CN108647423A - 一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法 - Google Patents

一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法 Download PDF

Info

Publication number
CN108647423A
CN108647423A CN201810422150.XA CN201810422150A CN108647423A CN 108647423 A CN108647423 A CN 108647423A CN 201810422150 A CN201810422150 A CN 201810422150A CN 108647423 A CN108647423 A CN 108647423A
Authority
CN
China
Prior art keywords
value
individual
newbest
gbest
flash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810422150.XA
Other languages
English (en)
Other versions
CN108647423B (zh
Inventor
谢永芳
王晓丽
张杏婵
谢世文
桂卫华
徐德刚
陈晓方
蒋朝辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201810422150.XA priority Critical patent/CN108647423B/zh
Publication of CN108647423A publication Critical patent/CN108647423A/zh
Application granted granted Critical
Publication of CN108647423B publication Critical patent/CN108647423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提供了一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法,建立了闪蒸系统稳态时孔口尺寸的流体力学模型;建立了以系统热量回收利用量最大为优化目标,以闪蒸系统孔口尺寸模型和工艺指标为约束的优化模型;采用自适应状态转移算法求解优化模型,得出各闪蒸器孔口尺寸最优值,采用实际生产数据对模型进行验证,其中,变换因子可根据设置的迭代终止条件在每一次迭代过程中自适应调节,同时针对难以测量的待辨识参数,根据最小二乘误差函数进行了辨识。本发明使氧化铝溶出过程闪蒸系统的孔口尺寸更加符合实际环境,从而使得闪蒸系统的温度和压强分布更加合理,热量回收量提高了0.75%‑1.45%。

Description

一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法
技术领域
本发明涉及氧化铝的生产领域,尤其涉及一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法。
背景技术
在拜耳法氧化铝生产中,高压溶出是主要耗能工序之一,该过程主要包含了浆料加热、高温高压的溶出、降温减压的闪蒸三个环节。为达到溶出的温度条件,在对浆料的加热环节中需要消耗大量新蒸汽,而闪蒸是整个溶出过程中热量回收的环节,其产生的二次汽则作为加热环节的预热热源,能够有效减少新蒸汽的消耗,因此闪蒸系统对溶出过程的节能降耗有重要意义。各闪蒸器间的压强分布对闪蒸系统的热量回收能力有很大影响,级间压差过高则闪蒸剧烈,易使二次汽带料,影响蒸汽品质,不利于蒸汽的利用,且加速管道磨损;级间压差过低则闪蒸效果不明显,产生的二次汽少,也不利于热量的回收。而减压孔板是调节、稳定各级闪蒸器内压强的主要手段,在进料量一定的情况下能够将级间压差稳定在某一定值,而在实际生产中,当进料量指标发生变动时,孔口尺寸是工人根据经验设定的,具有较大的盲目性,容易使各级闪蒸器间压强分布不够合理,易使闪蒸过料不畅,蒸汽带料,造成资源浪费等问题。因此优化各级闪蒸器中的减压孔板的孔口尺寸,使压强合理分布,以提高热量回收利用能力,是目前氧化铝企业亟待解决的重要问题。
目前针对闪蒸系统的能耗优化的研究中,大都基于热力学模型进行求解,尚未查到基于优化理论的孔口尺寸的设计优化方法的相关文献,因此,设计以闪蒸系统热量回收量最大为目标,闪蒸器孔口尺寸为变量的优化模型,求解出一组孔口尺寸的最优值具有十分重要的意义。
发明内容
为了解决目前实际生产中,当进料量指标发生变动时,孔口尺寸是工人根据经验设定的,具有较大的盲目性,容易使各级闪蒸器间压强分布不够合理,易使闪蒸过料不畅,蒸汽带料,造成资源浪费等问题,本发明提供了一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法,包括:
S1、建立闪蒸系统能源回收的优化模型:制定目标函数,确定决策变量,设定约束条件;
S2、设定群体个数SE,变换因子的最大值和最小值以及迭代终止条件,初始化迭代步数iter=1,以实际生产中的一组数据初始化各优化变量,产生初始种群;
其中,变换因子包括旋转因子α、平移因子β、伸缩因子γ和轴因子δ;
S3、从初始种群中选择使目标函数J达到最小值的的一组优化变量,记为best,该种群中每个个体的适应度为fbest,按式(17)更新变换因子;
S4、将best复制成SE个个体的群体,按式(1)进行伸缩变换后得到新的种群state;
x(k+1)=x(k)+γRex(k) (1)
其中,γ为伸缩因子,Re∈Rn×n为服从高斯分布的随机对角矩阵、x(k+1)为x(k)经过变换后的新种群;
S5、经过伸缩变换后的种群state中个体的适应度最小的个体为newbest,其适应度值为gbest,如;gbest<fbest,则将个体best和newbest分别复制SE次,作为输入值分别赋值给x(k+1)和x(k),按式(2)执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;
其中,β为平移因子,Rt∈R为[0,1]之间服从均匀分布的随机数,x(k+1)为x(k)经过变换后的新种群,||·||2为向量的2范数;
S6、将best复制成SE个个体的群体,按式(3)进行旋转变换后得到新的种群state,记录state中个体的适应度最小的个体为newbest,其适应度值为gbest,如果gbest<fbest,则以个体newbest和best为输入值执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;
其中,α为旋转因子,Re∈Rn×n为[-1,1]之间服从均匀分布的随机矩阵,x(k+1)为x(k)经过变换后的新种群;
S7、将best复制成SE个个体的群体,按式(4)进行轴变换后得到新的种群state,记录state中个体的适应度最小的个体为newbest,其适应度值为gbest,如果gbest<fbest,则以个体newbest和best为输入值执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;如果gbest<fbest,则以个体newbest和best为输入值执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;
x(k+1)=x(k)+δRax(k) (4)
其中,δ为轴因子,Ra∈Rn×n为服从高斯分布的对角矩阵,且矩阵中只有一个随机位置上的元素不为零;
S8、判断是否达到迭代终止条件,是则终止迭代,输出优化变量的一组最优值,否则使iter=iter+1,从S2开始重复执行S2至S7的步骤;
其中,所述步骤S5-S8中的旋转因子α、平移因子β、伸缩因子γ和轴因子δ,采用以下方法自适应调整:
其中,αmax为α的最大值,αmin为α的最小值;βmax为β的最大值,βmin为β的最小值;γmax为γ的最大值,γmin为γ的最小值;δmax为δ的最大值δmin为δ的最小值;iter为迭代次数,itermax为最大迭代次数。
优选地,,所述步骤S1中,
所述闪蒸系统能源回收的优化模型及目标函数为:
其中,J为闪蒸系统能源消耗量,i为第i级闪蒸器,N为闪蒸级数,Wi为第i级闪蒸汽产生的二次蒸汽量,r为二次蒸汽的热焓,η为热量利用率;
优选地,所述步骤S1中,所述闪蒸系统能源回收的优化模型的约束条件,包括:
以闪蒸器的孔口尺寸、气体压强和料液温度和决策变量的边界条件作为计算优化模型的约束条件;
1)孔口尺寸
dmin<di<D (7)
其中,dmin为孔口尺寸最小值,di为第i级闪蒸器的孔口尺寸,D为管道内径;
2)气体压强
由于实际生产和设备的限制,闪蒸器内压强不能过高,需满足如下条件:
pi<pi-1<......<p1 (8)
其中,pi为第i级闪蒸器内的气体压强,pi-1为第i-1级闪蒸器内的气体压强,p1为第1级闪蒸器内的气体压强;
针对闪蒸系统的生产实际,相邻的两级闪蒸器内的气体压强之间的连续性方程和粘性总流的伯努利方程为:
VaAa=VcAc=Q (9)
其中,a和c分别为某一级闪蒸器内的液态截面a-a和相邻的下一级闪蒸器内减压孔板的孔口截面,系数aa和ac分别为a和c上的实际动能与以平均流速计算的动能的比值,g为重力加速度,V为a上的平均流速,A为c上的平均流速,Za为a的液位,Zc为c的液位;
其中,ht为单位质量的粘性流体运动时的能量水头损失,ζc为与孔口尺寸相关的部件引起的局部能量损失系数,K为管道内其余部件引起的总的阻力系数;
由式(9)、(10)和(11)推导得知,第i级闪蒸器和第i-1级闪蒸器内的气体压强差为:
其中,i为第i级闪蒸器,Δz为第i级闪蒸器内浆料的液位和第i-1级闪蒸器的减压板孔口截面的高度差,ρ为浆料密度,d为孔口直径,D为管道内径,CC是孔口的收缩系数,F0表示F的初始值;调整系数采用d的二阶关系式表示:
其中,Δd=d-d0,d0为d的初始值,m1和m2为待定系数;
3)浆料温度
其中,ρ为浆料密度,Q为进料体积流量,C为料液的比热容,e为热效率,Ti-1、Ti分别为第i级闪蒸器的进料和出料的温度;
4)变量的边界约束为:
dmin=0.7m (16)
优选地,所述步骤S1之前,还包括:
对闪蒸系统孔口尺寸优化模型中的未知参数进行辨识。首先定义压差模型的最小二乘误差函数:
其中,y=[Δp1,Δp2,...,ΔpN]T,yj分别为第j个样本的实测值和模型的计算值,计算公式为式(12),待辨识参数向量θ=[Fo1,…,FoN,K1,…,KN,m1,m2],n为样本总数。
其次将参数辨识问题转化为优化问题,建立针对未知参数辨识的优化模型,优化目标为:
优化变量为θ,无约束。
最后执行步骤S2至S8,得到一组优化变量θ,即为未知参数的辨识结果。将该结果带入到式(12)中,即得到完整的闪蒸系统能源回收的优化模型。
本发明提供了一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法,建立了闪蒸系统稳态时孔口尺寸的流体力学模型;建立了以系统热量回收利用量最大为优化目标,以闪蒸系统孔口尺寸模型和工艺指标为约束的优化模型;采用自适应状态转移算法求解优化模型,得出各闪蒸器孔口尺寸最优值,采用实际生产数据对模型进行验证,其中,变换因子可根据设置的迭代终止条件在每一次迭代过程中自适应调节,本发明使得本氧化铝溶出过程闪蒸系统的孔口尺寸更加符合实际环境,从而使得闪蒸系统的温度和压强分布更加合理,热量回收量提高了0.75%-1.45%。
附图说明
图1为根据本发明一个优选实施例的氧化铝溶出过程闪蒸系统的示意图;
图2为根据本发明一个优选实施例的氧化铝溶出过程闪蒸系统的未知参数辨识结果验证对比图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于明本发明,但不用来限制本发明的范围。
在实际生产中,当进料量指标发生变动时,孔口尺寸是工人根据经验设定的,具有较大的盲目性,容易使各级闪蒸器间压强分布不够合理,易使闪蒸过料不畅,蒸汽带料,造成资源浪费等问题。因此优化各级闪蒸器中的减压孔板的孔口尺寸,使压强合理分布,从而使闪蒸器内进料和出料的温度分布合理,以提高热量回收利用能力,是目前氧化铝企业亟待解决的重要问题。
图1为根据本发明一个优选实施例的氧化铝溶出过程闪蒸系统的示意图,如图1所示,本发明提供了一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法,包括:
S1、建立闪蒸系统能源回收的优化模型:制定目标函数,确定决策变量,设定约束条件;
S2、设定群体个数SE,变换因子的最大值和最小值以及迭代终止条件,初始化迭代步数iter=1,以实际生产中的一组数据初始化各优化变量,产生初始种群;
其中,变换因子包括旋转因子α、平移因子β、伸缩因子γ和轴因子δ;
S3、从初始种群中选择使目标函数J达到最小值的的一组优化变量,记为best,该种群中每个个体的适应度为fbest,按式(17)更新变换因子;
S4、将best复制成SE个个体的群体,按式(1)进行伸缩变换后得到新的种群state;
x(k+1)=x(k)+γRex(k) (1)
其中,γ为伸缩因子,Re∈Rn×n为服从高斯分布的随机对角矩阵、x(k+1)为x(k)经过变换后的新种群;
S5、经过伸缩变换后的种群state中个体的适应度最小的个体为newbest,其适应度值为gbest,如;gbest<fbest,则将个体best和newbest分别复制SE次,作为输入值分别赋值给x(k+1)和x(k),按式(2)执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;
其中,β为平移因子,Rt∈R为[0,1]之间服从均匀分布的随机数,x(k+1)为x(k)经过变换后的新种群,||·||2为向量的2范数;
S6、将best复制成SE个个体的群体,按式(3)进行旋转变换后得到新的种群state,记录state中个体的适应度最小的个体为newbest,其适应度值为gbest,如果gbest<fbest,则以个体newbest和best为输入值执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;
其中,α为旋转因子,Re∈Rn×n为[-1,1]之间服从均匀分布的随机矩阵,x(k+1)为x(k)经过变换后的新种群;
S7、将best复制成SE个个体的群体,按式(4)进行轴变换后得到新的种群state,记录state中个体的适应度最小的个体为newbest,其适应度值为gbest,如果gbest<fbest,则以个体newbest和best为输入值执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;如果gbest<fbest,则以个体newbest和best为输入值执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;
x(k+1)=x(k)+δRax(k) (4)
其中,δ为轴因子,Ra∈Rn×n为服从高斯分布的对角矩阵,且矩阵中只有一个随机位置上的元素不为零;
S8、判断是否达到迭代终止条件,是则终止迭代,输出优化变量的一组最优值,否则使iter=iter+1,从S2开始重复执行S2至S7的步骤;
其中,所述步骤S5-S8中的旋转因子α、平移因子β、伸缩因子γ和轴因子δ,采用以下方法自适应调整:
其中,αmax为α的最大值,αmin为α的最小值;βmax为β的最大值,βmin为β的最小值;γmax为γ的最大值,γmin为γ的最小值;δmax为δ的最大值δmin为δ的最小值;iter为迭代次数,itermax为最大迭代次数。
基于上述实施例,所述步骤S1中,
所述闪蒸系统能源回收的优化模型及目标函数为:
其中,J为闪蒸系统能源消耗量,i为第i级闪蒸器,N为闪蒸级数,Wi为第i级闪蒸汽产生的二次蒸汽量,r为二次蒸汽的热焓,η为热量利用率;
基于上述实施例,所述步骤S1中,所述闪蒸系统能源回收的优化模型的约束条件,包括:
以闪蒸器的孔口尺寸、气体压强和料液温度和决策变量的边界条件作为计算优化模型的约束条件;
1)孔口尺寸
dmin<di<D (7)
其中,dmin为孔口尺寸最小值,di为第i级闪蒸器的孔口尺寸,D为管道内径。
2)气体压强
由于实际生产和设备的限制,闪蒸器内压强不能过高,需满足如下条件:
pi<pi-1<......<p1 (8)
其中,pi为第i级闪蒸器内的气体压强,pi-1为第i-1级闪蒸器内的气体压强,p1为第1级闪蒸器内的气体压强。
针对闪蒸系统的生产实际,相邻的两级闪蒸器内的气体压强之间的连续性方程和粘性总流的伯努利方程为:
VaAa=VcAc=Q (9)
其中,a和c分别为某一级闪蒸器内的液态截面a-a和相邻的下一级闪蒸器内减压孔板的孔口截面,系数aa和ac分别为a和c上的实际动能与以平均流速计算的动能的比值,g为重力加速度,V为a上的平均流速,A为c上的平均流速,Za为a的液位,Zc为c的液位;
其中,ht为单位质量的粘性流体运动时的能量水头损失,ζc为与孔口尺寸相关的部件引起的局部能量损失系数,K为管道内其余部件引起的总的阻力系数。
每个减压孔板位于其对应的闪蒸器内的管道末端,当闪蒸器内气体均匀时,闪蒸器内的气体压强和其减压孔板的孔口截面的压强近似相等。
由式(9)、(10)和(11)推导得知,第i级闪蒸器和第i-1级闪蒸器内的气体压强差为:
其中,i为第i级闪蒸器,Δz为第i级闪蒸器内浆料的液位和第i-1级闪蒸器的减压板孔口截面的高度差,ρ为浆料密度,d为孔口直径,D为管道内径,CC是孔口的收缩系数,F0表示F的初始值;调整系数采用d的二阶关系式表示:
其中,Δd=d-d0,d0为d的初始值,m1和m2为待定系数;
3)浆料温度
其中,ρ为浆料密度,Q为进料体积流量,C为料液的比热容,e为热效率,Ti-1、Ti分别为第i级闪蒸器的进料和出料的温度;
4)变量的边界约束为:
dmin=0.7m (16)
基于上述实施例,由于浆料在设备和管道内的局部能量损失系数ζc为难以测量,需要对模型中的未知参数进行辨识,因此,步骤S1之前,还包括:
建立针对未知参数的辨识模型。首先定义压差模型的最小二乘误差函数:
其中,y=[Δp1,Δp2,...,ΔpN]T,yj分别为第j个样本的实测值和模型的计算值,计算公式为式(12),待辨识参数向量θ=[Fo1,…,FoN,K1,…,KN,m1,m2],n为样本总数。
其次将参数辨识问题转化为优化问题,建立针对未知参数辨识的优化模型,优化目标为:
优化变量为θ,无约束。
最后执行步骤S2至S8,得到一组优化的变量θ,即为未知参数的辨识结果。利用现场采集的数据对辨识结果进行验证,图2为根据本发明一个优选实施例的氧化铝溶出过程闪蒸系统的未知参数辨识结果验证对比图,对比结果如图2所示。压差计算误差小于±0.1%,能够应用于闪蒸系统。
将该结果带入到式(12)中,即得到完整的闪蒸系统能源回收的优化模型。
基于上述实施例,设定本氧化铝溶出过程闪蒸系统包括6级闪蒸器,每一级别闪蒸器中包括一个减压孔板,表1为根据本氧化铝溶出过程闪蒸系统孔口尺寸优化设计方法,对实际生产过程数据进行优化所得的热量回收利用量的对比结果。
表1
由表1可知,第1组热量回收利用量优化前为55218.62kJ/s,优化后为55714.27kJ/s,提高了0.89%;第2组热量回收利用量优化前为65816.28kJ/s,优化后为66772.72kJ/s,提高了1.45%;第3组热量回收利用量优化前为78597.36kJ/s,优化后为79189.87kJ/s,提高了0.75%。
本发明提供了一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法,建立了闪蒸系统稳态时孔口尺寸的流体力学模型;建立了以系统热量回收利用量最大为优化目标,以闪蒸系统孔口尺寸模型和工艺指标为约束的优化模型;采用自适应状态转移算法求解优化模型,得出各闪蒸器孔口尺寸最优值,采用实际生产数据对模型进行验证,其中,变换因子可根据设置的迭代终止条件在每一次迭代过程中自适应调节,同时针对难以测量的待辨识参数,根据最小二乘误差函数进行了辨识。本发明使氧化铝溶出过程闪蒸系统的孔口尺寸更加符合实际环境,从而使得闪蒸系统的温度和压强分布更加合理,热量回收量提高了0.75%-1.45%。
最后,本发明的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法,其特征在于,包括:
S1、建立闪蒸系统能源回收的优化模型:制定目标函数,确定决策变量,设定约束条件;
S2、设定群体个数SE,变换因子的最大值和最小值以及迭代终止条件,初始化迭代步数iter=1,以实际生产中的一组数据初始化各优化变量,产生初始种群;
其中,变换因子包括旋转因子α、平移因子β、伸缩因子γ和轴因子δ;
S3、从初始种群中选择使目标函数J达到最小值的的一组优化变量,记为best,该种群中每个个体的适应度为fbest,按式(17)更新变换因子;
S4、将best复制成SE个个体的群体,按式(1)进行伸缩变换后得到新的种群state;
x(k+1)=x(k)+γRex(k) (1)
其中,γ为伸缩因子,Re∈Rn×n为服从高斯分布的随机对角矩阵、x(k+1)为x(k)经过变换后的新种群;
S5、经过伸缩变换后的种群state中个体的适应度最小的个体为newbest,其适应度值为gbest,如;gbest<fbest,则将个体best和newbest分别复制SE次,作为输入值分别赋值给x(k+1)和x(k),按式(2)执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;
其中,β为平移因子,Rt∈R为[0,1]之间服从均匀分布的随机数,x(k+1)为x(k)经过变换后的新种群,||·||2为向量的2范数;
S6、将best复制成SE个个体的群体,按式(3)进行旋转变换后得到新的种群state,记录state中个体的适应度最小的个体为newbest,其适应度值为gbest,如果gbest<fbest,则以个体newbest和best为输入值执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;
其中,α为旋转因子,Re∈Rn×n为[-1,1]之间服从均匀分布的随机矩阵,x(k+1)为x(k)经过变换后的新种群;
S7、将best复制成SE个个体的群体,按式(4)进行轴变换后得到新的种群state,记录state中个体的适应度最小的个体为newbest,其适应度值为gbest,如果gbest<fbest,则以个体newbest和best为输入值执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;如果gbest<fbest,则以个体newbest和best为输入值执行平移变换,将得出的最优个体作为平移变换的输出值记为newbest,对应的适应度值记为gbest,否则不执行平移变换,最后更新best和fbest:best=newbest,fbest=gbest;
x(k+1)=x(k)+δRax(k) (4)
其中,δ为轴因子,Ra∈Rn×n为服从高斯分布的对角矩阵,且矩阵中只有一个随机位置上的元素不为零;
S8、判断是否达到迭代终止条件,是则终止迭代,输出优化变量的一组最优值,否则使iter=iter+1,从S2开始重复执行S2至S7的步骤;
其中,所述步骤S5-S8中的旋转因子α、平移因子β、伸缩因子γ和轴因子δ,采用以下方法自适应调整:
其中,αmax为α的最大值,αmin为α的最小值;βmax为β的最大值,βmin为β的最小值;γmax为γ的最大值,γmin为γ的最小值;δmax为δ的最大值δmin为δ的最小值;iter为迭代次数,itermax为最大迭代次数。
2.根据权利要求1所述的一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法,其特征在于,所述步骤S1中,
所述闪蒸系统能源回收的优化模型及目标函数为:
其中,J为所述闪蒸系统的能源消耗量,i为第i级闪蒸器,N为闪蒸级数,Wi为第i级闪蒸汽产生的二次蒸汽量,r为二次蒸汽的热焓,η为热量利用率;
3.根据权利要求1所述的一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法,其特征在于,所述步骤S1中,所述闪蒸系统能源回收的优化模型的约束条件,包括:
以闪蒸器的孔口尺寸、气体压强和料液温度和决策变量的边界条件作为计算优化模型的约束条件;
1)孔口尺寸
dmin<di<D (7)
其中,dmin为孔口尺寸最小值,di为第i级闪蒸器的孔口尺寸,D为管道内径;
2)气体压强
由于实际生产和设备的限制,闪蒸器内压强不能过高,需满足如下条件:
pi<pi-1<......<p1 (8)
其中,pi为第i级闪蒸器内的气体压强,pi-1为第i-1级闪蒸器内的气体压强,p1为第1级闪蒸器内的气体压强;
针对闪蒸系统的生产实际,相邻的两级闪蒸器内的气体压强之间的连续性方程和粘性总流的伯努利方程为:
VaAa=VcAc=Q (9)
其中,a和c分别为某一级闪蒸器内的液态截面a-a和相邻的下一级闪蒸器内减压孔板的孔口截面,系数aa和ac分别为a和c上的实际动能与以平均流速计算的动能的比值,g为重力加速度,V为a上的平均流速,A为c上的平均流速,Za为a的液位,Zc为c的液位;
其中,ht为单位质量的粘性流体运动时的能量水头损失,ζc为与孔口尺寸相关的部件引起的局部能量损失系数,K为管道内其余部件引起的总的阻力系数;
由式(9)、(10)和(11)推导得知,第i级闪蒸器和第i-1级闪蒸器内的气体压强差为:
其中,i为第i级闪蒸器,Δz为第i级闪蒸器内浆料的液位和第i-1级闪蒸器的减压板孔口截面的高度差,ρ为浆料密度,d为孔口直径,D为管道内径,CC是孔口的收缩系数,F0表示F的初始值;调整系数采用d的二阶关系式表示:
其中,Δd=d-d0,d0为d的初始值,m1和m2为待定系数;
3)浆料温度
其中,ρ为浆料密度,Q为进料体积流量,C为料液的比热容,e为热效率,Ti-1、Ti分别为第i级闪蒸器的进料和出料的温度;
4)变量的边界约束为:
dmin=0.7m (16)
4.根据权利要求1所述的一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法,其特征在于,所述步骤S1之前,还包括:
对闪蒸系统孔口尺寸优化模型中的未知参数进行辨识。定义压差模型的最小二乘误差函数:
其中,y=[Δp1,Δp2,...,ΔpN]T,yj分别为第j个样本的实测值和模型的计算值,计算公式为式(12),待辨识参数向量θ=[Fo1,…,FoN,K1,…,KN,m1,m2],n为样本总数。
将参数辨识问题转化为优化问题,建立针对未知参数辨识的优化模型,优化目标为:
优化变量为θ,无约束。
执行所述步骤S2至S8,得到一组优化变量θ,即为未知参数的辨识结果。将该结果带入到式(12)中,得到所述闪蒸系统能源回收的优化模型。
CN201810422150.XA 2018-05-04 2018-05-04 一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法 Active CN108647423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810422150.XA CN108647423B (zh) 2018-05-04 2018-05-04 一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810422150.XA CN108647423B (zh) 2018-05-04 2018-05-04 一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法

Publications (2)

Publication Number Publication Date
CN108647423A true CN108647423A (zh) 2018-10-12
CN108647423B CN108647423B (zh) 2020-12-08

Family

ID=63749465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810422150.XA Active CN108647423B (zh) 2018-05-04 2018-05-04 一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法

Country Status (1)

Country Link
CN (1) CN108647423B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437265A (zh) * 2018-12-25 2019-03-08 中铝视拓智能科技有限公司 高压溶出闪蒸系统效率优化方法和效率优化系统
CN110852016A (zh) * 2019-12-04 2020-02-28 中国直升机设计研究所 一种可靠性仿真试验模型修正方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271335A (zh) * 2015-11-16 2016-01-27 中南大学 一种氧化铝双流法溶出过程入口矿浆和碱液的配比优化方法
CN107741568A (zh) * 2017-11-08 2018-02-27 中南大学 一种基于状态转移优化rbf神经网络的锂电池soc估算方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271335A (zh) * 2015-11-16 2016-01-27 中南大学 一种氧化铝双流法溶出过程入口矿浆和碱液的配比优化方法
CN107741568A (zh) * 2017-11-08 2018-02-27 中南大学 一种基于状态转移优化rbf神经网络的锂电池soc估算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOJUN ZHOU 等: "Initial Version of State Transition Algorithm", 《2011 SECOND INTERNATIONAL CONFERENCE ON DIGITAL MANUFACTURING & AUTOMATION》 *
闫雨晴 等: "双流法溶出过程操作参数优化方法", 《化工学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437265A (zh) * 2018-12-25 2019-03-08 中铝视拓智能科技有限公司 高压溶出闪蒸系统效率优化方法和效率优化系统
CN109437265B (zh) * 2018-12-25 2021-03-23 中铝视拓智能科技有限公司 高压溶出闪蒸系统效率优化方法和效率优化系统
CN110852016A (zh) * 2019-12-04 2020-02-28 中国直升机设计研究所 一种可靠性仿真试验模型修正方法
CN110852016B (zh) * 2019-12-04 2022-05-20 中国直升机设计研究所 一种可靠性仿真试验模型修正方法

Also Published As

Publication number Publication date
CN108647423B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
CN103676651B (zh) 基于状态观测模型的锅炉汽温预测控制方法
CN108469744B (zh) 一种建立核电机组蒸汽发生器机理模型的方法及其系统
CN103398627B (zh) 一种多源流体余热回收与综合利用系统
CN104131983B (zh) 石化循环冷却水系统泵阀最优组合运行方案确定方法
CN103591637B (zh) 一种集中供热二次网运行调节方法
CN108647423A (zh) 一种氧化铝溶出过程闪蒸系统孔口尺寸的优化方法
CN110110416B (zh) 一种基于图论的分布式能源冷网供冷优化方法
CN105864016B (zh) 一种开式多水泵输配系统变水量运行调节方法
CN104657551B (zh) 一种基于动态像素粒度的板翅式换热器芯体结构优化方法
CN103605837A (zh) 多热源环状管网可及性分析判定方法及其改善方法
CN107023966A (zh) 一种地铁站空调冷却水出水温度设定值优化方法
CN107665280A (zh) 一种基于性能模拟的换热网络改造优化方法
CN104978442B (zh) 集成动力站及装置产用汽的蒸汽动力系统优化方法及系统
CN103761385A (zh) 一种多热源环状管网的优化设计方法
CN103822758B (zh) 换热器漏流异常工况在线诊断与选择性控制方法及装置
CN116123597A (zh) 一种庭院管网供热系统换热站循环泵自适应变频调控方法
CN107885085B (zh) 基于深度学习的复杂管道运行控制方法
Wang et al. A global optimization method for data center air conditioning water systems based on predictive optimization control
WO2022233101A1 (zh) 一种低温热系统的智能优化控制装备
CN109028574B (zh) 一种0~100%负荷调节范围的导热油炉系统
CN116484524A (zh) 一种多排翅片管换热器性能快速仿真与设计方法
CN113050450B (zh) 一种并联变频泵输配系统仿真模块编写方法
CN204644673U (zh) 印染设备热能回收循环再利用节能系统
Abdalla et al. Model behaviour of cooling plant using subtractive clustering ANFIS at university buildings
CN101196730A (zh) 可应用于空调系统之回馈仿真方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant