CN108648127A - A kind of urban air pollution hot spot region locking means - Google Patents
A kind of urban air pollution hot spot region locking means Download PDFInfo
- Publication number
- CN108648127A CN108648127A CN201810401316.XA CN201810401316A CN108648127A CN 108648127 A CN108648127 A CN 108648127A CN 201810401316 A CN201810401316 A CN 201810401316A CN 108648127 A CN108648127 A CN 108648127A
- Authority
- CN
- China
- Prior art keywords
- grid
- pollution
- air
- area
- air pollution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/26—Government or public services
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Tourism & Hospitality (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Economics (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Combustion & Propulsion (AREA)
- Biochemistry (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明属于空气污染监测领域,为一种城市空气污染热点区域锁定方法。The invention belongs to the field of air pollution monitoring and relates to a method for locking hot spots of urban air pollution.
背景技术Background technique
随着经济水平的不断发展和人们生活质量的提高,空气污染问题也逐渐突出。空气污染问题严重危害人们健康,影响社会持续良好发展。为解决这一问题,很多研究围绕着空气质量监测、空气污染预测等方面展开。With the continuous development of the economic level and the improvement of people's quality of life, the problem of air pollution has gradually become prominent. Air pollution seriously endangers people's health and affects the sustainable and sound development of society. In order to solve this problem, many studies have been carried out around air quality monitoring and air pollution prediction.
传统的重污染过程分析都是凭借专业人员经验的一种并非标准化的方式,不同的业务单位或科研单位对于重污染过程分析的方法都不尽相同,已有的技术手段侧重对某监测区域内发生重度污染的时间或强度预报。The traditional heavy pollution process analysis is a non-standardized method based on the experience of professionals. Different business units or scientific research units have different methods for heavy pollution process analysis. The existing technical means focus on the monitoring area Forecast of the time or intensity of heavy pollution.
由于现有的研究,缺乏对于利用空气污染监测得到的数据来锁定区域内的污染热点区域的技术研究,因此为更好的治理空气污染问题,需要一种城市空气污染热点区域锁定的方法。Due to the lack of technical research on the use of air pollution monitoring data to lock the pollution hotspots in the region, in order to better control the air pollution problem, a method for locking the urban air pollution hotspots is needed.
发明内容Contents of the invention
本发明的目的是提供一种城市空气污染热点区域锁定方法,以锁定城市内空气污染程度较高的区域,更加侧重中、大尺度区域内发生重度污染的空间特性。The purpose of the present invention is to provide a method for locking hotspots of urban air pollution, so as to lock areas with high levels of air pollution in the city, and focus more on the spatial characteristics of heavy pollution in medium and large scale areas.
本发明的一种城市空气污染热点区域锁定方法,在确定了监测的区域和空气污染物后,然后执行如下步骤:A kind of urban air pollution hotspot area locking method of the present invention, after determining the monitored area and air pollutants, then perform the following steps:
步骤1,对监测区域进行网格化处理,并为各网格编号;Step 1, carry out grid processing on the monitoring area, and number each grid;
所述的步骤1中,将监测区域划分成等面积的网格,然后以左下角起点为原点区域,以向右为x轴正方向、以向上为y轴正方向,以x轴和y轴的坐标值来确定各个网格的编号。In the above step 1, the monitoring area is divided into equal-area grids, and then the starting point of the lower left corner is the origin area, the right direction is the positive direction of the x-axis, the upward direction is the positive direction of the y-axis, and the x-axis and y-axis to determine the number of each grid.
步骤2,基于高斯多点源空气污染物扩散模型对区域内的空气污染物进行扩散拟合,计算区域内各个网格的污染物浓度值;Step 2, based on the Gaussian multi-point source air pollutant diffusion model, the air pollutants in the region are diffused and fitted, and the pollutant concentration values of each grid in the region are calculated;
对监测区域内编号为(a,b)的网格,设(x,y,z)为该网格待研究污染的中心点,将每个污染点源在该点处的污染扩散值叠加,作为该网格的污染物浓度值Ca,b。For the grid numbered (a, b) in the monitoring area, set (x, y, z) as the center point of the pollution to be studied in the grid, and superimpose the pollution diffusion value of each pollution point source at this point, as the pollutant concentration value C a,b of the grid.
