CN108654490B - A chaotic flow-based micro-hybrid chip - Google Patents
A chaotic flow-based micro-hybrid chip Download PDFInfo
- Publication number
- CN108654490B CN108654490B CN201810547149.XA CN201810547149A CN108654490B CN 108654490 B CN108654490 B CN 108654490B CN 201810547149 A CN201810547149 A CN 201810547149A CN 108654490 B CN108654490 B CN 108654490B
- Authority
- CN
- China
- Prior art keywords
- channel
- shaped
- chip
- bend
- fold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000739 chaotic effect Effects 0.000 title claims abstract description 28
- 239000007788 liquid Substances 0.000 claims abstract description 111
- 238000002156 mixing Methods 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000005452 bending Methods 0.000 claims abstract description 16
- 239000003960 organic solvent Substances 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 238000003958 fumigation Methods 0.000 claims description 3
- 238000007654 immersion Methods 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 230000009466 transformation Effects 0.000 abstract description 34
- 239000012530 fluid Substances 0.000 abstract description 12
- 230000008569 process Effects 0.000 abstract description 11
- 238000013461 design Methods 0.000 abstract description 6
- 238000001125 extrusion Methods 0.000 abstract description 3
- 230000006872 improvement Effects 0.000 abstract description 2
- 230000001737 promoting effect Effects 0.000 abstract description 2
- 230000001939 inductive effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 13
- 239000000243 solution Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000013178 mathematical model Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- IWZKICVEHNUQTL-UHFFFAOYSA-M potassium hydrogen phthalate Chemical compound [K+].OC(=O)C1=CC=CC=C1C([O-])=O IWZKICVEHNUQTL-UHFFFAOYSA-M 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
Abstract
本发明涉及一种基于混沌流微混合芯片,包括键合在一起的盖片和底片,盖片包括第一芯片进液口、第二芯片进液口、芯片出液口、多个新逆向U型“弯曲折叠”沟道和芯片出液沟道,底片包括T型预混合沟道和多个新U型“弯曲折叠”沟道,T型预混合沟道分别与第一芯片进液口和第二芯片进液口相连通,“T”型的下端为预混合沟道,预混合沟道与微混合单元连通,多组微混合单元排列连通在一起,最后一组微混合单元与芯片出液口连通。本发明仿照“马蹄变换”过程,设计微米级芯片结构,对流体进行“挤压拉伸”、“弯曲折叠”等操作,诱导在层流条件下的运动流体产生混沌流,进而促进混合效率的提升。
The invention relates to a micro-mixing chip based on chaotic flow, comprising a cover sheet and a bottom sheet bonded together, the cover sheet includes a first chip liquid inlet, a second chip liquid inlet, a chip liquid outlet, a plurality of new reverse U Type "curved and folded" channel and chip outlet channel, the bottom sheet includes T-shaped premixed channel and multiple new U-shaped "curved and folded" channels, the T-shaped premixed channel is connected with the first chip liquid inlet and outlet, respectively. The liquid inlet of the second chip is connected, the lower end of the "T" shape is a pre-mixing channel, the pre-mixing channel is connected with the micro-mixing unit, multiple groups of micro-mixing units are arranged and connected together, and the last group of micro-mixing units is connected with the chip outlet. The fluid port is connected. The invention imitates the "horseshoe transformation" process, designs a micron-scale chip structure, and performs operations such as "extrusion stretching", "bending and folding" on the fluid, inducing the moving fluid under laminar flow conditions to generate chaotic flow, thereby promoting the improvement of mixing efficiency. promote.
Description
技术领域technical field
本发明属于微机电系统(Micro-electro Mechanical Systems,MEMS)领域,涉及一种用于微全分析系统(Micro total analysis systems,μTAS)芯片及其制造方法。The invention belongs to the field of Micro-electro Mechanical Systems (MEMS), and relates to a chip for micro total analysis systems (μTAS) and a manufacturing method thereof.
背景技术Background technique
除进样压力外,被动式微混合器不需要其他的外部激励,更适合集成在微全分析系统芯片上,与其他功能模块一起实现痕量试样的快速检测。不过在结构特征尺寸为0.1μm~1mm的μTAS芯片上,流体一般在低雷诺数(Reynolds number,Re)的层流条件下运动,因此需要借助特殊的微结构对流体进行操作,达到提高混合效率的目的。T-型和Y-型混合器是结构最简单的被动式混合器,主要利用分子间的扩散运动实现混合,其混合效率与混合距离都难以满足μTAS芯片的需求。在微结构内增加障碍物可以有效改善混合效率,但障碍物使得进样压力大幅下降,将影响混合器后级的功能模块工作。依据Fick定律设计的分流汇合式混合器,将流体分割成多个薄层后再重新汇合,多次重复后虽能够获得理想的混合效率,然而过长的混合距离导致其仍不适合集成在μTAS芯片上。In addition to the injection pressure, the passive micro-mixer does not require other external excitation, and is more suitable for integration on the micro-total analysis system chip, together with other functional modules to achieve rapid detection of trace samples. However, on a μTAS chip with a structural feature size of 0.1 μm to 1 mm, the fluid generally moves under laminar flow conditions with low Reynolds number (Re), so special microstructures are required to operate the fluid to improve the mixing efficiency. the goal of. T-type and Y-type mixers are passive mixers with the simplest structure. They mainly use intermolecular diffusion motion to achieve mixing, and their mixing efficiency and mixing distance are difficult to meet the needs of μTAS chips. Adding obstacles in the microstructure can effectively improve the mixing efficiency, but the obstacles will greatly reduce the injection pressure, which will affect the work of the functional modules in the latter stage of the mixer. The split-confluence mixer designed according to Fick's law divides the fluid into multiple thin layers and then rejoins them. Although the ideal mixing efficiency can be obtained after repeated repetitions, the long mixing distance makes it still unsuitable for integration in μTAS. on the chip.
处于混沌运动下的微流体,不仅保持了流速低、压降小等层流基本特征,其扩散特性更接近湍流状态,因此对混合效率的提升明显。Stroock等设计的Staggeredherringbone mixer(SHM)混合器,利用微沟道底部的交错式结构在低雷诺数条件下可以诱发混沌流。Song等对SHM进行了优化设计,用二维结构代替了的三维结构,在降低制备难度的同时进一步提高了混合效率。然而优化后的SHM仍需经15次循环(混合距离为27mm),方可达到满意的混合效果。Ottino等指出依据“面包师变换”(Baker Map)数学模型,对流体进行“挤压拉伸”和“切割堆叠”操作,多次重复后也可成功诱发混沌流。Philippe等使用有限元方法分析了“面包师变换”过程中混沌流产生的机理,验证了该模型用于微混合器设计的可行性。Takao等根据“面包师变换”成功制备了微混合器,经过10次“挤压拉伸”和“切割堆叠”操作后,在10.4mm距离内即可达到满意的混合效果。Peter等设计的半并行结构“面包师”微混合器,可同时对流体进行多次“切割堆叠”操作,使混合效率呈指数级增长。但是对流体进行“切割堆叠”操作需要复杂的微结构,因此在体积有限的μTAS芯片上集成“面包师”微混合器非常困难。The microfluid under chaotic motion not only maintains the basic characteristics of laminar flow such as low flow velocity and small pressure drop, but also has a diffusion characteristic closer to the turbulent state, so the mixing efficiency is significantly improved. The Staggeredherringbone mixer (SHM) designed by Stroock et al. utilizes the staggered structure at the bottom of the microchannel to induce chaotic flow under low Reynolds number conditions. Song et al. optimized the design of SHM and replaced the three-dimensional structure with a two-dimensional structure, which further improved the mixing efficiency while reducing the difficulty of preparation. However, the optimized SHM still needs 15 cycles (the mixing distance is 27 mm) to achieve satisfactory mixing effect. Ottino et al. pointed out that according to the mathematical model of "Baker Map", "squeezing and stretching" and "cutting and stacking" operations on the fluid can successfully induce chaotic flow after repeated repetitions. Philippe et al. used the finite element method to analyze the mechanism of chaotic flow in the process of "baker's transformation", and verified the feasibility of the model for the design of micro-mixers. Takao et al. successfully prepared a micro-mixer according to the "baker's transformation". After 10 operations of "squeeze-stretch" and "cut-and-stack", a satisfactory mixing effect could be achieved within a distance of 10.4 mm. The semi-parallel "baker" micro-mixer designed by Peter et al. can perform multiple "cut-and-stack" operations on the fluid at the same time, so that the mixing efficiency increases exponentially. But 'cut-and-stack' operations on fluids require complex microstructures, making it difficult to integrate a 'baker' micromixer on the limited-volume μTAS chip.
Smale提出的“马蹄变换”(Horseshoe Transformation)也是一个可以在连续系统内部诱发混沌流的数学模型,变换过程中用“弯曲折叠”操作代替了“切割堆叠”操作,如果将其应用于微混合器的设计可以大幅降制备及集成难度。The "Horseshoe Transformation" proposed by Smale is also a mathematical model that can induce chaotic flow inside a continuous system. In the transformation process, the "bend and fold" operation replaces the "cut and stack" operation. If it is applied to a micromixer The design can greatly reduce the difficulty of preparation and integration.
发明内容SUMMARY OF THE INVENTION
发明目的:Purpose of invention:
本发明以MEMS工艺为基础,依据“马蹄变换”数学模型,提出了用于微全分析系统芯片的基于混沌流微混合芯片及制备方案。仿照“马蹄变换”过程,设计微米级芯片结构,对流体进行“挤压拉伸”、“弯曲折叠”等操作,诱导在层流条件下的运动流体产生混沌流,进而促进混合效率的提升。The invention is based on MEMS technology and based on the mathematical model of "horseshoe transformation", and proposes a chaotic flow-based micro-mixing chip and a preparation scheme for a micro-full analysis system chip. Following the "horseshoe transformation" process, the micron-scale chip structure is designed, and the fluid is "extruded and stretched", "bent and folded" and other operations to induce chaotic flow in the moving fluid under laminar flow conditions, thereby promoting the improvement of mixing efficiency.
技术方案:Technical solutions:
一种基于混沌流微混合芯片,包括键合在一起的盖片和底片,其特征在于:盖片包括第一芯片进液口、第二芯片进液口、芯片出液口、多个新逆向U型“弯曲折叠”沟道和芯片出液沟道,底片包括T型预混合沟道和多个新U型“弯曲折叠”沟道,所述T型预混合沟道似“T”型,“T”型的左右两端分别为第一进液沟道和第二进液沟道,分别与第一芯片进液口和第二芯片进液口相连通,“T”型的下端为预混合沟道,预混合沟道与最靠近T型预混合沟道的新U型“弯曲折叠”沟道的一端相连通,该新U型“弯曲折叠”沟道的两端与其相配合的新逆向U型“弯曲折叠”沟道的两端相连通,该新逆向U型“弯曲折叠”沟道的一端与下一组微混合单元的新逆向U型“弯曲折叠”沟道相连通,新U型“弯曲折叠”沟道与其相配合的新逆向U型“弯曲折叠”沟道组成一组微混合单元,多组微混合单元如上述方式连通,最后一组微混合单元的新逆向U型“弯曲折叠”沟道与芯片出液口连通。A chaotic flow-based micro-mixing chip, comprising a cover sheet and a bottom sheet bonded together, characterized in that: the cover sheet includes a first chip liquid inlet, a second chip liquid inlet, a chip liquid outlet, a plurality of new reverse U-shaped "bend and fold" channel and chip outlet channel, the bottom sheet includes T-shaped pre-mix channel and multiple new U-shaped "bend and fold" channels, the T-shaped pre-mix channel is like "T" shape, The left and right ends of the "T" type are the first liquid inlet channel and the second liquid inlet channel respectively, which are respectively connected with the liquid inlet port of the first chip and the liquid inlet port of the second chip. Mixed channel, the premixed channel communicates with one end of the new U-shaped "bend and folded" channel closest to the T-shaped premixed channel, and the two ends of the new U-shaped "bent and folded" channel are matched with the new U-shaped "bent and folded" channel. Both ends of the reverse U-shaped "bend and fold" channel are connected, and one end of the new reverse U-shaped "bend and fold" channel is connected with the new reverse U-shaped "bend and fold" channel of the next group of micro-mixing units. The U-shaped "bend and fold" channel is matched with the new reverse U-shaped "bend and fold" channel to form a group of micro-hybrid units, and multiple groups of micro-hybrid units are connected as described above. The "bend and fold" channel communicates with the chip liquid outlet.
所述新U型“弯曲折叠”沟道似“U”型,“U”型两端分别为进液口和出液口,进液口靠近出液口的一侧设有第一连接沟道,第一连接沟道不与出液口连通。The new U-shaped "bending and folded" channel is similar to a "U" shape. The two ends of the "U" shape are a liquid inlet and a liquid outlet respectively. The side of the liquid inlet close to the liquid outlet is provided with a first connecting channel. , the first connection channel is not communicated with the liquid outlet.
所述新逆向U型“弯曲折叠”沟道似倒“U”型,倒“U”型两端分别为逆向进液口和逆向出液口,逆向进液口和与其配合的新U型“弯曲折叠”沟道的第一连接沟道连通,逆向出液口远离逆向进液口一侧设有第二连接沟道,新逆向U型“弯曲折叠”沟道通过第二连接沟道与新U型“弯曲折叠”沟道的出液口连通;在原逆向U型“弯曲折叠”沟道的逆向出液口另外一侧设有第三连接沟道,新逆向U型“弯曲折叠”沟道通过第三连接沟道与下一微混合单元的逆向进液口相连通。The new reverse U-shaped "bending and folded" channel is similar to the reverse "U" shape, the two ends of the reverse "U" shape are the reverse liquid inlet and the reverse liquid outlet respectively, the reverse liquid inlet and the new U-shaped " The first connection channel of the "bend and fold" channel is connected, and the reverse liquid outlet is provided with a second connection channel on the side away from the reverse liquid inlet, and the new reverse U-shaped "bend and fold" channel is connected with the new The liquid outlet of the U-shaped "bending and folding" channel is connected; a third connecting channel is provided on the other side of the reverse liquid outlet of the original reverse U-shaped "bending and folding" channel, and the new reverse U-shaped "bending and folding" channel The third connection channel is communicated with the reverse liquid inlet of the next micro-mixing unit.
所述T型预混合沟道:The T-type premixed channel:
第一进液沟道的长为a,高为a,宽为5a;The length of the first liquid inlet channel is a, the height is a, and the width is 5a;
第二进液沟道的长为a,高为a,宽为5a;The length of the second liquid inlet channel is a, the height is a, and the width is 5a;
预混合沟道的长为5a,高为2.5a,宽为a;The length of the premixed channel is 5a, the height is 2.5a, and the width is a;
所述新U型“弯曲折叠”沟道:The new U-shaped "bend and fold" channel:
长为10a,宽为10a,高为2.5a,截面为边长2.5a的正方形;第一连接沟道的长为2.5a,高为2.5a,宽为2.5a;The length is 10a, the width is 10a, the height is 2.5a, and the cross section is a square with a side length of 2.5a; the length of the first connection channel is 2.5a, the height is 2.5a, and the width is 2.5a;
所述新逆向U型“弯曲折叠”沟道:The new reverse U-shaped "bend and fold" channel:
长为10a,宽为10a,高为2.5a,截面为边长2.5a的正方形;第二连接沟道的长为2.5a,高为2.5a,宽为2.5a;第三连接沟道的长为2.5a,高为2.5a,宽为2.5a;The length is 10a, the width is 10a, the height is 2.5a, and the cross section is a square with a side length of 2.5a; the length of the second connection channel is 2.5a, the height is 2.5a, and the width is 2.5a; the length of the third connection channel is 2.5a, the height is 2.5a, and the width is 2.5a;
上述“长”皆为同一方向,“高”皆为同一方向,“宽”皆为同一方向,a是任意正数。The above "length" is in the same direction, "height" is in the same direction, "width" is in the same direction, and a is any positive number.
一种如所述基于混沌流微混合芯片的制备方法:其特征在于,步骤如下:A preparation method based on chaotic flow micro-mixing chip as described: it is characterized in that, the steps are as follows:
1)使用雕刻机或3D打印机在聚合物基底材料上制作第一芯片进液口、第二芯片进液口、芯片出液口、T型预混合沟道、新U型“弯曲折叠”沟道、新逆向U型“弯曲折叠”沟道、芯片出液沟道;1) Use an engraving machine or 3D printer to make the first chip inlet, the second chip inlet, the chip outlet, the T-shaped premix channel, the new U-shaped "bend and fold" channel on the polymer base material , New reverse U-shaped "bending and folding" channel, chip outlet channel;
2)使用有机溶剂混溶浸泡键合法或有机溶剂熏蒸键合法等键合方法将带有微结构的基片封合。2) The substrate with the microstructure is sealed by a bonding method such as an organic solvent miscible immersion bonding method or an organic solvent fumigation bonding method.
优点与效果:Advantages and Effects:
本发明依据“马蹄变换”数学模型设计微米级混合芯片结构,对流体进行“挤压拉伸”、“弯曲折叠”等操作,成功在层流条件下诱发混沌流,实现液体的均匀混合。基于“马蹄变换”的混沌微混合芯片,可在不增加微全分析系统芯片体积及加工、装配难度的情况下,提高其集成化、便携化程度,为该技术在可穿戴医疗设备、智能化精密检测等领域的推广应用奠定基础。The invention designs the micron-level mixing chip structure according to the mathematical model of "horseshoe transformation", performs operations such as "extrusion stretching", "bending and folding" on the fluid, successfully induces chaotic flow under laminar flow conditions, and realizes uniform mixing of the liquid. The chaotic micro-hybrid chip based on "horseshoe transformation" can improve its integration and portability without increasing the size of the micro-full analysis system chip and the difficulty of processing and assembly. Lay the foundation for the promotion and application of precision testing and other fields.
附图说明Description of drawings
图1为“马蹄变换”示意图;Fig. 1 is a schematic diagram of "horseshoe transformation";
图2为T型预混合沟道结构立体图;2 is a perspective view of a T-type premixed channel structure;
图3为T型预混合沟道结构俯视图;3 is a top view of a T-type premixed channel structure;
图4为T型预混合沟道结构侧视图;4 is a side view of a T-type premixed channel structure;
图5为原U型“弯曲折叠”沟道结构立体图;Figure 5 is a perspective view of the original U-shaped "bend and fold" channel structure;
图6为带有连接沟道的新U型“弯曲折叠”沟道结构立体图;Figure 6 is a perspective view of a new U-shaped "bend and fold" channel structure with a connecting channel;
图7为带有连接沟道的新U型“弯曲折叠”沟道结构俯视图;Figure 7 is a top view of a new U-shaped "bend and fold" channel structure with connecting channels;
图8为原逆向U型“弯曲折叠”沟道结构立体图;Figure 8 is a perspective view of the original reverse U-shaped "bend and fold" channel structure;
图9为原逆向U型“弯曲折叠”沟道结构俯视图;Figure 9 is a top view of the original reverse U-shaped "bend and fold" channel structure;
图10为原逆向U型“弯曲折叠”沟道结构侧视图;Figure 10 is a side view of the original reverse U-shaped "bend and fold" channel structure;
图11为带有连接沟道的新逆向U型“弯曲折叠”沟道结构立体图;Figure 11 is a perspective view of a new reverse U-shaped "bend and fold" channel structure with connecting channels;
图12为带有连接沟道的新逆向U型“弯曲折叠”沟道结构俯视图;Figure 12 is a top view of a new reverse U-shaped "bend and fold" channel structure with connecting channels;
图13为预混合沟道一侧的新U型“弯曲折叠”沟道和新逆向U型“弯曲折叠”沟道立体装配图;Figure 13 is a perspective assembly view of the new U-shaped "bend and fold" channel and the new reverse U-shaped "bend and fold" channel on one side of the premix channel;
图14为新U型“弯曲折叠”沟道和新逆向U型“弯曲折叠”沟道俯视装配图;Figure 14 is a top assembly view of the new U-shaped "bend and fold" channel and the new reverse U-shaped "bend and fold" channel;
图15为新U型“弯曲折叠”沟道和新逆向U型“弯曲折叠”沟道正视装配图;Figure 15 is the front assembly view of the new U-shaped "bend and fold" channel and the new reverse U-shaped "bend and fold" channel;
图16为新U型“弯曲折叠”沟道和新逆向U型“弯曲折叠”沟道侧视装配图;Figure 16 is a side view assembly view of the new U-shaped "bend and fold" channel and the new reverse U-shaped "bend and fold" channel;
图17为微混合器结构立体图;Figure 17 is a perspective view of the structure of the micro-mixer;
图18为微混合器结构俯视图;Figure 18 is a top view of the structure of the micro-mixer;
图19为微混合器结构侧视图;Figure 19 is a side view of the structure of the micro-mixer;
图20为微混合器芯片立体图;20 is a perspective view of a micro-mixer chip;
图21为微混合器芯片的盖片底视图;Figure 21 is a bottom view of a cover slip of a micromixer chip;
图22为装配前和装配后的微混合器芯片上微沟道截面图;Figure 22 is a cross-sectional view of the microchannel on the micromixer chip before and after assembly;
图23为微混合器芯片可视化测试效果图;Fig. 23 is the visual test effect diagram of the micro-mixer chip;
图24为利用微混合器芯片进行溶液pH值测试的曲线图。Figure 24 is a graph of solution pH testing using a micromixer chip.
附图标记说明:1.T型预混合沟道、101.第一进液沟道、102.第二进液沟道、103.预混合沟道、2-1.原U型“弯曲折叠”沟道、2-2.新U型“弯曲折叠”沟道、201.进液口、202.出液口、203.第一连接沟道、3-1.原逆向U型“弯曲折叠”沟道、3-2.新逆向U型“弯曲折叠”沟道、301.逆向进液口、302.逆向出液口、303.第二连接沟道、304.第三连接沟道、4.微混合器、401.微混合单元、5.第一芯片进液口、6.第二芯片进液口、7.芯片出液口、8.盖片、9.底片、10.微混合芯片、11.芯片出液沟道。Description of reference numerals: 1. T-shaped premix channel, 101. First liquid inlet channel, 102. Second liquid inlet channel, 103. Premix channel, 2-1. Original U-shaped "bend and fold" Channel, 2-2. New U-shaped "bend and fold" channel, 201. Liquid inlet, 202. Liquid outlet, 203. First connecting channel, 3-1. Original reverse U-shaped "bend and fold" channel Channel, 3-2. New reverse U-shaped "bend and fold" channel, 301. Reverse liquid inlet, 302. Reverse liquid outlet, 303. Second connection channel, 304. Third connection channel, 4. Micro Mixer, 401. Micro-mixing unit, 5. Liquid inlet of first chip, 6. Liquid inlet of second chip, 7. Liquid outlet of chip, 8. Cover sheet, 9. Negative film, 10. Micro-mixing chip, 11 . Chip outlet channel.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的说明:The present invention will be further described below in conjunction with the accompanying drawings:
依据图1中的“马蹄变换”示意图,首先在水平方向上(但不限于)对系统U(图1(a)中的虚线方框)内的“液体”(图1(a)中虚线方框中的斜线)“挤压拉伸”;经“挤压拉伸”后,部分“液体”溢出系统U(如图1(b)所示);通过“弯曲折叠”令溢出的“液体”再次回到系统U内部(如图1(c)所示);在竖直方向上(但不限于,与之前“挤压拉伸”方向不同即可)对系统U内部的“液体”进行“挤压拉伸”和“弯曲折叠”操作,得到“马蹄变换”的逆变换(如图1(d)所示);在系统U内部,取“马蹄变换”及其逆变换的交集,使经过“马蹄变换”及其逆变换的“液体”重新汇合(如图1(e)所示);对上述变换过程进行符号关联(如图1(a)-(f)所示),既使用字符表示变换前后的“液体”,以便进行数学推导,证明变换后混沌流的存在。According to the schematic diagram of the "horseshoe transformation" in Fig. 1, firstly, in the horizontal direction (but not limited to), the "liquid" (the dotted square in Fig. 1(a)) in the system U (the dotted box in Fig. 1(a)) The diagonal line in the box) "squeeze and stretch"; after "squeeze and stretch", part of the "liquid" overflows the system U (as shown in Figure 1(b)); "Return to the inside of the system U again (as shown in Figure 1(c)); in the vertical direction (but not limited to, the "liquid" inside the system U can be performed in a different direction from the previous "squeeze and stretch" direction). "Squeeze and stretch" and "bend and fold" operations, obtain the inverse transformation of "horseshoe transformation" (as shown in Figure 1(d)); inside the system U, take the intersection of "horseshoe transformation" and its inverse transformation, so that The "liquid" that has undergone the "horseshoe transformation" and its inverse transformation is reunited (as shown in Figure 1(e)); the above transformation process is symbolically correlated (as shown in Figure 1(a)-(f)), both using The characters represent the "liquid" before and after the transformation, so that mathematical derivation can be done to prove the existence of the chaotic flow after the transformation.
如图2、图3和图4所示的T型预混合沟道1,第一进液沟道101和第二进液沟道102优选的长和高为a,宽度为5a(但不限于,大于2a即可)。预混合沟道103位于第一进液沟道101和第二进液沟道102之间,与待混合的两种液体相遇,预混合沟道103优选的宽度为a,长度为5a(但不限于,大于2a即可),高度为2.5a(但不限于,大于2a即可)。As shown in Fig. 2, Fig. 3 and Fig. 4 for the T-shaped
如图5所示的原U型“弯曲折叠”沟道2-1,其截面为边长2.5a的正方形,通过“U”型两端的进液口201和出液口202与其他组件连通。如图6和图7所示改进后的新U型“弯曲折叠”沟道2-2,在原U型“弯曲折叠”沟道2-1的进液口201靠近出液口202的一侧增加第一连接沟道203,新U型“弯曲折叠”沟道2-2通过第一连接沟道203与新逆向U型“弯曲折叠”沟道3-2的逆向进液口301连通。As shown in Figure 5, the original U-shaped "bending and folding" channel 2-1 has a square section with a side length of 2.5a, and communicates with other components through the
如图8、图9和图10所示的原逆向U型“弯曲折叠”沟道3-1,其截面是边长为2.5a的正方形,对液体进行逆向“弯曲折叠”的方向与原U型“弯曲折叠”沟道2-1相反。原逆向U型“弯曲折叠”沟道3-1通过倒“U”型两端的逆向进液口301和逆向出液口302与其他组件连通。As shown in Figure 8, Figure 9 and Figure 10, the original reverse U-shaped "bending and folding" channel 3-1 has a cross-section of a square with a side length of 2.5a, and the direction of reverse "bending and folding" of the liquid is the same as that of the original U Type "bend and fold" channel 2-1 opposite. The original reverse U-shaped "bend and fold" channel 3-1 communicates with other components through the reverse
如图11和图12所示改进后的新逆向U型“弯曲折叠”沟道3-2,在原逆向U型“弯曲折叠”沟道3-1的逆向出液口302远离逆向进液口301一侧增加第二连接沟道303,新逆向U型“弯曲折叠”沟道3-2通过第二连接沟道303与新U型“弯曲折叠”沟道2-2的出液口202连通;在原逆向U型“弯曲折叠”沟道3-1的逆向出液口302另外一侧增加第三连接沟道304,新逆向U型“弯曲折叠”沟道3-2通过第三连接沟道304与下一微混合单元401连通。As shown in Figures 11 and 12, the new reverse U-shaped "bend and fold" channel 3-2 is improved, and the reverse
如图13、图14、图15和图16所示的微混合单元401,是将新U型“弯曲折叠”沟道2-2与新逆向U型“弯曲折叠”沟道3-2叠加后得到的。微混合单元401中,经过不同方向“弯曲折叠”的液体重新汇合,完成一次“马蹄变换”。13, 14, 15 and 16, the
如图17、图18和图19所示的微混合器4,是由T型预混合沟道1以及四个结构相同的微混合单元401共同组成的。The
如图20和图21所示的微混合芯片10,是由制作有第一芯片进液口5、第二芯片进液口6、芯片出液口7、新逆向U型“弯曲折叠”沟道3-2和芯片出液沟道11这些微结构的盖片8,以及制作有T型预混合沟道1、新U型“弯曲折叠”沟道2-2这些微结构的底片9键合而成。键合后新逆向U型“弯曲折叠”沟道3-2以及新U型“弯曲折叠”沟道2-2构成微混合单元401。The
图22为装配前和装配后的微混合器芯片上微沟道截面图,从键合装配前和键合装配后的微沟道结构图中可以看出,键合过程对微结构几乎没有影响,键合前、后微沟道结构未发生明显变化。Figure 22 is a cross-sectional view of the microchannel on the micromixer chip before and after assembly. It can be seen from the microchannel structure diagram before and after bonding assembly that the bonding process has little effect on the microstructure , the microchannel structure did not change significantly before and after bonding.
图23微混合器芯片可视化测试效果图,从图23A中可以看出,当不同颜色的两种示踪剂经过第一个微混合单元401后,两种示踪剂的界面分明;从图23B中可以看出,当经过第二个微混合单元401后,两种示踪计的界面已经开始模糊;从图23C中可以看出,当经过第三个微混合单元401后,两种示踪剂的界面已经不易分辨;从图23D中可以看出,当经过第四个微混合单元401后,示踪剂界面几乎消失,液体的浓度趋于一致,证明基于“马蹄变换”模型设计的微混合器能够取得理想的混合效果。Fig. 23 The visual test effect diagram of the micro-mixer chip. It can be seen from Fig. 23A that when two tracers of different colors pass through the first
图24为利用微混合器芯片进行溶液pH值测试的曲线图。Figure 24 is a graph of solution pH testing using a micromixer chip.
附图内A1-A2方向是液体总体的流动方向。The direction A 1 -A 2 in the drawing is the flow direction of the liquid as a whole.
本发明的设计原理如下:依据图1中所示的“马蹄变换”过程,通过符号关联将字母和图形建立一个直观的关系,待混合的液体经符号关联后表示为U。利用符号动力学可证明经“马蹄变换”后,,产生混沌流的过程如下:The design principle of the present invention is as follows: According to the "horseshoe transformation" process shown in Figure 1, an intuitive relationship is established between letters and graphics through symbolic association, and the liquid to be mixed is represented as U after symbolic association. Using symbolic dynamics, it can be proved that after the "horseshoe transformation", the process of generating chaotic flow is as follows:
初始状态下水平放置的“液体”经符号关联后可用符号H0、H1可用式(1)表示:The "liquid" placed horizontally in the initial state can be represented by the symbols H 0 and H 1 after being associated with the symbols by the formula (1):
H0={(x,y)∈U|0≤x≤1,0≤y≤1/μ}H 0 ={(x,y)∈U|0≤x≤1,0≤y≤1/μ}
对“液体”H0、H1进行“挤压拉伸”操作,使“液体”H0、H1在水平方向上(x轴)收缩λ,在竖直方向上(y轴)伸展μ。操作后得到“液体”可用式(2)中雅可比行列式表示:The "liquids" H 0 and H 1 are subjected to the "extrusion and stretching" operation, so that the "liquids" H 0 and H 1 shrink by λ in the horizontal direction (x-axis) and extend μ in the vertical direction (y-axis). After the operation, the "liquid" obtained can be represented by the Jacobian in formula (2):
对“挤压拉伸”后的“液体”H0、H1进行“弯曲折叠”操作,令溢出的“液体”塞回混合单元U内部。操作后得到的“液体”经符号关联后表示为V0、V1可表示为如式(3)所示的映射f(H0)和f(H1):Perform a "bending and folding" operation on the "liquids" H 0 and H 1 after "squeezing and stretching", so that the overflowing "liquid" is plugged back into the mixing unit U. The "liquid" obtained after the operation is represented as V 0 and V 1 after symbol association, and can be expressed as the mappings f(H 0 ) and f(H 1 ) as shown in formula (3):
V0=f(H0)={(x,y)∈U|0≤x≤λ,0≤y≤1}V 0 =f(H 0 )={(x,y)∈U|0≤x≤λ,0≤y≤1}
V1=f(H1)={(x,y)∈U|1-λ≤x≤1,0≤y≤1} (3)V 1 =f(H 1 )={(x,y)∈U|1-λ≤x≤1,0≤y≤1} (3)
经“挤压拉伸”和“弯曲折叠”操作后系统U内的“液体”集合可表示为:The "liquid" collection in the system U can be expressed as:
Vi=f(Hi)∩U(i=0,1) (4)V i =f(H i )∩U(i=0,1) (4)
利用同样的方法可以构造出“马蹄变化”的逆变换:H1=f-1(V0)和H2=f-1(V1)。经逆变换后,系统U内的“液体”集合可表示为:The inverse transforms of the "horseshoe change" can be constructed using the same method: H 1 =f -1 (V 0 ) and H 2 =f -1 (V 1 ). After inverse transformation, the "liquid" set in the system U can be expressed as:
Hi=f-1(Vi)∩U(i=0,1) (5)H i =f -1 (V i )∩U(i=0,1) (5)
则“马蹄变换”f(Hi)与其逆变换f-1(Vi)的交集可用式(6)表示:Then the intersection of the "horseshoe transformation" f(H i ) and its inverse transformation f -1 (V i ) can be expressed by equation (6):
Λ1=f-1(U)∩U∩f1(U)=[(H0,V0),(H0,V1),(H1,V0),(H1,V1)] (6)Λ 1 =f -1 (U)∩U∩f 1 (U)=[(H 0 ,V 0 ),(H 0 ,V 1 ),(H 1 ,V 0 ),(H 1 ,V 1 ) ] (6)
当i→∞时,系统U内的“液体”将收缩为点,但仍将一直留在其内部。由此可以构造出一个如式(7)所示的i次迭代序列Λ:As i → ∞, the "liquid" inside the system U will shrink to points, but will remain inside it all the time. From this, an iterative sequence Λ of i times can be constructed as shown in equation (7):
综上所述,“马蹄变换”过程可以等价为一个建立在不变集Λ上的符号动力学系统(f,Λ)。若可证明(f,Λ)具有混沌性,则经“马蹄变换”后的“液体”同样具有混沌性。李雅普诺夫指数(Lyapunovexponent)是判断系统混沌性的主要依据,其值的正、负表明系统是否具有混沌性。(f,Λ)的两个李雅普诺夫指数(li)可用式(8)计算得到。To sum up, the "horseshoe transformation" process can be equivalent to a symbolic dynamic system (f, Λ) built on the invariant set Λ. If it can be proved that (f, Λ) is chaotic, the "liquid" after "horseshoe transformation" is also chaotic. Lyapunov exponent (Lyapunovexponent) is the main basis for judging the chaotic nature of the system, and its positive and negative values indicate whether the system is chaotic. The two Lyapunov exponents (li i ) of (f,Λ) can be calculated by equation (8).
l1=ln|λ|;l2=ln|μ| (8)l 1 =ln|λ|; l 2 =ln|μ| (8)
可见,若在“马蹄变换”过程中保证系统U内的“液体”在水平方向上挤压幅度λ<1/2,在竖直方向上拉伸幅度μ>2,那么有|μ|>2,ln|μ|>0,则经马蹄变换后系统具有混沌性。因此在微混合芯片的结构设计过程中,确定T型预混合沟道的第一进液沟道101和第二进液沟道102的长和高为a、宽度为5a,而当两种液体相遇时,沟道的宽度变为a,长度变为5a,高度变为2.5a,以满足“马蹄变换”诱发混沌流的条件。It can be seen that if the "liquid" in the system U is guaranteed to squeeze the amplitude λ<1/2 in the horizontal direction and stretch the amplitude μ>2 in the vertical direction during the "horseshoe transformation" process, then |μ|>2 , ln|μ|>0, the system is chaotic after horseshoe transformation. Therefore, in the structural design process of the micro-hybrid chip, it is determined that the length and height of the first
基于马蹄变换的混沌流微混合器的制备方法:Preparation method of chaotic flow micromixer based on horseshoe transformation:
1)使用雕刻机或3D打印机在聚合物基底材料上制作第一芯片进液口5、第二芯片进液口6、芯片出液口7、T型预混合沟道1、新U型“弯曲折叠”沟道2-2、新逆向U型“弯曲折叠”沟道3-2、芯片出液沟道11;1) Use an engraving machine or 3D printer to make the first
2)使用有机溶剂混溶浸泡键合法或有机溶剂熏蒸键合法等键合方法将带有微结构的基片封合。2) The substrate with the microstructure is sealed by a bonding method such as an organic solvent miscible immersion bonding method or an organic solvent fumigation bonding method.
实施例:Example:
当a=200μm时,依据图2~图19所示的T型预混合沟道、微混合单元和微混合器构,在聚甲基丙烯酸甲酯聚合物基底材料上使用超精密雕刻机加工出微结构。When a=200μm, according to the T-shaped pre-mixing channel, micro-mixing unit and micro-mixer structure shown in Fig. 2 to Fig. 19 , an ultra-precision engraving machine is used on the polymethyl methacrylate polymer base material. microstructure.
1)按体积比V三氯甲烷:V乙醇=1:10配制无水乙醇与三氯甲烷混溶溶液110毫升。将带有微结构的两个基片分别在上述混溶溶液中润湿,在显微镜下使用石英玻璃卡具固定,将固定后的芯片放入盛有混溶溶液的培养皿中。将培养皿立即放入干燥箱,设置温度在40℃,键合10min。键合装配前和键合装配后的微混合器芯片上的微沟道截面如图22所示。1) Prepare 110 ml of a miscible solution of absolute ethanol and chloroform according to the volume ratio V chloroform :V ethanol =1:10. Wet the two substrates with the microstructures in the above-mentioned miscible solution, fix them with a quartz glass fixture under a microscope, and put the fixed chips into a petri dish containing the miscible solution. Immediately put the petri dish into a drying oven, set the temperature at 40 °C, and bond for 10 min. The cross-sections of the microchannels on the micromixer chip before and after bonding assembly are shown in Figure 22.
2)分别配置浓度为1mol/L的异硫氰酸荧光素(Fluorescein Isothiocyanate,FITC)和罗丹明B(Rhodamine B)作为示踪剂。以注射泵为动力,利用荧光显微镜观察微混合芯片内的液体混合情况,并使用ImageJ软件完成CCD截图处理,得到了如图23所示的可视化测试照片。从图23A中可以看出,当不同颜色的两种示踪剂经过第一个微混合单元401后,两种示踪剂的界面分明;从图23B中可以看出,当经过第二个微混合单元401后,两种示踪计的界面已经开始模糊;从图23C中可以看出,当经过第三个微混合单元401后,两种示踪剂的界面已经不易分辨;从图23D中可以看出,当经过第四个微混合单元401后,示踪剂界面几乎消失,液体的浓度趋于一致,证明基于“马蹄变换”模型设计的微混合器能够取得理想的混合效果。2) Fluorescein Isothiocyanate (FITC) and Rhodamine B with a concentration of 1 mol/L were respectively prepared as tracers. Using the syringe pump as the driving force, the liquid mixing in the micro-mixing chip was observed with a fluorescence microscope, and the CCD screenshot processing was completed with ImageJ software, and the visual test photo shown in Figure 23 was obtained. It can be seen from FIG. 23A that when two tracers of different colors pass through the first
3)为测试微混合器芯片的实际混合效果,配制不同pH值的缓冲液:邻苯二甲酸氢钾(0.05mol/L,pH=4.01)、混合磷酸盐(0.025mol/L,pH=6.86)、硼砂(0.01mol/L,pH=9.18)作为测试试剂。溶液pH值测试具体步骤如下:3) In order to test the actual mixing effect of the micro-mixer chip, buffer solutions with different pH values were prepared: potassium hydrogen phthalate (0.05mol/L, pH=4.01), mixed phosphate (0.025mol/L, pH=6.86) ), borax (0.01mol/L, pH=9.18) as test reagents. The specific steps of solution pH value test are as follows:
1.取等体积(10ml)上述缓冲液,利用涡旋搅拌器使其两两均匀混合后,得到的对照溶液组成及pH值如表1所示;1. Take an equal volume (10ml) of the above-mentioned buffer solution, and after using a vortex stirrer to make it evenly mixed in pairs, the obtained control solution composition and pH value are shown in Table 1;
2.以双通道注射泵为动力(设置流速为2×10-3m/s,此时Re=1),在微混合器两个进液口通入不同pH值的缓冲液,利用酸度计测量出口的pH值变化情况;2. Using the dual-channel syringe pump as the driving force (set the flow rate to 2×10 -3 m/s, at this time Re=1), pass buffers with different pH values into the two inlets of the micromixer, and use the acidity meter Measure the pH value change at the outlet;
3.为保证结果的一致性和准确性,在缓冲液通入1分钟后开始测量且重复进行3次,得到的雷诺数(Re)与混合溶液pH值关系曲线如图24所示。3. In order to ensure the consistency and accuracy of the results, the measurement was started after 1 minute of buffering and repeated three times. The obtained Reynolds number (Re) and the pH value of the mixed solution are shown in Figure 24.
图24中三种缓冲溶液组合的pH值均随Re变化而在标定的对照值以上波动,当Re<0.5时,随着Re的增加,混合器出口处的pH值逐步远离对照值,表明混合效果正在下降;当Re≥1时,随着Re的增加,混合器出口处的pH值逐步接近对照值,表明混合效果正在改善。可见,当混合器中液体的流速较低时,扩散传质起主导作用,此时两种液体的接触时间因流速的升高而减少,进而导致混合效果下降;随着流速的增加,混沌流传质将在混合过程中起主导作用,此时混沌流因流速的升高而增强,进而将改善混合效果。The pH values of the three buffer solutions in Figure 24 fluctuated above the calibrated control value with the change of Re. When Re<0.5, the pH value at the outlet of the mixer gradually moved away from the control value with the increase of Re, indicating that the mixing The effect is decreasing; when Re ≥ 1, with the increase of Re, the pH value at the outlet of the mixer gradually approaches the control value, indicating that the mixing effect is improving. It can be seen that when the flow rate of the liquid in the mixer is low, diffusion and mass transfer play a leading role. At this time, the contact time of the two liquids decreases due to the increase of the flow rate, which in turn leads to a decrease in the mixing effect; with the increase of the flow rate, the chaotic flow The mass will play a leading role in the mixing process, and the chaotic flow will be enhanced by the increase of the flow velocity, which will improve the mixing effect.
1)表1对照溶液组成及pH值1) Table 1 Control solution composition and pH value
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810547149.XA CN108654490B (en) | 2018-05-31 | 2018-05-31 | A chaotic flow-based micro-hybrid chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810547149.XA CN108654490B (en) | 2018-05-31 | 2018-05-31 | A chaotic flow-based micro-hybrid chip |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108654490A CN108654490A (en) | 2018-10-16 |
CN108654490B true CN108654490B (en) | 2020-12-11 |
Family
ID=63774735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810547149.XA Expired - Fee Related CN108654490B (en) | 2018-05-31 | 2018-05-31 | A chaotic flow-based micro-hybrid chip |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108654490B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022229721A1 (en) * | 2021-04-29 | 2022-11-03 | Instituto Tecnológico y de Estudios Superiores de Monterrey | Method for printing microlayers and multilayered nanostructures ordered by chaotic flows |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113856538B (en) * | 2021-10-25 | 2022-08-30 | 西北工业大学 | Three-dimensional splitting recombination passive micro mixer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030012697A1 (en) * | 2001-07-16 | 2003-01-16 | Jong Hoon Hahn | Assembly microchip using microfluidic breadboard |
US20140377145A1 (en) * | 2013-06-24 | 2014-12-25 | Hewlett-Packard Development Company, L.P. | Microfluidic mixing device |
CN107271529A (en) * | 2017-07-31 | 2017-10-20 | 沈阳工业大学 | A kind of micro-total analysis system chip for the integrated detection of heavy metal ion |
CN107376750A (en) * | 2017-08-03 | 2017-11-24 | 青岛科技大学 | A kind of micro-fluid chip that can be achieved efficiently to mix |
CN206762794U (en) * | 2017-02-21 | 2017-12-19 | 海南大学 | A kind of shape of a hoof passive type micro-mixer |
-
2018
- 2018-05-31 CN CN201810547149.XA patent/CN108654490B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030012697A1 (en) * | 2001-07-16 | 2003-01-16 | Jong Hoon Hahn | Assembly microchip using microfluidic breadboard |
US20140377145A1 (en) * | 2013-06-24 | 2014-12-25 | Hewlett-Packard Development Company, L.P. | Microfluidic mixing device |
CN206762794U (en) * | 2017-02-21 | 2017-12-19 | 海南大学 | A kind of shape of a hoof passive type micro-mixer |
CN107271529A (en) * | 2017-07-31 | 2017-10-20 | 沈阳工业大学 | A kind of micro-total analysis system chip for the integrated detection of heavy metal ion |
CN107376750A (en) * | 2017-08-03 | 2017-11-24 | 青岛科技大学 | A kind of micro-fluid chip that can be achieved efficiently to mix |
Non-Patent Citations (1)
Title |
---|
基于微混合器的重金属离子微全分析系统芯片研究;张贺;《中国博士学位论文全文数据库 信息科技辑》;20170215;I135-144 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022229721A1 (en) * | 2021-04-29 | 2022-11-03 | Instituto Tecnológico y de Estudios Superiores de Monterrey | Method for printing microlayers and multilayered nanostructures ordered by chaotic flows |
Also Published As
Publication number | Publication date |
---|---|
CN108654490A (en) | 2018-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | Piezoelectric peristaltic micropump integrated on a microfluidic chip | |
Wu et al. | Convective–diffusive transport in parallel lamination micromixers | |
Bhagat et al. | Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles | |
Sousa et al. | Efficient microfluidic rectifiers for viscoelastic fluid flow | |
TWI230683B (en) | The micromixer with overlapping-crisscross entrance | |
Orbay et al. | Acoustic actuation of in situ fabricated artificial cilia | |
Zhao et al. | Rational design of robust flower-like sharp-edge acoustic micromixers towards efficient engineering of functional 3D ZnO nanorod array | |
CN207446126U (en) | A kind of passive type micro-mixer | |
CN108654490B (en) | A chaotic flow-based micro-hybrid chip | |
Long et al. | A simple three-dimensional vortex micromixer | |
Zhu et al. | Stackable micromixer with modular design for efficient mixing over wide Reynold numbers | |
Zhang et al. | Realization of planar mixing by chaotic velocity in microfluidics | |
CN103230753A (en) | Micro-mixing detecting chip | |
Wang et al. | A new bubble-driven pulse pressure actuator for micromixing enhancement | |
CN104568288B (en) | A kind of microchannel quick pressure measuring device based on capillary | |
CN108472604A (en) | Device and method for the continuous emulsification liquid for implementing two kinds of immiscible liquids | |
Gulati et al. | Flow of DNA solutions in a microfluidic gradual contraction | |
CN206404699U (en) | A kind of AC field promoted type micro-mixer | |
Li et al. | Three dimensional triangle chaotic micromixer | |
Moghimi et al. | Design and fabrication of an effective micromixer through passive method | |
Sun et al. | Numerical simulation and experimental study of valveless piezoelectric mixing pump with built-in obstacles | |
CN106955803A (en) | A kind of negative flow resistance oscillator and construction method | |
Savoj et al. | Fast two-level logic minimizers for multi-level logic synthesis | |
Sivashankar et al. | 3D-Printed Cross-Flow Mixer Gradient within Minutes for Microfluidic Applications | |
Ionescu | Numerical Investigation of the Mixing Efficiency in Square-Wave Passive Micromixers for Microfluidic Device Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201211 Termination date: 20210531 |
|
CF01 | Termination of patent right due to non-payment of annual fee |