CN108665054A - 基于遗传算法优化阈值的Mallat算法在心音信号降噪的应用 - Google Patents

基于遗传算法优化阈值的Mallat算法在心音信号降噪的应用 Download PDF

Info

Publication number
CN108665054A
CN108665054A CN201810500130.XA CN201810500130A CN108665054A CN 108665054 A CN108665054 A CN 108665054A CN 201810500130 A CN201810500130 A CN 201810500130A CN 108665054 A CN108665054 A CN 108665054A
Authority
CN
China
Prior art keywords
signal
threshold value
cardiechema signals
population
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810500130.XA
Other languages
English (en)
Inventor
郑永军
狄韦宇
黄铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201810500130.XA priority Critical patent/CN108665054A/zh
Publication of CN108665054A publication Critical patent/CN108665054A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/27Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
    • G10L25/39Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique using genetic algorithms

Abstract

本发明涉及一种基于遗传算法和马拉算法的心音信号降噪中的应用。该方法通过遗传算法优化阈值,利用优化后的阈值的马拉算法分高频段与低频段对心音信号进行去噪。最后通过信噪比来反应去噪的效果。本方法处理速度快,保留了更多的细节信号,能够较好地区分有用信号和噪声的同时不引入新的噪声,去噪效果好。

Description

基于遗传算法优化阈值的Mallat算法在心音信号降噪的应用
技术领域
本发明属于心音处理技术领域和信号处理领域,具体设计一种基于遗传算法优化阈值的Mallat算法的小波变换对心音信号进行优化处理。
背景技术
一个正常的心动周期包含四个心音的组成,往往用S 1 、S 2 、S 3 、S 4 来划分,通常情况下S 3 、S 4 强度很低,一般只考虑S 1 、S 2 信号。其中S 1 是在心室收缩时期,S 2 是在心室舒张时期。心音频率一般处于1-1000Hz范围内,其中S 1 、S 2 信号主要集中在50-200Hz,大部分噪音集中在40-600Hz甚至更高频率。杂音包括呼吸、心尖搏动、环境噪音,以及电子仪器的离散噪声、电阻热噪与音频格式转换时引入的噪声。仪器采集的心音信号不可避免的掺杂着机械噪声、肌电噪声等噪声,因此如何快速处理信号获取过程中由于各种原因而掺杂引入的噪声成为一个重要课题。传统的去噪方法,如傅立叶信号分析法等是对信号全局的分析,而不能很好的对信号的微细部分进行处理。
小波变换(wavelet transform, WT)将信号细分为多个小波函数,再通过局部时频变化提取有效信息。马拉(Mallat)算法是一种处理信号的快速分解和重构算法。
遗传算法(Genetic Algorithm, GA),是一种全局搜索的优化方法。本发明通过遗传算法优化马拉算法分解过程中使用的阈值,使得在保留较好细节条件下提高对心音信号的去噪能力。
经验模态分解(Empirical Mode Decomposition, EMD),是一种实现信号平滑的自适应时频处理方法。随时间序列发展,方差、均值与当下是相同的,即可以在时间上预知未来,这样就叫做平稳性,若这些值不具有“惯性”延续,就是非平稳的。
小波变换可以看成函数与小波基的内积,即把函数φ(t)作为母小波,位移b后,再在不同尺度a下与待分析信号s(t)做内积,如公式1所示:
(1)
其中a为小波变换的尺度伸缩系数,若a值过大,则会导致采样过密,从而导致产生新的噪声, b反应位移,WT x (a,b)为连续小波变换。
发明内容
本发明提出一种基于遗传算法优化阈值的Mallat算法对心音信号进行快速去噪。
本发明有以下步骤:
1)获取待处理的心音信号;
2)确定小波基与分解层数;
3)将步骤1所得的心音信号进行分解;
4)通过GA对步骤3中的小波系数的阈值进行优化;
5)重建心音信号,用EMD算法得到包络图;
6)计算信噪比。
本方法的优点在于:采用自设的阈值函数,通过GA对其进行优化,再通过马拉算法对信号进行分解重构,去噪效果好,处理速度快,能够较好地区分有用信号和噪声的同时不引入新的噪声,最后有效提高了心音信号滤波的信噪比。
附图说明
1)图1.整体流程图;
2)图2.遗传算法流程图;
3)图3.原信号时域图;
4)图4.原信号频谱图;
5)图5.原信号分解图;
6)图6.原信号分解频谱图;
7)图7.重构信号图;
8)图8.重构信号频谱图;
9)图9.原信号与重构信号比对图;
10)图10.原信号与重构信号频谱比对图;
11) 图11.包络比对图;
12) 图12.信噪比图。
具体实施方式
下面,将结合附图对该方法进行解释。具体流程如附图1所示。
1)获取心音原始信号;
具体为:获取一段心音信号,设原始信号的模型为
(2)
其中,S(x)为含噪信号,f(x)为真实信号,n(x)为噪声。我们主要滤去中高频信号中的噪声。信号实际采样频率f为2000Hz。
2)确定小波基与分解层数;
具体为:选择 db10小波函数作为小波基,特点是双正交性与支撑性,并不严格对称,保证了良好的时频局部特性,平滑性强,重建时失真率低。分解后高频部分认为是噪声,低频部分是有效的信号。因此,可对心音信号进行一定层数的分解,然后在每层上使用不同的阈值进行处理,达到去噪的目的。分解层数越多,其高频部分被去除得越多,但过多的层数会导致分解过度,即部分有用信号被剔除出去。根据所需的S 1 、S 2 信号所在频率,选用分解层数为6层。
3)将步骤1所得的心音信号进行分解;
具体为:若原始信号为,其分解算法为:
(3)
(4)
其中:t为离散时间序列号,t=1,2,…,Nj为层数,j=1,2,…,JJ=log2 NH是低通滤波器,G是带通滤波器。A j,k D j,k 分别为信号在第j层的低频部分和高频部分的小波系数。
由多分辨率理论可得:
(5)
其中,P j f(t)是函数f(t)在分辨率j下的平滑逼近, xn (j)是线性组合的权重,Ф jn (t)是离散正交小波基。
对信号进行一定层数分解。这里以第一层的分解为例。令公式5中的j为0,可求得近似系数x k (1) 为:
(6)
1层细节系数d k (1) 为:
(7)
使用递归算法,求得剩余层的近似系数及细节系数。
4)采用GA对步骤3中的小波系数的阈值进行优化;
具体为:一般来说,阈值是由原信号的信噪比选定的。阈值过大会使得信号边缘信息也被过滤掉,过小的阈值则无法有效过滤噪音。本发明采用遗传算法优化阈值。待阈值δ j 如公式8所示:
(8)
公式中n为信号的长度。ω为0到1之间的一个数值。根据分解层数的不同采用了不同的阈值,从而进一步在保留信号有效成分的情况下提高信号的质量,使得信号相对平滑。使用计算出的阈值δ j 处理第j层的细节部分d k (j) 。处理公式如下:
(9)
其中ω 2=1-ω 10<α≤1α趋于0时为硬阈值函数,趋于1时为软阈值函 数。当| d k (j) |≥δ j 时,令;当| d k (j) |<δ j 时,令d k (j) =0。以此对d k (j) 进行筛选处理。
GA相应参数设置如下:
1.参数ω变化范围为0-1。采用二进制编码,随机产生大小为20的种群。种群数目过大会增加计算量,但是可以在空间中进行更多点的搜索,故折中考虑选用大小为20的种群;
2.适应度函数选择见下公式:
(10)
RMSE表示均方根误差。含常数1是为了防止在RMSE特别小的情况下函数发散。输入参数ω,输出参数为Y,RMSE最低,即Y最大时的ω即为最优解。其中RMSE函数见公式11:
(11)
3.考虑到种群的未定性和算法的收敛性将代沟设置为0.9,即每代父代中有2个个体会被子代个体淘汰,此时为种群B。选择函数选用轮盘赌,交叉方式为单点交叉。交叉率则为默认的0.7,交叉后种群为C,异变率为0.01,异变后种群为D。这样做可以最大程度保留上一代最优结果的同时,通过变异、交叉的方式产生一定的不确定性,使得结果不陷入局部最优,存在找到全局最优的可能性;
4.种群更新机制。计算种群D个体适应度,根据种群跟新机制进行比较生成种群E,然后转步骤2,重复步骤直到满足终止条件;
5.终止条件为达到最大迭代次数或超过20代后适应度增加的值小于1%,则认为找到了最优的结果,如果满足上述条件则停止运算,否则重复步骤4。
5)重建心音信号,用EMD算法得到包络图;
具体为:将第j层低频系数和第1-j层的高频系数相加,重构为新信号。重构算法见公式12。
(12)
公式中:x n (j) 是第j层的近似系数,d n (j) 是第j层的细节系数,x n (j-1) 是通过x n (j) d n (j) 重建的上层近似系数,g0和g1均为重建系数。
下面进行EMD分解,提取包络图:
对于一个给定的信号x(t),进行有效的EMD分解步骤如下:1.找出x(t)的所有极值点 ;2.通过插值法,在极小值点处生成下包络e mint (t),极大值处生成上包络e max (t) ;3.计算均值m(t)=(e mint (t)+e max (t))/2 ;4.抽离细节d(t)=x(t)-m(t) ;5.对残余的m(t)重复上诉步骤。
通过上述步骤求得原信号与重构信号的包络图,再通过图观察去噪后的显示效果。
6)计算信噪比;
信噪比公式见公式13:
(13)
P signal 表示信号能量,P noise 表示噪声能量,SNR为信噪比。SNR越高,信号中的噪声比率越低。
以下将通过实例进一步解释。
整体流程图见图1。取一组心音音频,时域图见附图3,频谱图见附图4。用db10小波 基进行6层小波分解,再通过GA优化各层的阈值,流程图见图2。具体为:步骤1,使用二进制 编码,随机生成大小为20的种群。种群数目过大会增加计算量,但是可以在空间中进行更多 点的搜索,故折中考虑选用大小为20的种群。步骤2,适应度函数选择,含常数 1是为了防止在RMSE特别小的情况下函数发散。输入参数ω,输出参数为Y,RMSE最低,即Y最 大时的ω即为最优解。步骤3,考虑到种群的未定性和算法的收敛性将代沟设置为0.9,即每 代父代中有2个个体会被子代个体淘汰,此时为种群B。选择函数选用轮盘赌,交叉方式为单 点交叉。交叉率则为默认的0.7,交叉后种群为C,异变率为0.01,异变后种群为D。步骤4,计 算种群D个体适应度,根据种群跟新机制进行比较生成种群E,然后转步骤2,重复步骤直到 满足终止条件。步骤5,终止条件为达到最大迭代次数或超过20代适应度增加低于1%,满足 条件则停止运算,否则重复步骤4。求得阈值后再分别求出各层近似系数和细节系数,将所 选信号分解为低频部分与高频部分,见附图5,高低频信号的频谱图见附图6。最后,进行重 构,恢复真实信号,达到去噪的目的。附图7为重构后的低频及高频信号图,附图8为相应的 频谱图。重构时使用公式(12)恢复上层细节,其余各层按递归算法得出,重构信号为剔除多 数噪音所在层后的其余层数信号。附图9为重构后信号与原信号的时域对比图,附图10为重 构后信号与原信号的频谱对比图,通过图10可以明显发现信号重构后低频部分保留很好, 而高频部分(200Hz以上)较去噪之前近乎消失,可以认为较好的保留了低频部分,去除了高 频部分的噪声。图11为截取1s的原始信号与重构信号包络对比图,从图像中可以发现图形 差异明显,更平滑的包络图也为以后的试验提供保证。最后由表1可以看出,去噪后心音信 号的信噪比得到了很大的改善,说明该方法对消除心音信号中的噪声是有效的。

Claims (7)

1.基于遗传算法优化阈值的Mallat算法对心音信号进行快速去噪处理的方法,其特征在于,包括如下步骤:
1)获取待处理的心音信号;
2)确定小波基与分解层数;
3)将步骤1所得的心音信号进行分解;
4)通过GA对步骤3中的小波系数的阈值进行优化;
5)重建心音信号,用EMD算法得到包络图;
6)计算信噪比。
2.根据权利要求1所述的基于Mallat算法对心音信号进行处理的方法,其特征在于,所述步骤1具体为:具体流程如附图1所示,获取一段心音信号,设原始信号的模型为:
(1)
其中,S(x)为含噪信号,f(x)为真实信号,n(x)为噪声,我们主要滤去中高频信号中的噪声,信号实际采样频率f为2000Hz。
3.根据权利要求1所述的基于遗传算法优化阈值的Mallat算法对心音信号进行处理的方法,其特征在于,所述步骤2具体为:
选择db10小波函数作为小波基,它的特点是双正交性与支撑性,并且不严格对称,保证了良好的时频局部特性,平滑性强,重建时失真率低,分解后高频部分认为是噪声,低频部分是有效的信号,可对心音信号进行一定层数的分解,然后在每层上使用不同的阈值进行处理,达到去噪的目的,分解层数越多,其高频部分被去除得越多,但过多的层数会导致分解过度,即部分有用信号被剔除出去,根据所需的S 1 、S 2 信号所在频率,选用分解层数为6层。
4.根据权利要求1所述的基于遗传算法优化阈值的Mallat算法对心音信号进行处理的方法,其特征在于,所述步骤3具体为:若原始信号为s(t)=A 0,k ,其分解算法为:
(2)
(3)
其中:t为离散时间序列号,t=1,2,…,Nj为层数,j=1,2,…,JJ=log2 NH是低通滤波器,G是带通滤波器,A j,k D j,k 分别为信号在第j层的低频部分和高频部分的小波系数;由多分辨率理论可得:
(4)
其中,P j f(t)是函数f(t)在分辨率j下的平滑逼近,xn (j)是线性组合的权重,Ф jn (t)是离散正交小波基;再对信号进行一定层数分解,这里以第一层的分解为例,令式4中的j为0,可求得近似系数x k (1) 为:
(5)
1层细节系数d k (1) 为:
(6)
使用递归算法即可求得其余层数的近似系数及细节系数。
5.根据权利要求1所述的基于遗传算法优化阈值的Mallat算法对心音信号进行处理的方法,其特征在于,所述步骤4具体为:一般来说,阈值是由原信号的信噪比选定的,阈值过大会使得信号边缘信息也被过滤掉,过小的阈值则无法有效过滤噪音,本发明采用遗传算法优化阈值,待阈值δ j 如式7所示:
(7)
式中n为信号的长度,ω为0到1之间的一个数值,根据分解层数的不同采用了不同的阈值,从而进一步在保留信号有效成分的情况下提高信号的质量,使得信号相对平滑;使用计算出的阈值δ j 对第j层的细节部分d k (j) 进行处理,处理公式如下:
(8)
其中ω 2=1-ω 10<α≤1α趋于0时为硬阈值函数,趋于1时为软阈值函 数;当|d k (j) |≥δ j 时,令d k (j) = ω 1 d k (j) + ω 2 sgn(|d k (j) |-δ j );当|d k (j) |<δ j 时,令d k (j) =0;GA相 应的参数设置如下:参数ω变化范围为0-1,采用二进制编码,随机产生大小为20的种群;种 群数目过大会增加计算量,但是可以在空间中进行更多点的搜索,故折中考虑选用大小为 20的种群;适应度函数选择见下式:
(9)
RMSE表示均方根误差,含常数1是为了防止在RMSE特别小的情况下函数发散,再输入参数ω,输出参数为Y,RMSE最低,即Y最大时的ω即为最优解,其中RMSE函数见式10:
(10)
考虑到种群的未定性和算法的收敛性将代沟设置为0.9,即每代父代中有2个个体会被子代个体淘汰,此时为种群B;选择函数选用轮盘赌,交叉方式为单点交叉,交叉率则为默认的0.7,交叉后种群为C,异变率为0.01,异变后种群为D;再计算种群D个体适应度,根据种群跟新机制进行比较生成种群E,然后转步骤2,重复步骤直到满足终止条件,终止条件为达到最大迭代次数或超过20代适应度增加低于1%,满足条件则停止运算,否则重复步骤4。
6.根据权利要求1所述的基于遗传算法优化阈值的Mallat算法对心音信号进行处理的方法,其特征在于,所述步骤5具体为:对小波分解后的第j层低频系数和经阈值化处理的第1层到第j层的高频系数进行重构,得到消噪后的信号;重构算法见式11:
(11)
公式中:x n (j) 是第j层的近似系数,d n (j) 是第j层的细节系数,x n (j-1) 是通过x n (j) d n (j) 重建的上层近似系数,g0和g1均为重建系数;对于一个给定的信号x(t),进行有效的EMD分解步骤如下:1.找出x(t)的所有极值点 ;2.通过插值法,在极小值点处生成下包络e mint (t),极大值处生成上包络e max (t) ;3.计算均值m(t)=(e mint (t)+e max (t))/2 ;4.抽离细节d(t)=x(t)-m(t) ;5.对残余的m(t)重复上诉步骤;通过上述步骤求得原始信号与重构信号的包络图,再通过图观察去噪后的显示效果。
7.根据权利要求1所述的基于遗传算法优化阈值的Mallat算法对心音信号进行处理的方法,其特征在于,所述步骤6具体为:信噪比公式见式12:
(12)
Psignal表示信号能量,Pnoise表示噪声能量,SNR为信噪比,信噪比越高表示信号中含噪越低。
CN201810500130.XA 2018-05-23 2018-05-23 基于遗传算法优化阈值的Mallat算法在心音信号降噪的应用 Pending CN108665054A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810500130.XA CN108665054A (zh) 2018-05-23 2018-05-23 基于遗传算法优化阈值的Mallat算法在心音信号降噪的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810500130.XA CN108665054A (zh) 2018-05-23 2018-05-23 基于遗传算法优化阈值的Mallat算法在心音信号降噪的应用

Publications (1)

Publication Number Publication Date
CN108665054A true CN108665054A (zh) 2018-10-16

Family

ID=63777390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810500130.XA Pending CN108665054A (zh) 2018-05-23 2018-05-23 基于遗传算法优化阈值的Mallat算法在心音信号降噪的应用

Country Status (1)

Country Link
CN (1) CN108665054A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557429A (zh) * 2018-11-07 2019-04-02 国网浙江省电力有限公司电力科学研究院 基于改进小波阈值去噪的gis局部放电故障检测方法
CN111248876A (zh) * 2020-02-27 2020-06-09 四川长虹电器股份有限公司 基于压电薄膜传感信号的心率和呼吸率的计算方法
CN111862926A (zh) * 2020-07-29 2020-10-30 华南农业大学 一种风送式喷雾机的窄带主动降噪算法
CN114577419A (zh) * 2022-04-24 2022-06-03 南京信息工程大学 一种提高地下连续墙渗漏安全监测有效性方法
CN115317016A (zh) * 2022-08-15 2022-11-11 宜兴市人民医院 一种基于具备通信功能的听诊器的听诊系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002033400A1 (de) * 2000-10-18 2002-04-25 Bayer Aktiengesellschaft Verfahren zur charakterisierung, identifizierung und kennzeichnung von mikrobiellen mischungen durch vergleich von ir-, ft-ir-, raman-, ft-raman- und gc-analysedaten mit daten aus einer referenzdatenbank
CN102283670A (zh) * 2011-07-08 2011-12-21 西华大学 一种心音信号量化分析方法及装置
CN103217409A (zh) * 2013-03-22 2013-07-24 重庆绿色智能技术研究院 一种拉曼光谱预处理方法
CN104092447A (zh) * 2014-07-08 2014-10-08 南京邮电大学 一种双正交小波滤波器组的构造方法
JP2016182231A (ja) * 2015-03-26 2016-10-20 国立大学法人九州工業大学 心音雑音除去装置、その方法及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002033400A1 (de) * 2000-10-18 2002-04-25 Bayer Aktiengesellschaft Verfahren zur charakterisierung, identifizierung und kennzeichnung von mikrobiellen mischungen durch vergleich von ir-, ft-ir-, raman-, ft-raman- und gc-analysedaten mit daten aus einer referenzdatenbank
CN102283670A (zh) * 2011-07-08 2011-12-21 西华大学 一种心音信号量化分析方法及装置
CN103217409A (zh) * 2013-03-22 2013-07-24 重庆绿色智能技术研究院 一种拉曼光谱预处理方法
CN104092447A (zh) * 2014-07-08 2014-10-08 南京邮电大学 一种双正交小波滤波器组的构造方法
JP2016182231A (ja) * 2015-03-26 2016-10-20 国立大学法人九州工業大学 心音雑音除去装置、その方法及びプログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李亚荣: "《信号分析与处理》", 31 March 2007 *
李新春 等: "基于改进遗传算法的小波阈值语音去噪", 《激光杂志》 *
赵秀敏: "心音信号的分析与分类方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557429A (zh) * 2018-11-07 2019-04-02 国网浙江省电力有限公司电力科学研究院 基于改进小波阈值去噪的gis局部放电故障检测方法
CN109557429B (zh) * 2018-11-07 2021-08-27 国网浙江省电力有限公司电力科学研究院 基于改进小波阈值去噪的gis局部放电故障检测方法
CN111248876A (zh) * 2020-02-27 2020-06-09 四川长虹电器股份有限公司 基于压电薄膜传感信号的心率和呼吸率的计算方法
CN111862926A (zh) * 2020-07-29 2020-10-30 华南农业大学 一种风送式喷雾机的窄带主动降噪算法
CN111862926B (zh) * 2020-07-29 2023-09-22 华南农业大学 一种风送式喷雾机的窄带主动降噪算法
CN114577419A (zh) * 2022-04-24 2022-06-03 南京信息工程大学 一种提高地下连续墙渗漏安全监测有效性方法
CN115317016A (zh) * 2022-08-15 2022-11-11 宜兴市人民医院 一种基于具备通信功能的听诊器的听诊系统
CN115317016B (zh) * 2022-08-15 2024-02-27 宜兴市人民医院 一种基于具备通信功能的听诊器的听诊系统

Similar Documents

Publication Publication Date Title
CN108665054A (zh) 基于遗传算法优化阈值的Mallat算法在心音信号降噪的应用
CN107845389B (zh) 一种基于多分辨率听觉倒谱系数和深度卷积神经网络的语音增强方法
Saleem et al. Deep neural networks for speech enhancement in complex-noisy environments
El-Dahshan Genetic algorithm and wavelet hybrid scheme for ECG signal denoising
CN110598166B (zh) 一种自适应确定小波分层级数的小波去噪方法
Aggarwal et al. Noise reduction of speech signal using wavelet transform with modified universal threshold
TW546630B (en) Optimized local feature extraction for automatic speech recognition
CN106601265B (zh) 一种消除毫米波生物雷达语音中噪声的方法
Zheng et al. An innovative multi-level singular value decomposition and compressed sensing based framework for noise removal from heart sounds
Do et al. Speech Separation in the Frequency Domain with Autoencoder.
Wang et al. Massive ultrasonic data compression using wavelet packet transformation optimized by convolutional autoencoders
Li Speech denoising based on improved discrete wavelet packet decomposition
Mesgarani et al. Denoising in the domain of spectrotemporal modulations
CN113476074A (zh) 基于智能穿戴系统的肺音实时监测方法
Jaffery et al. Selection of optimal decomposition level based on entropy for speech denoising using wavelet packet
Ou et al. Frame-based time-scale filters for underwater acoustic noise reduction
CN109036472B (zh) 一种改进的病理嗓音基音频率提取方法
Venkateswarlu et al. Speech enhancement using recursive least square based on real-time adaptive filtering algorithm
Touati et al. Speech denoising by adaptive filter LMS in the EMD framework
Kyzdarbekova et al. Adaptive noise reduction phonocardiograms based on wavelet transformation
Sulong et al. Speech enhancement based on wiener filter and compressive sensing
Vishwakarma et al. De-noising of Audio Signal using Heavy Tailed Distribution and comparison of wavelets and thresholding techniques
Singh et al. Noise removal in single channel Hindi speech patterns by using binary mask thresholding function in various mother wavelets
Thiem et al. Reducing artifacts in GAN audio synthesis
Sumithra et al. Wavelet based speech signal de-noising using hybrid thresholding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181016