根据下面所示的高斯多点源空气污染物扩散模型来计算污染物浓度值Ca,b:The pollutant concentration value C a,b is calculated according to the Gaussian multi-point source air pollutant dispersion model shown below:
其中,N为污染源个数;为第k个污染点源扩散在(x,y,z)的污染值;H为污染源高度与烟羽排放上冲高度之和;对于具体网格,可根据实际研究情况来确定中心点(x,y,z),研究每个污染点源在该处的污染扩散值,z根据实际情况来设置;Among them, N is the number of pollution sources; is the pollution value of the kth pollution point source diffused at (x, y, z); H is the sum of the height of the pollution source and the height of the plume emission upshoot; for the specific grid, the center point (x ,y,z), to study the pollution diffusion value of each pollution point source, z is set according to the actual situation;
根据所述的高斯多点源空气污染物扩散模型来计算获得所有网格的污染值;Calculate and obtain the pollution values of all grids according to the Gaussian multi-point source air pollutant diffusion model;
步骤3、选取监测区域中非边界区域内空气污染物浓度最高的一个网格作为起点;并将起点网格作为一处空气污染热点区域;Step 3. Select a grid with the highest concentration of air pollutants in the non-boundary area of the monitoring area as the starting point; and use the starting grid as an air pollution hotspot area;
步骤4、将起点网格周围的网格的空气污染物浓度值作为一个集合,比较集合中各个网格空气污染物浓度值,选取该集合中空气污染物浓度最高的网格;Step 4, taking the air pollutant concentration values of the grids around the starting point grid as a set, comparing the air pollutant concentration values of each grid in the set, and selecting the grid with the highest air pollutant concentration in the set;
步骤5、将步骤4所选取的网格作为一处空气污染热点区域,并更新该网格为起点网格;Step 5. Use the grid selected in step 4 as an air pollution hotspot area, and update the grid as the starting grid;
步骤6、判断新确定的起点网格是否是区域边界的网格,如果是输出所有的空气污染热点区域,结束本方法;如果不是,继续转步骤4执行。本发明与现有技术相比,具有以下明显优势:Step 6. Judging whether the newly determined starting grid is the grid of the regional boundary, if it is to output all air pollution hotspot areas, end this method; if not, continue to step 4 for execution. Compared with the prior art, the present invention has the following obvious advantages:
(1)本发明拟合出区域内各处的空气污染情况,更加有效地掌握区域内的污染物扩散的动态过程;(1) The present invention fits the air pollution situation in various places in the area, and more effectively grasps the dynamic process of pollutant diffusion in the area;
(2)本发明依靠大气污染扩散理论的支持,提高了对空气污染热点区域锁定的准确性;(2) The present invention relies on the support of air pollution diffusion theory, which improves the accuracy of air pollution hotspot area locking;
(3)本发明有效锁定区域内空气污染热点区域。(3) The present invention effectively locks the air pollution hot spots in the area.
附图说明Description of drawings
图1是本发明的城市空气污染热点区域锁定方法的整体流程示意图;Fig. 1 is the overall flow diagram of the urban air pollution hotspot area locking method of the present invention;
图2是本发明实施例中监测区域网络化处理的效果图;FIG. 2 is an effect diagram of monitoring area network processing in an embodiment of the present invention;
图3是本发明实施例中区域起点位置所在网格的效果图;Fig. 3 is an effect diagram of the grid where the starting point of the region is located in the embodiment of the present invention;
图4是本发明实施例中比较起点位置所在网格周围的浓度值的效果图;Fig. 4 is an effect diagram of comparing the concentration values around the grid where the starting point is located in the embodiment of the present invention;
图5是本发明实施例中更新起点位置的效果图;Fig. 5 is an effect diagram of updating the starting point position in the embodiment of the present invention;
图6是本发明实施例中更新空气污染热点区域的效果图;Fig. 6 is an effect diagram of updating an air pollution hotspot area in an embodiment of the present invention;
图7是利用本发明方法定位空气污染热点区域的一个效果图;Fig. 7 is an effect diagram utilizing the method of the present invention to locate air pollution hotspots;
图8是本发明实际应用锁定空气污染热点区域的效果图。Fig. 8 is an effect diagram of the actual application of the present invention to lock air pollution hot spots.
具体实施方式Detailed ways
为了便于本领域普通技术人员理解和实施本发明,下面结合附图和实施例对本发明作进一步的详细描述。In order to facilitate those of ordinary skill in the art to understand and implement the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
针对于空气污染监测领域,本发明提出的一种城市空气污染热点区域锁定的方法,整体流程如图1所示,下面说明各实现过程。Aiming at the field of air pollution monitoring, the present invention proposes a method for locking hot spots of urban air pollution. The overall process is shown in FIG. 1 , and each implementation process is described below.
首先要确定要研究的区域和要研究的空气污染物。根据城市空气监测点的布置区域,确定其能实时监测到的区域范围,并根据高斯扩散模型能够合理科学地拟合范围,确定要研究的区域。城市常见的空气污染物为二氧化氮(NO2)、二氧化硫(SO2)、一氧化碳(CO)、臭氧(O3)、PM2.5、PM10等。The first step is to identify the area to be studied and the air pollutants to be studied. According to the layout area of urban air monitoring points, determine the area range that can be monitored in real time, and according to the Gaussian diffusion model that can fit the range reasonably and scientifically, determine the area to be studied. Common air pollutants in cities are nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), carbon monoxide (CO), ozone (O 3 ), PM 2.5 , PM 10 and so on.
步骤1,对监测区域进行网络化处理,并为各网格编号。Step 1, network the monitoring area and number each grid.
根据监测区域的面积大小、区域功能、自然条件等特点划分成若干等面积的网格,以便进一步的分析研究。如图2所示,以左下角起点为原点区域,以向右为x轴正方向、以向上为y轴正方向,以x轴和y轴的坐标值来确定各个网格的坐标编号。如图2所示,将待监测区域划分网格后,设(a,b)表示网格的坐标,其中a,b均为整数,且1≤a≤m,1≤b≤n,这样将待监测区域可以用一个矩阵来表示,m×n为网格总数,m,n均为正整数。设用Ca,b表示网格(a,b)的污染物浓度值,如图2所示,下面需要根据步骤2来计算各网格的污染物浓度值。According to the size of the monitoring area, regional functions, natural conditions and other characteristics, it is divided into several equal-area grids for further analysis and research. As shown in Figure 2, the starting point of the lower left corner is taken as the origin area, the positive direction of the x-axis is taken to the right, and the positive direction of the y-axis is taken upwards, and the coordinate numbers of each grid are determined by the coordinate values of the x-axis and y-axis. As shown in Figure 2, after the area to be monitored is divided into grids, let (a, b) represent the coordinates of the grid, where a and b are integers, and 1≤a≤m, 1≤b≤n, so that The area to be monitored can be represented by a matrix, m×n is the total number of grids, and both m and n are positive integers. Let C a, b denote the pollutant concentration value of the grid (a, b), as shown in Figure 2, the pollutant concentration value of each grid needs to be calculated according to step 2 below.
步骤2,基于高斯多点源空气污染物扩散模型对区域内的空气污染物进行扩散拟合,计算区域内各个网格的污染物浓度值。Step 2. Based on the Gaussian multi-point source air pollutant diffusion model, the air pollutants in the region are diffused and fitted, and the pollutant concentration values of each grid in the region are calculated.
高斯烟羽模式,简称高斯模式,针对空气污染源,计算达到稳态后的污染物立体空间分布的常用模型。Gaussian plume model, referred to as Gaussian model, is a common model for calculating the three-dimensional spatial distribution of pollutants after reaching a steady state for air pollution sources.
空气污染高斯扩散模式是应用湍流统计理论得到的正态分布假设下的扩散模式。以污染物点源在地面的投影为坐标原点,以原点指向下风的方向为x轴,以点源下风向任一点(x,y,z)的污染物浓度ρC(x,y,z,H)为求解对象,则高斯污染扩散方程为:The Gaussian diffusion model of air pollution is a diffusion model under the assumption of normal distribution obtained by applying turbulence statistics theory. Take the projection of the pollutant point source on the ground as the coordinate origin, take the direction pointing downwind from the origin as the x-axis, and take the pollutant concentration ρ C (x,y,z, H) is the solution object, then the Gaussian pollution diffusion equation is:
其中:ρC为任一点(x,y,z)处的污染物浓度,单位是mg/m3;Wherein: ρC is the pollutant concentration at any point (x, y, z), and the unit is mg/m 3 ;
H为污染源高度与烟羽排放上冲高度之和;H is the sum of the height of the pollution source and the height of the plume discharge;
α为颗粒的地面反射系数;α is the ground reflection coefficient of the particle;
qm为污染源排放强度,即单位时间污染物排放量;q m is the emission intensity of the pollution source, that is, the amount of pollutant emission per unit time;
v为平均风速,单位是m/s;v is the average wind speed in m/s;
σy和σz为在y方向和z方向的扩散系数,其与大气稳定度和水平距离x有关,并随x的增大而增加;σ y and σ z are the diffusion coefficients in the y direction and z direction, which are related to the atmospheric stability and the horizontal distance x, and increase with the increase of x;
vt为颗粒的重力沉降速度,单位是m/s,其计算公式为:v t is the gravitational settling velocity of particles, the unit is m/s, and its calculation formula is:
式中:dp为颗粒直径;ρp为颗粒密度;μ为空气黏度;g为重力加速度。Where: d p is particle diameter; ρ p is particle density; μ is air viscosity; g is gravitational acceleration.
当H=0时,污染源被称为地面点源。当H≠0时,污染源被称为高架点源。通常情况下,H的值包括烟囱的高度加上排烟上冲高度。When H = 0, the pollution source is called a ground point source. When H≠0, the pollution source is called an elevated point source. Typically, the value of H includes the height of the chimney plus the height of the exhaust overshoot.
另外,公式中当颗粒的粒径小于15μm时,则不考虑颗粒的地面反射和重力沉降速度,此时α=0且vt=0。当颗粒的粒径大于15μm时,必须考虑重力的沉降作用。In addition, when the particle size of the particle is less than 15 μm in the formula, the ground reflection and the gravity sedimentation velocity of the particle are not considered, and at this time α=0 and v t =0. When the particle size of the particles is greater than 15 μm, the settling effect of gravity must be considered.
当区域内有多个污染源时,基于高斯模式计算区域内各个网格的污染物浓度值。多点源空气污染扩散高斯模式基本原理:When there are multiple pollution sources in the area, the pollutant concentration values of each grid in the area are calculated based on the Gaussian model. The basic principle of multi-point source air pollution diffusion Gaussian model:
基于高斯模式空气污染扩散在计算时主要考虑污染源和计算区域。在风场的作用下,污染区域通常考虑污染源下风方向一定范围的立体空间。在实际的计算当中,将研究区域多个空气污染源进行扩散拟合。污染计算是针对污染源对某个网格中心点的污染作用,确定该点的污染物浓度值。根据计算得到的每个网格中的污染物浓度值进行合并的结果就是最终网格内的污染物的浓度值。Based on the Gaussian model of air pollution diffusion, the pollution source and calculation area are mainly considered in the calculation. Under the action of the wind field, the pollution area usually considers a certain range of three-dimensional space in the downwind direction of the pollution source. In the actual calculation, multiple air pollution sources in the study area are used for diffusion fitting. Pollution calculation is to determine the pollutant concentration value of a grid center point based on the pollution effect of the pollution source on the grid center point. The result of combining the calculated pollutant concentration values in each grid is the final pollutant concentration value in the grid.
对于某个网格(a,b),设(x,y,z)为其待研究污染的中心点,则根据下面所示的高斯多点源空气污染物扩散模型来计算:For a grid (a, b), let (x, y, z) be the center point of the pollution to be studied, and then calculate according to the Gaussian multi-point source air pollutant diffusion model shown below:
其中,N为污染源个数;Ca,b为该网格内多个点源产生的污染物浓度值的叠加值,由N个污染源单独扩散得到的叠加得到。为第k个污染点源扩散在网格中心(x,y,z)的污染值,根据上面高斯污染扩散方程来计算得到。Among them, N is the number of pollution sources; C a, b are the superimposed values of pollutant concentration values produced by multiple point sources in the grid, which are obtained by the independent diffusion of N pollution sources get superimposed. is the pollution value of the kth pollution point source diffusion at the grid center (x, y, z), calculated according to the Gaussian pollution diffusion equation above.
对于具体网格,可根据实际研究情况来确定中心点(x,y,z),研究每个污染点源在该处的污染扩散值,z根据实际情况来设置。根据上面高斯多点源空气污染物扩散模型来计算获得所有m×n个网格的污染值。For a specific grid, the center point (x, y, z) can be determined according to the actual research situation, and the pollution diffusion value of each pollution point source at this place is studied, and z is set according to the actual situation. According to the Gaussian multi-point source air pollutant diffusion model above, the pollution values of all m×n grids are obtained.
步骤3,选取监测区域中非边界区域内空气污染物浓度最高的一处网格作为起点位置,在图2中Ca,b(1<a<m,1<b<n)所在的网格均属于非边界区域。Step 3, select the grid with the highest concentration of air pollutants in the non-boundary area of the monitoring area as the starting point, in Figure 2, the grid where C a,b (1<a<m, 1<b<n) is located All belong to the non-boundary area.
步骤4,选取起点位置所在网格作为一处空气污染热点区域。例如,如图3所示的区域内(2,2)确定的网格为起点位置,则该网格为一处空气污染热点区域。Step 4, select the grid where the starting point is located as an air pollution hotspot area. For example, if the grid determined at (2,2) in the area shown in Figure 3 is the starting position, then the grid is an air pollution hotspot area.
步骤5,将该起点周围的网格的空气污染物浓度值作为一个集合,比较集合中各个网格空气污染物浓度值,选取该集合中空气污染物浓度最高的网格。Step 5, take the air pollutant concentration values of the grids around the starting point as a set, compare the air pollutant concentration values of each grid in the set, and select the grid with the highest air pollutant concentration in the set.
例如,如图4所示起点位置C2,2所在的网格为空气污染热点区域,在周围的浓度值集合为[C1,1,C2,1,C3,1,C1,2,C3,2,C1,3,C2,3,C3,3];选取该集合中空气污染物浓度最高值,即max[C1,1,C2,1,C3,1,C1,2,C3,2,C1,3,C2,3,C3,3],确定该空气污染物浓度值所在的网格。For example, as shown in Figure 4, the grid where the starting position C 2,2 is located is an air pollution hotspot area, and the concentration value set around it is [C 1,1 ,C 2,1 ,C 3,1 ,C 1,2 ,C 3,2 ,C 1,3 ,C 2,3 ,C 3,3 ]; select the highest value of air pollutant concentration in this set, namely max[C 1,1 ,C 2,1 ,C 3,1 ,C 1,2 ,C 3,2 ,C 1,3 ,C 2,3 ,C 3,3 ], determine the grid where the air pollutant concentration value is located.
步骤6,在上述步骤中确定的集合中空气污染物浓度最高的网格作为一处空气污染热点区域,更新空气污染热点区域。Step 6, the grid with the highest concentration of air pollutants in the set determined in the above steps is used as an air pollution hotspot area, and the air pollution hotspot area is updated.
例如,如图5所示,在周围的浓度值集合[C1,1,C2,1,C3,1,C1,2,C3,2,C1,3,C2,3,C3,3]中空气污染物浓度最高值为C3,3,则该空气污染浓度值C3,3所在的网格为一处空气污染热点区域,进行更新空气污染热点区域。For example, as shown in Figure 5, the set of concentration values around [C 1,1 ,C 2,1 ,C 3,1 ,C 1,2 ,C 3,2 ,C 1,3 ,C 2,3 , In C 3,3 ], the highest air pollutant concentration value is C 3,3 , then the grid where the air pollution concentration value C 3,3 is located is an air pollution hotspot area, and the air pollution hotspot area is updated.
步骤7,更新起点位置,将步骤6得到的该空气污染物浓度最高的网格作为起点位置。Step 7, update the starting position, and use the grid with the highest air pollutant concentration obtained in step 6 as the starting position.
例如,如图5所示,将C3,3所在的网格作为起点位置。For example, as shown in Figure 5, the grid where C 3,3 is located is taken as the starting position.
步骤8,判断新确定的起点网格是否是区域边界的网格,如果该网格不是区域边界的网格,再转步骤5执行,将该起点网格位置周围的网格的浓度值作为一个新的集合,新集合中不包括已经进行比较的网格的浓度值,选取该集合中浓度最高的网格,进行空气污染热点区域更新。Step 8, judge whether the newly determined starting grid is the grid of the area boundary, if the grid is not the grid of the area boundary, then go to step 5, and use the concentration value of the grid around the starting grid position as a A new set, the new set does not include the concentration values of the grids that have been compared, and the grid with the highest concentration in this set is selected to update the air pollution hotspot area.
例如,如图6所示,将该起点网格位置即C3,3所在的网格,周围的网格的浓度值作为一个新的集合[C4,2,C4,3,C2,4,C3,4,C4,4],该集合中不包括已经进行比较的网格的浓度值,选取该集合中浓度最高的网格,进行空气污染热点区域更新。For example, as shown in Figure 6, the starting grid position is the grid where C 3,3 is located, and the concentration values of the surrounding grids are used as a new set [C 4,2 , C 4,3 , C 2, 4 , C 3,4 , C 4,4 ], this set does not include the concentration values of the grids that have been compared, and the grid with the highest concentration in this set is selected to update the air pollution hotspot area.
若步骤8更新后的起点网格是区域边界的网格,输出最终的空气污染热点区域。例如,如图7所示,起点网格为区域边界网格C5,5所在的网格时,停止空气污染热点区域更新,输出空气污染热点区域。图中标号①②③④⑤所在的网格区域即为输出的最终的空气污染热点区域。If the updated starting grid in step 8 is the grid of the regional boundary, output the final air pollution hotspot area. For example, as shown in Figure 7, when the starting point grid is the grid where the area boundary grid C 5 , 5 is located, the update of the air pollution hotspot area is stopped, and the air pollution hotspot area is output. The grid area where the labels ①②③④⑤ are located in the figure is the final output air pollution hotspot area.
本发明方法在实际应用中所呈现的计算效果如图8所示。利用多点源空气污染高斯扩散模式实现对区域内存在多处污染源的情况下,区域各处的污染物浓度拟合值,并能够通过对各个点的浓度值大小比较,锁定出“一条”污染热点区域“带”,从而确定了污染热点区域。通过本发明方法能较准确地锁定空气污染热点区域,可以更加有效地掌握区域内的污染物扩散的动态过程。The calculation effect presented by the method of the present invention in practical application is shown in FIG. 8 . Using the multi-point source air pollution Gaussian diffusion model to realize the fitting value of the pollutant concentration in the region when there are multiple pollution sources in the region, and can lock out "one" pollution by comparing the concentration values of each point Hotspot area "bands" thereby identifying pollution hotspots. The method of the invention can more accurately lock the air pollution hotspot area, and can more effectively grasp the dynamic process of pollutant diffusion in the area.
以上所述仅是本发明优选的实施方案,并不用于限制本发明,应当指出,对于本技术领域的技术人员,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, and is not intended to limit the present invention. It should be pointed out that for those skilled in the art, some improvements and deformations can be made without departing from the technical principle of the present invention. These improvements and deformations should also be regarded as the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810401316.XA CN108648127B (en) | 2018-04-28 | 2018-04-28 | An urban air pollution hot spot area locking method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810401316.XA CN108648127B (en) | 2018-04-28 | 2018-04-28 | An urban air pollution hot spot area locking method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108648127A true CN108648127A (en) | 2018-10-12 |
CN108648127B CN108648127B (en) | 2022-04-29 |
Family
ID=63748655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810401316.XA Active CN108648127B (en) | 2018-04-28 | 2018-04-28 | An urban air pollution hot spot area locking method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108648127B (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109543592A (en) * | 2018-11-19 | 2019-03-29 | 北京英视睿达科技有限公司 | The method and device of atmosphere pollution hot spot grid is determined based on remote sensing atural object |
CN109543990A (en) * | 2018-11-19 | 2019-03-29 | 北京英视睿达科技有限公司 | The method and device of atmosphere pollution hot spot grid is determined based on pollution sources |
CN109583725A (en) * | 2018-11-19 | 2019-04-05 | 北京英视睿达科技有限公司 | The method and device of atmosphere pollution hot spot grid is determined based on light |
CN109613179A (en) * | 2018-11-14 | 2019-04-12 | 北京英视睿达科技有限公司 | Accumulate the determination method of Spring layer |
CN109765337A (en) * | 2018-12-28 | 2019-05-17 | 北京英视睿达科技有限公司 | A kind of pollution source discrimination and its system |
CN109856321A (en) * | 2018-11-14 | 2019-06-07 | 北京英视睿达科技有限公司 | The determination method of abnormal high level point |
CN110531030A (en) * | 2019-08-16 | 2019-12-03 | 北京慧辰资道资讯股份有限公司 | A kind of method and device based on the analysis of Internet of Things big data atmosphere pollution |
CN110889199A (en) * | 2019-11-01 | 2020-03-17 | 河海大学 | Layout optimization method of port atmospheric particulate matter concentration online detector |
CN111400557A (en) * | 2020-03-06 | 2020-07-10 | 北京市环境保护监测中心 | Method and device for automatically identifying atmospheric pollution key area |
CN111912749A (en) * | 2020-08-20 | 2020-11-10 | 威海精讯畅通电子科技有限公司 | Air quality monitoring method and system |
CN112233247A (en) * | 2020-09-29 | 2021-01-15 | 广东新禾道信息科技有限公司 | Air pollution prevention and control grid monitoring equipment and its use method |
CN112684123A (en) * | 2021-01-28 | 2021-04-20 | 山西云时代太钢信息自动化技术有限公司 | Factory-level air quality pollution source network deduction method |
CN112881611A (en) * | 2021-01-20 | 2021-06-01 | 无锡高德环境科技有限公司 | Pollution source tracing method |
CN112986072A (en) * | 2021-02-09 | 2021-06-18 | 上海英凡环保科技有限公司 | Pollution source odor online monitoring system and method |
CN113378380A (en) * | 2021-06-08 | 2021-09-10 | 台州南水环保科技有限公司 | Numerical simulation-based method for tracing source of pollutants in underground water |
CN114088633A (en) * | 2021-11-19 | 2022-02-25 | 生态环境部卫星环境应用中心 | Coal mine area methane emission abnormity identification and accounting method based on satellite-ground cooperative monitoring |
CN114565170A (en) * | 2022-03-04 | 2022-05-31 | 北京百度网讯科技有限公司 | Pollutant tracing method and device, equipment, medium and product |
CN114841007A (en) * | 2022-05-17 | 2022-08-02 | 杨邦会 | Carbon emission diffusion influence analysis method based on urban regional scale |
CN115420856A (en) * | 2022-08-29 | 2022-12-02 | 陕西煤业化工技术研究院有限责任公司 | A coal mine underground gas leakage source location system and method |
CN116699072A (en) * | 2023-06-08 | 2023-09-05 | 东莞市华复实业有限公司 | Environment early warning method based on detection cruising |
CN117591619A (en) * | 2023-11-23 | 2024-02-23 | 北京英视宇辰科技有限公司 | Method, system, equipment and medium for identifying double high-temperature hot spot grids of polluted carbon |
CN119200490A (en) * | 2024-11-27 | 2024-12-27 | 嘉兴圣一环境科技有限公司 | A dust-free workshop automation control method and system based on data collection and analysis |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103258116A (en) * | 2013-04-18 | 2013-08-21 | 国家电网公司 | Method for constructing atmospheric pollutant diffusion model |
CN104897853A (en) * | 2015-05-27 | 2015-09-09 | 石家庄科林电气股份有限公司 | Thermal power plant pollutant discharging monitoring display method based on tower type diffusion model |
CN106407714A (en) * | 2016-10-14 | 2017-02-15 | 珠海富鸿科技有限公司 | Air pollution assessment method and device based on CALPUFF system |
CN107436343A (en) * | 2017-07-31 | 2017-12-05 | 南京南瑞集团公司 | It is a kind of to simulate the method for calculating sensitizing range pollutant concentration |
CN107563562A (en) * | 2017-09-08 | 2018-01-09 | 新奥泛能网络科技股份有限公司 | The appraisal procedure and device of gridding urban atmospheric pollution thing discharge |
-
2018
- 2018-04-28 CN CN201810401316.XA patent/CN108648127B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103258116A (en) * | 2013-04-18 | 2013-08-21 | 国家电网公司 | Method for constructing atmospheric pollutant diffusion model |
CN104897853A (en) * | 2015-05-27 | 2015-09-09 | 石家庄科林电气股份有限公司 | Thermal power plant pollutant discharging monitoring display method based on tower type diffusion model |
CN106407714A (en) * | 2016-10-14 | 2017-02-15 | 珠海富鸿科技有限公司 | Air pollution assessment method and device based on CALPUFF system |
CN107436343A (en) * | 2017-07-31 | 2017-12-05 | 南京南瑞集团公司 | It is a kind of to simulate the method for calculating sensitizing range pollutant concentration |
CN107563562A (en) * | 2017-09-08 | 2018-01-09 | 新奥泛能网络科技股份有限公司 | The appraisal procedure and device of gridding urban atmospheric pollution thing discharge |
Non-Patent Citations (1)
Title |
---|
易加仁: "基于Web GIS的大气环境分析预测系统研究", 《中国优秀硕士论文全文数据库 工程科技I辑》 * |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109613179B (en) * | 2018-11-14 | 2023-10-20 | 北京英视睿达科技股份有限公司 | Method for determining cumulative high value area |
CN109613179A (en) * | 2018-11-14 | 2019-04-12 | 北京英视睿达科技有限公司 | Accumulate the determination method of Spring layer |
CN109856321A (en) * | 2018-11-14 | 2019-06-07 | 北京英视睿达科技有限公司 | The determination method of abnormal high level point |
CN109543990A (en) * | 2018-11-19 | 2019-03-29 | 北京英视睿达科技有限公司 | The method and device of atmosphere pollution hot spot grid is determined based on pollution sources |
CN109583725A (en) * | 2018-11-19 | 2019-04-05 | 北京英视睿达科技有限公司 | The method and device of atmosphere pollution hot spot grid is determined based on light |
CN109543592A (en) * | 2018-11-19 | 2019-03-29 | 北京英视睿达科技有限公司 | The method and device of atmosphere pollution hot spot grid is determined based on remote sensing atural object |
CN109765337A (en) * | 2018-12-28 | 2019-05-17 | 北京英视睿达科技有限公司 | A kind of pollution source discrimination and its system |
CN110531030A (en) * | 2019-08-16 | 2019-12-03 | 北京慧辰资道资讯股份有限公司 | A kind of method and device based on the analysis of Internet of Things big data atmosphere pollution |
CN110531030B (en) * | 2019-08-16 | 2021-11-12 | 北京慧辰资道资讯股份有限公司 | Method and device for analyzing atmospheric pollutants based on Internet of things big data |
CN110889199A (en) * | 2019-11-01 | 2020-03-17 | 河海大学 | Layout optimization method of port atmospheric particulate matter concentration online detector |
CN110889199B (en) * | 2019-11-01 | 2022-09-23 | 河海大学 | A layout optimization method for an on-line detector of atmospheric particulate matter concentration in a port |
CN111400557A (en) * | 2020-03-06 | 2020-07-10 | 北京市环境保护监测中心 | Method and device for automatically identifying atmospheric pollution key area |
CN111400557B (en) * | 2020-03-06 | 2023-08-08 | 北京市环境保护监测中心 | Method and device for automatically identifying important areas of atmospheric pollution |
CN111912749A (en) * | 2020-08-20 | 2020-11-10 | 威海精讯畅通电子科技有限公司 | Air quality monitoring method and system |
CN112233247B (en) * | 2020-09-29 | 2021-07-30 | 广东新禾道信息科技有限公司 | Air pollution prevention and control grid monitoring equipment and its use method |
CN112233247A (en) * | 2020-09-29 | 2021-01-15 | 广东新禾道信息科技有限公司 | Air pollution prevention and control grid monitoring equipment and its use method |
CN112881611A (en) * | 2021-01-20 | 2021-06-01 | 无锡高德环境科技有限公司 | Pollution source tracing method |
CN112684123A (en) * | 2021-01-28 | 2021-04-20 | 山西云时代太钢信息自动化技术有限公司 | Factory-level air quality pollution source network deduction method |
CN112986072A (en) * | 2021-02-09 | 2021-06-18 | 上海英凡环保科技有限公司 | Pollution source odor online monitoring system and method |
CN113378380A (en) * | 2021-06-08 | 2021-09-10 | 台州南水环保科技有限公司 | Numerical simulation-based method for tracing source of pollutants in underground water |
CN114088633A (en) * | 2021-11-19 | 2022-02-25 | 生态环境部卫星环境应用中心 | Coal mine area methane emission abnormity identification and accounting method based on satellite-ground cooperative monitoring |
CN114565170A (en) * | 2022-03-04 | 2022-05-31 | 北京百度网讯科技有限公司 | Pollutant tracing method and device, equipment, medium and product |
CN114841007A (en) * | 2022-05-17 | 2022-08-02 | 杨邦会 | Carbon emission diffusion influence analysis method based on urban regional scale |
CN115420856A (en) * | 2022-08-29 | 2022-12-02 | 陕西煤业化工技术研究院有限责任公司 | A coal mine underground gas leakage source location system and method |
CN116699072A (en) * | 2023-06-08 | 2023-09-05 | 东莞市华复实业有限公司 | Environment early warning method based on detection cruising |
CN116699072B (en) * | 2023-06-08 | 2024-01-26 | 东莞市华复实业有限公司 | Environment early warning method based on detection cruising |
CN117591619A (en) * | 2023-11-23 | 2024-02-23 | 北京英视宇辰科技有限公司 | Method, system, equipment and medium for identifying double high-temperature hot spot grids of polluted carbon |
CN119200490A (en) * | 2024-11-27 | 2024-12-27 | 嘉兴圣一环境科技有限公司 | A dust-free workshop automation control method and system based on data collection and analysis |
Also Published As
Publication number | Publication date |
---|---|
CN108648127B (en) | 2022-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108648127A (en) | A kind of urban air pollution hot spot region locking means | |
CN111537023B (en) | A method for simulation and traceability of air pollutant diffusion in industrial parks | |
CN104008229B (en) | A kind of block concentration distribution of pollutants method for establishing model | |
Fu et al. | Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model | |
Zhong et al. | Pedestrian-level gust wind flow and comfort around a building array–influencing assessment on the pocket park | |
CN106446401B (en) | A GIS-based PM2.5 Visual Dynamic Diffusion Simulation System | |
CN114661849B (en) | Pollution tracing method and device | |
CN101882184B (en) | Atmospheric Environmental Assessment System and Method Based on GIS Technology and AERMODE Model | |
CN105512485B (en) | A kind of new method of estimation fine particle and its precursor environmental carrying capacity | |
CN107609731A (en) | A kind of Evaluation of Atmospheric Environmental Quality method | |
Scungio et al. | Numerical simulation of ultrafine particle dispersion in urban street canyons with the Spalart-Allmaras turbulence model | |
CN104897853A (en) | Thermal power plant pollutant discharging monitoring display method based on tower type diffusion model | |
CN104537462A (en) | Thermal power pollution factor control method of air fine particles | |
CN115420854A (en) | Atmospheric pollutant tracing method based on forward and backward model combination | |
CN115271373A (en) | Method and system for defining elastic development boundary of urban group | |
CN106250590A (en) | A kind of high-altitude based on CFD numerical simulation sun deck Pedestrian Level Winds appraisal procedure | |
Shan et al. | The pattern and mechanism of air pollution in developed coastal areas of China: From the perspective of urban agglomeration | |
CN104750938A (en) | GIS (Geographic Information System)-based urban ventilating gallery identifying method and system | |
CN108509718A (en) | A kind of far field wake flow two-dimensional analysis model based on the conservation of mass | |
CN110826244A (en) | Conjugate gradient cellular automata method for simulating influence of rail transit on urban growth | |
CN114002381A (en) | Atmospheric pollution source-tracing diffusion analysis method and device | |
CN102289733A (en) | Method for evaluating regional atmosphere risk space distribution based on GIS (Geographic Information System) | |
CN117592343B (en) | Air pollution simulation method and system based on small-scale diffusion and traceability model | |
CN114441397A (en) | PM2.5 pollution source positioning method based on Gaussian plume and centroid positioning | |
CN114417467A (en) | Establishment method, device, medium and equipment of ventilation corridor in urban dense area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |