Detailed Description
The terms used in the present application have the same meaning as the terms in the prior art. In order to clearly indicate the meanings of the terms used, specific meanings of some terms in the present application are given below. In the event that the following definitions conflict with the conventional meaning of the term, the following definitions prevail.
Through extensive research efforts, the inventors found that the components A and B of oryzanol are determined by the AT domain of the Loading module (LD module) of the milA1 gene (milA1AT 0). The structural domain can take acetyl coenzyme A and propionyl coenzyme A as initial units to finally obtain the tianweimycin A and the tianweimycin B respectively. By CSDB (http:// CSDB. bioserv. pbf. hr/CSDB/ClustsCannWeb. html) database query, the LD module of eryA1 gene in the erythromycin synthetic gene cluster is consistent with the LD module of milA1 gene in structure, and both are AT-ACP structural domains, while the eryA1AT0 structural domain in the erythromycin synthetic gene cluster takes propionyl coenzyme A as an initiating unit. Therefore, based on the prior invention patent, the inventor successfully obtains the recombinant streptomyces stably expressing the oryzanol B by replacing the gene coding sequence of the milA1AT0 domain with the gene sequence of the AT0 domain in Saccharopolyspora erythraea NRRL23338 (Saccharopolyspora erythraea) eryA 1.
Example 1 construction of recombinant plasmid SAT-TUeatTD for replacement of the milA1-AT0 Gene
The construction process is shown in FIG. 1, and the specific steps are as follows:
a) isolation of actinomycete genome: 200. mu.l of actinomycete cryopreserved cell suspension was inoculated into 30ml of TSB medium (Bacto TM Tryptic Soy Broth. BD Co., Ltd., Cat. 211825), cultured at 28 ℃ and 220rpm for 48 hours, centrifuged at 4000rpm in a 50ml centrifuge tube for 10 minutes, the supernatant was removed, and the precipitate was washed with 30ml of sucrose-Tris buffer (10.3% sucrose, 10mM Tris-HCl, pH8.0) for 2 times and then suspended in 5ml of sucrose-Tris buffer. Adding 20 μ l of 100mg/ml lysozyme solution, and water bath at 37 deg.C for 2 hr. Add 500. mu.l of 10% SDS solution and gently invert until essentially clear. 5ml of a phenol-chloroform-isoamyl alcohol (25:24:1, pH8.0) solution was added thereto, and after gently inverting the mixture several times, the mixture was centrifuged at 4000rpm for 10 minutes. 4ml of the upper layer solution was taken, and 4ml of a phenol-chloroform-isoamyl alcohol (25:24:1, pH8.0) solution was added thereto, and the mixture was centrifuged at 4000rpm for 10 minutes after gently inverting the mixture several times. 3ml of the supernatant was taken, and 300. mu.l of 3mol/L HAc/NaAc buffer (pH 5.3) and 3ml of isopropyl alcohol were added thereto, and after gently inverting the mixture several times, the pellet was picked up with a pipette tip into a 1.5ml centrifuge tube. The precipitate was washed with 70% ethanol 2 times and then dried at room temperature. The actinomycete total DNA was obtained by adding 500. mu.l Tris-HCl (pH 8.0) for solubilization.
b) Amplification and cloning of the upstream fragment of the gene encoding the milA1-AT0 domain: the primers are as follows: 266TUF: AAATCTAGATCTGGTGCACATCGACGAGTACGCCGGAATGATCG (SEQ ID NO: 6); 267TUR: AAATCTAGAGAACGCGACCCCGTCGCCGCCCGC (SEQ ID NO: 7).
Preparing a reaction solution according to the following mixture ratio:
(PrimeSTAR kit, TaKaRa)
The PCR reaction was performed with the program:
at the temperature of 95 ℃ for 5 minutes,
(98 ℃ C. times.15 seconds, 68 ℃ C. times.1 minute, 20 seconds) X25 cycles,
at the temperature of 72 ℃ for 5 minutes,
16 ℃ for 1 minute.
The PCR product was recovered with a PCR product recovery kit (Corning Biotechnology Ltd.), digested with XbaI, and the recovered product was ligated with the XbaI digested vector SupAmT to obtain recombinant plasmid SAT-TAT 0U.
The structure and cleavage site of plasmid SAT-TAT0U are shown in FIG. 2. The constructed plasmid was double digested with PvuII and Xho I to check for correctness. FIG. 3 shows the cleavage electrophoresis of plasmid SAT-TAT 0U.
c) Amplification and cloning of a downstream fragment of the gene encoding the milA1-AT0 domain: the primers are as follows: 268TDF: AAATCTAGAGACCATCGGGCGGCGTTCTCGGTG (SEQ ID NO:8)269TDR: AAATCTAGATCCGGATGACCTGTTGCTGTGATGGACCGCTG (SEQ ID NO:9)
Preparing a reaction solution according to the following mixture ratio:
the PCR reaction was performed with the program:
at the temperature of 95 ℃ for 5 minutes,
(98 ℃ C. times.15 seconds, 68 ℃ C. times.1 minute, 20 seconds) X25 cycles,
at the temperature of 72 ℃ for 5 minutes,
16 ℃ for 1 minute.
The PCR product was recovered with a PCR product recovery kit (Corning Biotechnology Ltd.), digested with XbaI, and the recovered product was ligated with plasmid SAT-TAT0U digested with XbaI to obtain recombinant plasmid SAT-TAT0 UD.
d) Amplification and cloning of the gene fragment encoding the eryA1-AT0 domain: the primers are as follows: 272EAF: GACGGGGTCGCGTTCGTCTTCCCGGGCCAGGGCGCGCAATGG (SEQ ID NO: 10); 273EAR: CGCCGCCCGATGGTCGACGGCCACGCCGCCGGTGAACGCCTGGG (SEQ ID NO:11)
Preparing a reaction solution according to the following mixture ratio:
the PCR reaction was performed with the program:
at the temperature of 95 ℃ for 5 minutes,
(98 ℃ C. times.15 seconds, 68 ℃ C. times.1 minute) X25 cycles,
at the temperature of 72 ℃ for 5 minutes,
16 ℃ for 1 minute.
After the PCR product was recovered with a PCR product recovery kit (Corning Biotechnology Ltd.), the product was recovered with plasmid SAT-TAT0UD digested with XbaI
PCR cloning kit (Nanjing Kingsler Biotech Co., Ltd., product No. L00339) was ligated to obtain recombinant plasmid SAT-TUeatTD.
The structures and cleavage sites of the plasmids SAT-TAT0UD and SAT-TUeatTD are shown in FIGS. 4 and 5, respectively. The constructed plasmids were digested with BamHI, SmaI, SphI, respectively, to determine if the plasmids were correct. FIG. 6 shows the restriction enzyme electrophoretograms of the plasmids SAT-TAT0UD and SAT-TUeatTD.
The sequence between the primers 266TUF and 269TDR in the SAT-TUeatTD plasmid was further verified by sequencing, wherein the sequence starting from sequence TGGTGCACATCGACGAGTACGCCGGAATGATC (partial sequence of primer 266 TUF) to sequence CAGCGG TCCATCACAGCAACAGGTCATCCGG (partial sequence of the reverse complement of primer 269 TDR) was the sequence of the ligated fragment S shown in SEQ ID NO: 5.
Example 2 transformation of recombinant plasmid SAT-TUeatTD with gene replacement of milA1-AT0 into the host Strain, Avermectin producer MA220
a) Transformation of the recombinant plasmid SAT-TUeatTD into E.coli ET12567(pUZ 8002): mu.l of the recombinant plasmid SAT-TUeatTD was added to 100. mu.l of E.coli ET12567(pUZ8002) competent cells (prepared by the CaCl2 method), allowed to stand on ice for 30 minutes, heat-shocked at 42 ℃ for 90 seconds, rapidly placed on ice to cool for 1 minute, cultured with 900. mu.l of LB, and then incubated in a 37 ℃ water bath for 50 minutes. Mu.l of the resulting suspension was plated on solid LB medium containing 25. mu.g/ml chloramphenicol (Cm), 50. mu.g/ml kanamycin (Km) and 50. mu.g/ml apramycin (Am), and the resulting suspension was cultured overnight at 37 ℃ to grow transformants, and one of the transformants was selected and identified as the transferred plasmid SAT-TUeatTD, which was designated as ET12567(pUZ8002, SAT-TUeatTD).
b) Cultivation of E.coli ET12567(pUZ8002, SAT-TUeatTD): a single colony of a transformant is picked up and cultured overnight at 37 ℃ and 220rpm in 3ml of liquid LB culture medium containing 25 mu g/ml Cm, 50 mu g/ml Km and 50 mu g/ml Am, 300 mu l of bacterial liquid is inoculated in 30ml of liquid LB culture medium containing Cm, Km and Am and cultured at 37 ℃ and 220rpm for 4-6h until the OD600 is between 0.4 and 0.6. The bacterial liquid was collected, centrifuged, washed 2 times with LB medium and finally suspended in 3ml of LB medium for further use.
c) Preparation of host bacterium MA 220: the spores of Streptomyces avermitilis MA220 were scraped from the plate and suspended in 1000. mu.l of 2 XYT medium, heat-shocked at 50 ℃ for 10min, and naturally cooled for use.
d) Bonding and transferring: 500. mu. l b) was added to the spore suspension of 1000. mu. l c), mixed and centrifuged to remove 800. mu.l of the supernatant. The remaining supernatant was used to suspend the cells and applied to MS medium. After culturing at 28 ℃ for 16-20 hours, the cells were covered with 1ml of sterile water containing 500. mu.g Am and 500. mu.g nalidixic acid (Nal), and cultured at 28 ℃ for 6-7 days to grow transformants.
A schematic diagram of the double switching process is shown in fig. 7.
Example 3 screening, culturing and identification of engineered Streptomyces avermitilis having the A1-AT0 replaced by the eryA1-AT0 Gene
a) One transformant was picked, streaked on YMS medium containing 25. mu.g/ml Am and 25. mu.g/ml Nal, and cultured at 28 ℃ for 5 to 6 days. After the grown colonies were continuously cultured on YMS medium containing no antibiotic at 28 ℃ for 2 generations, single colonies were streaked on YMS medium containing no antibiotic and cultured at 28 ℃ for 5-6 d.
b) Single colonies from a) were spotted with toothpicks on YMS medium with and without 25. mu.g/ml Am, and cultured at 28 ℃ for 5-6 days. Colonies that did not grow on YMS medium containing 25. mu.g/ml Am but did not grow on YMS medium containing no Am were selected and cultured on YMS medium containing no antibiotic under magnification.
c) Screening the strain subjected to amplification culture by using a PCR method, wherein the primers are as follows: 273EAR: CGCCGCCCGATGGTCGACGGCCACGC CGCCGGTGAACGCCTGGG (SEQ ID NO: 11); 270TCF: AGAACGAGTTCGCAGTGGCCGGTCATCCGTGGATC (SEQ ID NO: 12).
Preparing a reaction solution according to the following mixture ratio:
15 μ l/tube, picking the colony screened in step b) with toothpick as template to perform PCR reaction, and using 1.0 μ l MA220 total DNA and recombinant plasmid SAT-TUeatTD as negative control and positive control, respectively. The PCR reaction program is:
at the temperature of 95 ℃ for 5 minutes,
(94 ℃ C. times.30 seconds, 68 ℃ C. times.1 minute, 20 seconds) X25 cycles,
at the temperature of 72 ℃ for 5 minutes,
16 ℃ for 1 minute.
The PCR product is an engineering bacterium with the size of 1238bp, wherein the engineering bacterium is successfully replaced by the gene eryA1-AT0 of mil A1-AT 0; no PCR product or PCR product with size not 1238bp is the back mutation, namely the genotype is the same as that of the starting bacterium MA220, and the milA1-AT0 is not replaced by eryA1-AT 0. FIG. 8 is an electrophoretogram of a PCR screen. Selecting 13# bacterium named as TWB-13#, and sequencing and identifying the bacterium, wherein the sequencing result is shown as SEQ ID NO. 13. The PCR electrophoresis result and the sequencing result show that the strain is the expected strain of the invention.
Example 4 fermentation test of genetically engineered bacterium TWB-13#
Culturing the eryA1-AT0 gene-substituted oryzanol engineering bacteria TWB-13# on YMS culture medium AT 28 deg.C for 5-6 days, and collecting the culture medium with an area of 1cm2The left and right bacterial colonies were dug into 30ml seed culture medium (corn starch 2.5%, soybean cake powder 0.8%, peanut cake powder 1%, yeast powder 0.95%, CoCl)20.003%, pH 7.2-7.4), culturing at 28 deg.C and 250rpm for 40hr, and inoculating to the infected hair at 6%Culture medium (corn starch 14%, amylase 0.003%, soybean cake powder 2.0%, yeast powder 1%, zeolite powder 0.2%, MnSO4 0.0024%,Na2MoO4 0.0024%,CoC12·6H200.002%, pH 7.2-7.4), 28 ℃, 250rpm, and culturing for 8 d. Taking 1ml fermentation liquor, adding 4ml absolute methanol for soaking, carrying out ultrasonic treatment for 1h, and filtering. The filtrate was used directly for HPLC analysis. Conditions for HPLC analysis were: a chromatographic column: c18Hypersil ODS 24.6X 250X 5 (Dalian Eilide); mobile phase: methanol: ethanol: water 81:7: 12; flow rate: 1 ml/min; absorption wavelength: 240 nm.
The detection results are shown in fig. 9 and 10. FIG. 9: HPLC (high Performance liquid chromatography) spectrum of fermentation liquor of the starting strain MA 220; FIG. 10: and (3) HPLC (high performance liquid chromatography) spectrum of fermentation liquor of the genetically engineered bacterium TWB-13 #. As can be seen from the graph, the retention times for the A and B components of Avermectin are 6.95 and 8.39 minutes, respectively. The results show that, compared with the starting strain MA220, the skyhelminthin engineering bacterium TWB-13# which replaces milA1-AT0 with eryA1-AT0 only produces skyhelminthin B single component and does not produce skyhelminthin A component any more.
Sequence listing
<110> Zhejiang Haizheng pharmaceutical industry Co., Ltd
<120> recombinant microorganism expressing cevicin B, preparation method and use thereof
<130> MP1619312
<160> 13
<170> PatentIn version 3.5
<210> 1
<211> 960
<212> DNA
<213> mil A1AT0 Domain Gene coding sequence
<400> 1
gtcttccccg gccagggcac ccagtggccc ggtatggccg ccgatctgct gacggtctcc 60
cccgccttca gccgggcggt cgacgcctgc gccgaggcgt tcgaaccgta tgtctcctgg 120
tcaccggagg ccgtgctgcg gggcgctccg ggcgcgccgc ccctggaggg gaccgatgtg 180
gtgcagccga cgctgttcgc cgtcatggtg gggctggccg agctgtggcg gactcttggg 240
gtgagcccga cgtcgatcgt gggccactgc atcggggaga tcgcggcagc ccatctctgc 300
ggcgccctgt cgctgtccga cgcggcgcgc gtggtgatcg agagcagccg ggcccaggcg 360
acgctctccg ggtcgggtgc gctgatcgcg gtcgcgcggt ccgaggcgca gctgcttccg 420
ttgctgcggc ggtggccggg caggctgacg atcgccgcggt caacggcccg atggccacg 480
gtcgtctccg gcgatcggcc ggccgccgac gagctgttgg cggagttcgc ccgtgccggt 540
gtccgggccc gcgaggtggc gatcgacatc cccgcgcact cgccgttcat ggcccccctc 600
agggacggtc tgctcgactc gctgtcatcg gtcaccgcgg gtgcgtcgcg gctgccgttc 660
cactcctcgg tcatcggggg gccgctggag acccaagggc tcgacgcggc ttactggtac 720
cggaacctcg ccgacacggt ccgcttcgaa agcgtcgtca cggggctgct gcggcagggc 780
acacgctgct tcgtggagct gagcccgcac ccgatgctga ccatgtgtgt gcaggccacc 840
gccgaggagg tggtcggcgg tgagcgcgtc gtgatcctgc cgacgctgca tcgcgggcag 900
gccgccgtcg agtccgttcg caccacgctg gccgagctgt acgtacgggg cgcactggat 960
<210> 2
<211> 320
<212> PRT
<213> amino acid sequence encoded by milA1-AT0
<400> 2
Val Phe Pro Gly Gln Gly Thr Gln Trp Pro Gly Met Ala Ala Asp 15
Leu Leu Thr Val Ser Pro Ala Phe Ser Arg Ala Val Asp Ala Cys 30
Ala Glu Ala Phe Glu Pro Tyr Val Pro Trp Ser Pro Glu Ala Val 45
Leu Arg Gly Ala Pro Gly Ala Pro Pro Leu Glu Gly Thr Asp Val 60
Val Gln Pro Thr Leu Phe Ala Val Met Val Gly Leu Ala Glu Leu 75
Trp Arg Thr Leu Gly Val Ser Pro Thr Thr Ile Val Gly His Cys 90
Ile Gly Glu Ile Ala Ala Ala His Leu Cys Gly Ala Leu Ser Leu 105
Ser Asp Ala Ala Arg Val Val Ile Glu Ser Ser Arg Ala Gln Ala 120
Thr Leu Ser Gly Ser Gly Ala Leu Ile Ala Val Ala Arg Ser Glu 135
Ala Gln Leu Leu Pro Leu Leu Arg Arg Trp Pro Gly Arg Leu Thr 150
Ile Ala Ala Val Asn Gly Pro Met Ala Thr Val Val Ser Gly Asp 165
Arg Pro Ala Ala Asp Glu Leu Leu Ala Glu Leu Ala Arg Ala Gly 180
Val Arg Ala Arg Glu Val Ala Ile Asp Ile Pro Ala His Ser Ala 195
Phe Met Ala Pro Leu Arg Asp Gly Leu Leu Asp Ser Leu Ser Ser 210
Val Thr Ala Gly Ala Ser Arg Leu Pro Phe His Ser Ser Val Ile 225
Gly Gly Pro Leu Glu Thr Gln Gly Leu Asp Ala Ala Tyr Trp Tyr 240
Arg Asn Leu Ala Asp Thr Val Arg Phe Glu Ser Val Val Thr Gly 255
Leu Leu Arg Gln Gly Thr Arg Cys Phe Val Glu Leu Ser Pro His 270
Pro Met Leu Thr Met Cys Val Gln Ala Thr Ala Glu Glu Val Val 285
Gly Gly Glu Arg Val Val Ile Leu Pro Thr Leu His Arg Gly Gln 300
Ala Ala Val Glu Ser Val Arg Thr Thr Leu Ala Glu Leu Tyr Val 315
Arg Gly Ala Leu Asp 320
<210> 3
<211> 948
<212> DNA
<213> saccharopolyspora erythraea 1-AT0 coding sequence
<400> 3
ttcgtcttcc cgggccaggg cgcgcaatgg gccgggatgg cgggcgaact cctcggcgag 60
tcaagggttt tcgccgccgc gatggacgcg tgcgcgcggg cgttcgagcc cgtgaccgac 120
tggacgctgg cgcaggtcct ggactctccc gagcagtcgc gccgcgtcga ggtcgtccag 180
cccgccctgt tcgcggtgca gacgtcgctg gccgcgctct ggcgctcctt cggcgtgacc 240
cccgacgccg tggtgggcca cagcatcggc gagctggccg ccgcgcacgt gtgcggtgcg 300
gccggtgccg ccgacgccgc gcgcgccgcc gcgctgtgga gccgcgagat gattccgttg 360
gtgggcaacg gcgacatggc agccgtcgcg ctctccgccg acgagatcga gccgcgcatc 420
gcccggtggg acgacgacgt ggtgctggcc ggggtcaacg gtccgcgctc ggttctgctg 480
accgggtcgc cggaaccggt cgcgcgccgg gtccaggagc tctcggccga gggggtccgc 540
gcacaggtca tcaatgtgtc gatggcggcg cactcggcgc aggtcgacga catcgccgag 600
gggatgcgct cggccctggc gtggttcgcg cccggtggct cggaggtgcc cttctacgcc 660
agcctcaccg gaggtgcggt cgacacgcgg gagctggtgg ccgactactg gcgccgcagc 720
ttccggctgc cggtgcgctt cgacgaggcg atccggtccg ccctggaggt cggtcccggc 780
acgttcgtcg aagcgagccc gcacccggtg ctggccgccg cgctccagca gacgctcgac 840
gccgagggct cctcggccgc ggtggtcccg acgctgcaac gcgggcaggg cggcatgcgg 900
cggttcctgc tggccgcggc ccaggcgttc accggcggcg tggccgtc 948
<210> 4
<211> 316
<212> PRT
<213> saccharopolyspora erythraea 1-AT0 encoding amino acid sequence
<400> 4
Phe Val Phe Pro Gly Gln Gly Ala Gln Trp Ala Gly Met Ala Gly 15
Glu Leu Leu Gly Glu Ser Arg Val Phe Ala Ala Ala Met Asp Ala 30
Cys Ala Arg Ala Phe Glu Pro Val Thr Asp Trp Thr Leu Ala Gln 45
Val Leu Asp Ser Pro Glu Gln Ser Arg Arg Val Glu Val Val Gln 60
Pro Ala Leu Phe Ala Val Gln Thr Ser Leu Ala Ala Leu Trp Arg 75
Ser Phe Gly Val Thr Pro Asp Ala Val Val Gly His Ser Ile Gly 90
Glu Leu Ala Ala Ala His Val Cys Gly Ala Ala Gly Ala Ala Asp 105
Ala Ala Arg Ala Ala Ala Leu Trp Ser Arg Glu Met Ile Pro Leu 120
Val Gly Asn Gly Asp Met Ala Ala Val Ala Leu Ser Ala Asp Glu 135
Ile Glu Pro Arg Ile Ala Arg Trp Asp Asp Asp Val Val Leu Ala 150
Gly Val Asn Gly Pro Arg Ser Val Leu Leu Thr Gly Ser Pro Glu 165
Pro Val Ala Arg Arg Val Gln Glu Leu Ser Ala Glu Gly Val Arg 180
Ala Gln Val Ile Asn Val Ser Met Ala Ala His Ser Ala Gln Val 195
Asp Asp Ile Ala Glu Gly Met Arg Ser Ala Leu Ala Trp Phe Ala 210
Pro Gly Gly Ser Glu Val Pro Phe Tyr Ala Ser Leu Thr Gly Gly 225
Ala Val Asp Thr Arg Glu Leu Val Ala Asp Tyr Trp Arg Arg Ser 240
Phe Arg Leu Pro Val Arg Phe Asp Glu Ala Ile Arg Ser Ala Leu 255
Glu Val Gly Pro Gly Thr Phe Val Glu Ala Ser Pro His Pro Val 270
Leu Ala Ala Ala Leu Gln Gln Thr Leu Asp Ala Glu Gly Ser Ser 285
Ala Ala Val Val Pro Thr Leu Gln Arg Gly Gln Gly Gly Met Arg 300
Arg Phe Leu Leu Ala Ala Ala Gln Ala Phe Thr Gly Gly Val Ala 315
Val 316
<210> 5
<211> 3674
<212> DNA
<213> Streptomyces avermitilis
<400> 5
tggtgcacatcgacgagtacgccggaatgatcgccgacgccgggctggaactgcatgagc 60
tgaccgacatcggcgatcaggtcgtcggcccctctttcgccgcgctgcgtgaccacgtga 120
acgagcacctcgacgagtacgcggcggccttcgggatcggcgtcgcggagatgcggaagg 180
tggttgcacagtgcacgacgctcccctggacgccggacatcggctatgtcgtgctgaccg 240
cccggcgcccgggcgatctcccggatcacctgtgcggggctgggcatgtgcaggagacac 300
tccagggcccacgccgcgtcgaaggacccgtcgggaaacggcagttccatcgcgtcggca 360
cgggtgaacacgacccggtccgccacgtgcgactgcttcgcgagagcggtcgccagcccg 420
acctgaacctcgctcaccgtcacgccgacgacatcgacgggcgcgctcagggcgagccgc 480
accgccggctttccggaaccgcagccgacgtccaggacccggcggcccgtgatgcctctc 540
agcttgccgatgaggagatcggtgagccggtcggcggccttgcccggtgaactgccgtcc 600
cccggctgcggccagtatccgaggtgggtgttcccacccagcgcacgattcatgaggtcg 660
gtcaaacggtcgtagtagtcccccacttccagggaagagggcggggtctgctccgggacg 720
gccatcatggtcgggaacctccgcaatccgggccgggcggcccagctgtcgtggcgatct 780
actccaggaaacgtagacctttttctgccacttgtccgagctatgcagacaccccgatcc 840
cctaagaaatgaacacccttgggaacggcacagcccaggggtggataggggtattcgccg 900
ccgccgcgccgtcattagctttgaagagttgaagacgttcaagacattgatgcccggccg 960
tcagcggatttctcgcgctcctttcattcttcgacgctgcattgcagctctcatcatgtc 1020
cgcacggccgccgagcattgcctagcggtgaggacacagctcagttgcccaaagcccaga 1080
acgagttcgcagtggccggtcatccgtggatcctctccgggcacaccggaaccgcgctgc 1140
gggcccaggcacgccggctccacgaccatgtcgccgaccaccctcggctccgtccggaag 1200
acatcgcccacacgctggcgagcagcggcccggcgctcacccatcgcgcggcggtgatcg 1260
cggcggaccgggaaggacatctccgggggctcgacgcggtggcccggggtgaggacaccc 1320
ccggtgtcgtacggggcacggcggccgcgggcggcgacggggtcgcgttcgtcttcccgg 1380
gccagggcgcgcaatgggccgggatggcgggcgaactcctcggcgagtcaagggttttcg 1440
ccgccgcgatggacgcgtgcgcgcgggcgttcgagcccgtgaccgactggacgctggcgc 1500
aggtcctggactctcccgagcagtcgcgccgcgtcgaggtcgtccagcccgccctgttcg 1560
cggtgcagacgtcgctggccgcgctctggcgctccttcggcgtgacccccgacgccgtgg 1620
tgggccacagcatcggcgagctggccgccgcgcacgtgtgcggtgcggccggtgccgccg 1680
acgccgcgcgcgccgccgcgctgtggagccgcgagatgattccgttggtgggcaacggcg 1740
acatggcagccgtcgcgctctccgccgacgagatcgagccgcgcatcgcccggtgggacg 1800
acgacgtggtgctggccggggtcaacggtccgcgctcggttctgctgaccgggtcgccgg 1860
aaccggtcgcgcgccgggtccaggagctctcggccgagggggtccgcgcacaggtcatca 1920
atgtgtcgatggcggcgcactcggcgcaggtcgacgacatcgccgaggggatgcgctcgg 1980
ccctggcgtggttcgcgcccggtggctcggaggtgcccttctacgccagcctcaccggag 2040
gtgcggtcgacacgcgggagctggtggccgactactggcgccgcagcttccggctgccgg 2100
tgcgcttcgacgaggcgatccggtccgccctggaggtcggtcccggcacgttcgtcgaag 2160
cgagcccgcacccggtgctggccgccgcgctccagcagacgctcgacgccgagggctcct 2220
cggccgcggtggtcccgacgctgcaacgcgggcagggcggcatgcggcggttcctgctgg 2280
ccgcggcccaggcgttcaccggcggcgtggccgtcgaccatcgggcggcgttctcggtgc 2340
cgggcggccgcctgatcaccctgcctctcgagccgcccgcggacacgtccgtagagctcg 2400
ccgacgccccggacccggcggaggcctgccggccccccttggtggagcggcttgcccggc 2460
tctccaccgcggagcggaagcggcggctgcgcgagctggtgggcgtcgaggcggccaagg 2520
tcctcgaggacgtcgccggggcggacgcgccgggccacggcatcgcggagcaggagcact 2580
tcgtcacttcgggcttcgactccgcggccgcggtcgcgctgcgcaaccgcctgaacgacg 2640
ccaccggtttgctgctgcccttcaccctggccttcgaccatccgacacccgccgccgtcg 2700
ccgaccatctgcactcccggctcttcgatcaccagggcggcgggcagccgggcgccgacg 2760
gccggcccgaccccgcggcggcggccggtccggccagggccgacgacgagccgatcgccg 2820
tcatcggcatggcgggccgcttccccgggggcgcccgtaccccggaggagctgtgggaac 2880
tggtcgccgaaggcaccgacgccctctcgcccttcccggagggccggggctgggatccgc 2940
tgcggctctacgatccggaccccgcccggcccggcacgtactaccagcgcgaagcgggat 3000
tcctccacgacgccgacaagttcgacgccgagttcttcggcatcgcgccacgcgaggcca 3060
ccgcaatggatccccagcagcggctgctcctggagacctcctgggaggcgctcgaacggg 3120
cgcggatcgacccgaccgcgctgcgcggcagccgcaccggggtgttcgtcggcgtggccc 3180
cgctggactacagcccccgaatgcaccaggcgtcgccggagctggagggccatctgctga 3240
ccggcaacatcggcgccgcggcctcggggcggatctcctacgtactcgggcttgaggggc 3300
ccgcggtgtccgtggacacggcgtgctcgtcgtccctggtcgccctgcatctggcggccc 3360
aggcgctgcgggccggggagtgctcgctggccctggtcggcggggcgacggtcctctcga 3420
cccccggcatgttcatcgagttctcgcggcagcgcggtctggctccggacggccgctgca 3480
aggcgtacgcggccgccgcggacggcaccggctggtccgagggtgtgggcatgctgctcg 3540
tcgagcggctgtccgacgcgcgacggctcggacaccaggtgcttgcggtggtacggggct 3600
ccgccgtcaaccaggacggggcgagcaacggcttcacggcgcccagcggtccatcacagc 3660
aacaggtcatccgg 3674
<210> 6
<211> 44
<212> DNA
<213> Artificial 266TUF
<400> 6
aaatctagat ctggtgcaca tcgacgagta cgccggaatg atcg 44
<210> 7
<211> 33
<212> DNA
<213> Artificial Synthesis 267TUR
<400> 7
aaatctagag aacgcgaccc cgtcgccgcc cgc 33
<210> 8
<211> 33
<212> DNA
<213> artificially synthesized 268TDF
<400> 8
aaatctagag accatcgggc ggcgttctcg gtg 33
<210> 9
<211> 41
<212> DNA
<213> Artificial Synthesis of 269TDR
<400> 9
aaatctagat ccggatgacc tgttgctgtg atggaccgct g 41
<210> 10
<211> 42
<212> DNA
<213> Artificial Synthesis 272EAF
<400> 10
gacggggtcg cgttcgtctt cccgggccag ggcgcgcaat gg 42
<210> 11
<211> 44
<212> DNA
<213> Artificial Synthesis 273EAR
<400> 11
cgccgcccga tggtcgacgg ccacgccgcc ggtgaacgcc tggg 44
<210> 12
<211> 35
<212> DNA
<213> Artificial Synthesis of 270TCF
<400> 12
agaacgagtt cgcagtggcc ggtcatccgt ggatc 35
<210> 13
<211> 3592
<212> DNA
<213> sequencing results
<400> 13
ccgggctggaactgcatgagctgaccgacatcggcgatcaggtcgtcggcccctctttcg 60
ccgcgctgcgtgaccacgtgaacgagcacctcgacgagtacgcggcggccttcgggatcg 120
gcgtcgcggagatgcggaaggtggttgcacagtgcacgacgctcccctggacgccggaca 180
tcggctatgtcgtgctgaccgcccggcgcccgggcgatctcccggatcacctgtgcgggg 240
ctgggcatgtgcaggagacactccagggcccacgccgcgtcgaaggacccgtcgggaaac 300
ggcagttccatcgcgtcggcacgggtgaacacgacccggtccgccacgtgcgactgcttc 360
gcgagagcggtcgccagcccgacctgaacctcgctcaccgtcacgccgacgacatcgacg 420
ggcgcgctcagggcgagccgcaccgccggctttccggaaccgcagccgacgtccaggacc 480
cggcggcccgtgatgcctctcagcttgccgatgaggagatcggtgagccggtcggcggcc 540
ttgcccggtgaactgccgtcccccggctgcggccagtatccgaggtgggtgttcccaccc 600
agcgcacgattcatgaggtcggtcaaacggtcgtagtagtcccccacttccagggaagag 660
ggcggggtctgctccgggacggccatcatggtcgggaacctccgcaatccgggccgggcg 720
gcccagctgtcgtggcgatctactccaggaaacgtagacctttttctgccacttgtccga 780
gctatgcagacaccccgatcccctaagaaatgaacacccttgggaacggcacagcccagg 840
ggtggataggggtattcgccgccgccgcgccgtcattagctttgaagagttgaagacgtt 900
caagacattgatgcccggccgtcagcggatttctcgcgctcctttcattcttcgacgctg 960
cattgcagctctcatcatgtccgcacggccgccgagcattgcctagcggtgaggacacag 1020
ctcagttgcccaaagcccagaacgagttcgcagtggccggtcatccgtggatcctctccg 1080
ggcacaccggaaccgcgctgcgggcccaggcacgccggctccacgaccatgtcgccgacc 1140
accctcggctccgtccggaagacatcgcccacacgctggcgagcagcggcccggcgctca 1200
cccatcgcgcggcggtgatcgcggcggaccgggaaggacatctccgggggctcgacgcgg 1260
tggcccggggtgaggacacccccggtgtcgtacggggcacggcggccgcgggcggcgacg 1320
gggtcgcgttcgtcttcccgggccagggcgcgcaatgggccgggatggcgggcgaactcc 1380
tcggcgagtcaagggttttcgccgccgcgatggacgcgtgcgcgcgggcgttcgagcccg 1440
tgaccgactggacgctggcgcaggtcctggactctcccgagcagtcgcgccgcgtcgagg 1500
tcgtccagcccgccctgttcgcggtgcagacgtcgctggccgcgctctggcgctccttcg 1560
gcgtgacccccgacgccgtggtgggccacagcatcggcgagctggccgccgcgcacgtgt 1620
gcggtgcggccggtgccgccgacgccgcgcgcgccgccgcgctgtggagccgcgagatga 1680
ttccgttggtgggcaacggcgacatggcagccgtcgcgctctccgccgacgagatcgagc 1740
cgcgcatcgcccggtgggacgacgacgtggtgctggccggggtcaacggtccgcgctcgg 1800
ttctgctgaccgggtcgccggaaccggtcgcgcgccgggtccaggagctctcggccgagg 1860
gggtccgcgcacaggtcatcaatgtgtcgatggcggcgcactcggcgcaggtcgacgaca 1920
tcgccgaggggatgcgctcggccctggcgtggttcgcgcccggtggctcggaggtgccct 1980
tctacgccagcctcaccggaggtgcggtcgacacgcgggagctggtggccgactactggc 2040
gccgcagcttccggctgccggtgcgcttcgacgaggcgatccggtccgccctggaggtcg 2100
gtcccggcacgttcgtcgaagcgagcccgcacccggtgctggccgccgcgctccagcaga 2160
cgctcgacgccgagggctcctcggccgcggtggtcccgacgctgcaacgcgggcagggcg 2220
gcatgcggcggttcctgctggccgcggcccaggcgttcaccggcggcgtggccgtcgacc 2280
atcgggcggcgttctcggtgccgggcggccgcctgatcaccctgcctctcgagccgcccg 2340
cggacacgtccgtagagctcgccgacgccccggacccggcggaggcctgccggcccccct 2400
tggtggagcggcttgcccggctctccaccgcggagcggaagcggcggctgcgcgagctgg 2460
tgggcgtcgaggcggccaaggtcctcgaggacgtcgccggggcggacgcgccgggccacg 2520
gcatcgcggagcaggagcacttcgtcacttcgggcttcgactccgcggccgcggtcgcgc 2580
tgcgcaaccgcctgaacgacgccaccggtttgctgctgcccttcaccctggccttcgacc 2640
atccgacacccgccgccgtcgccgaccatctgcactcccggctcttcgatcaccagggcg 2700
gcgggcagccgggcgccgacggccggcccgaccccgcggcggcggccggtccggccaggg 2760
ccgacgacgagccgatcgccgtcatcggcatggcgggccgcttccccgggggcgcccgta 2820
ccccggaggagctgtgggaactggtcgccgaaggcaccgacgccctctcgcccttcccgg 2880
agggccggggctgggatccgctgcggctctacgatccggaccccgcccggcccggcacgt 2940
actaccagcgcgaagcgggattcctccacgacgccgacaagttcgacgccgagttcttcg 3000
gcatcgcgccacgcgaggccaccgcaatggatccccagcagcggctgctcctggagacct 3060
cctgggaggcgctcgaacgggcgcggatcgacccgaccgcgctgcgcggcagccgcaccg 3120
gggtgttcgtcggcgtggccccgctggactacagcccccgaatgcaccaggcgtcgccgg 3180
agctggagggccatctgctgaccggcaacatcggcgccgcggcctcggggcggatctcct 3240
acgtactcgggcttgaggggcccgcggtgtccgtggacacggcgtgctcgtcgtccctgg 3300
tcgccctgcatctggcggcccaggcgctgcgggccggggagtgctcgctggccctggtcg 3360
gcggggcgacggtcctctcgacccccggcatgttcatcgagttctcgcggcagcgcggtc 3420
tggctccggacggccgctgcaaggcgtacgcggccgccgcggacggcaccggctggtccg 3480
agggtgtgggcatgctgctcgtcgagcggctgtccgacgcgcgacggctcggacaccagg 3540
tgcttgcggtggtacggggctccgccgtcaaccaggacggggcgagcaacgg 3592