裂缝带高度预测方法
CN113010993B (zh) * 2021-01-19 2022-10-21 鄂尔多斯市华兴能源有限责任公司 一种厚冲积层矿区导水裂缝带高度预测方法
CN113217103A (zh) * 2021-05-18 2021-08-06 华北科技学院(中国煤矿安全技术培训中心) 一种识别离层突水的方法
CN113217103B (zh) * 2021-05-18 2022-09-09 华北科技学院(中国煤矿安全技术培训中心) 一种识别离层突水的方法
CN114184153A (zh) * 2021-12-06 2022-03-15 中国矿业大学 基于光纤及渗压计的采场覆岩及土层复合导高监测方法
CN114329922A (zh) * 2021-12-06 2022-04-12 中国地质科学院地质力学研究所 基于结构性覆岩的导水裂隙带高度确定方法
CN114329922B (zh) * 2021-12-06 2022-09-09 中国地质科学院地质力学研究所 基于结构性覆岩的导水裂隙带高度确定方法
CN115130311A (zh) * 2022-07-04 2022-09-30 河南大学 一种煤层覆岩离层突水灾害判定方法

Also Published As

Publication number Publication date
CN108665105B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN108665105A (zh) 一种导水裂缝带发育高度预计方法
Weingarten et al. Prediction of sand production in gas wells: methods and Gulf of Mexico case studies
Adhikary et al. Modelling of longwall mining-induced strata permeability change
Lu et al. Improvement of methane drainage in high gassy coal seam using waterjet technique
Fairhurst Stress estimation in rock: a brief history and review
Pan et al. Experimental and numerical study of the water inrush mechanisms of underground tunnels due to the proximity of a water-filled karst cavern
CN106285646A (zh) 基于多信息融合的钻井漏失层位识别方法
CN106383945A (zh) 隧道与地下空间深、浅埋垂直围岩压力通用设计计算方法
CN106919770A (zh) 一种基于数值模拟的损伤变量确定方法
Gui et al. Identification and application of roof bed separation (water) in coal mines
CN106351650A (zh) 一种适用于层理裂隙地层的井壁坍塌压力计算方法
Chen et al. A case study on the height of a water-flow fracture zone above undersea mining: Sanshandao Gold Mine, China
Hickman et al. Continuation of a deep borehole stress measurement profile near the San Andreas Fault: 1. Hydraulic fracturing stress measurements at Hi Vista, Mojave Desert, California
Coşar Application of rock mass classification systems for future support design of the Dim Tunnel near Alanya
Moayed et al. In-situ stress measurements by hydraulic fracturing method at Gotvand Dam site, Iran
Karev et al. Experimental studies of the deformation, destruction and filtration in rocks: a review
Zhang et al. Water-inrush risk through fault zones with multiple karst aquifers underlying the coal floor: a case study in the Liuzhuang Coal Mine, Southern China
Zhang et al. The fracturing characteristics of rock mass of coal mining and its effect on overlying unconsolidated aquifer in Shanxi, China
CN115493934A (zh) 一种底板采动导水损伤破坏深度计算方法
Munir Development of correlation between rock classification system and modulus of deformation
Heuzé Sources of errors in rock mechanics field measurements, and related solutions
Qin et al. Solid-gas coupling law during methane seepage from a coal mass in the advanced pressure relief area of a mining seam
Wu et al. Numerical modelling of fractures induced by coal mining beneath reservoirs and aquifers in China
Nazarov et al. Application of professor D. Lobshire’s geomechanical classification for in-depth zoning of the board of the Amantaytau mine
Fransson et al. Hydromechanical characterization of fractures close to a tunnel opening: A case study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant