CN108642487A - 一种二维单层Ag SHINs膜的制备方法 - Google Patents

一种二维单层Ag SHINs膜的制备方法 Download PDF

Info

Publication number
CN108642487A
CN108642487A CN201810501588.7A CN201810501588A CN108642487A CN 108642487 A CN108642487 A CN 108642487A CN 201810501588 A CN201810501588 A CN 201810501588A CN 108642487 A CN108642487 A CN 108642487A
Authority
CN
China
Prior art keywords
shins
single layer
films
hexamethylene
dimension single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810501588.7A
Other languages
English (en)
Inventor
李剑锋
杨晶亮
金志平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Sibeike Technology LLC
Original Assignee
Xiamen Sibeike Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Sibeike Technology LLC filed Critical Xiamen Sibeike Technology LLC
Priority to CN201810501588.7A priority Critical patent/CN108642487A/zh
Publication of CN108642487A publication Critical patent/CN108642487A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

一种二维单层Ag SHINs膜的制备方法,涉及Ag SHINs膜。将制备好的Ag SHINs置于容器中,随后加入环己烷超声,再加入乙醇后静置;将在环己烷与水的界面处形成的二维单层Ag SHINs膜转移至亲水处理过的硅片或其他衬底材料上备用。以Ag SHINs纳米粒子为原料,以环己烷为油性物质与水形成油/水两相界面,再以乙醇为两种物质的共溶剂,使Ag SHINs在环己烷与水的界面处自组装形成。所采用的物质仅仅包含环己烷和乙醇。制备工艺简单、方便、快捷,安全无毒,仅仅需要简单的设备即可获得大批量大规模的二维单层Ag SHINs膜,能够应用于表面增强拉曼光谱技术、荧光增强技术等。

Description

一种二维单层Ag SHINs膜的制备方法
技术领域
本发明涉及Ag SHINs膜,尤其是涉及一种二维单层Ag SHINs膜的制备方法。
背景技术
银纳米粒子目前已被证明在诸多领域展现出其独特的光学、电磁学和生物相容性等优点,使得其被广泛的应用到生物监测、表面增强拉曼散射光谱、催化材料等诸多领域。但其在自然环境下极易发生氧化而失去原有的活性以及在常规的合成过程中其形貌和尺寸较难控制严重阻碍了它的实际应用。直到2015年本申请人采用在种子生长法制备的银纳米粒子外包覆惰性二氧化硅形成的壳层隔绝银纳米粒子(Ag SHINs),该方法不仅很好地解决了Ag纳米粒子易于氧化的问题,同时还解决了Ag纳米粒子的尺寸和形貌较难控制的问题。但对于分析领域除了解决材料自身的稳定性还远远不够。
发明内容
本发明的目的在于提供不仅能够解决材料稳定性,而且能很好解决信号可重复性和普适性问题的一种二维单层Ag SHINs膜的制备方法。
本发明包括以下步骤:
1)将制备好的Ag SHINs置于容器中,随后加入环己烷,超声,再加入乙醇后静置;
在步骤1),所述Ag SHINs︰环己烷︰乙醇的体积比可为20︰1︰1;所述容器的体积可为50ml;所述超声的时间可为30s;所述静置的时间可为1min;所述Ag SHINs是以SiO2为壳层形成壳层隔绝的Ag纳米粒子,主要是以环己烷和乙醇为两性溶剂在其界面处通过自组装形成致密的二维单层Ag SHINs膜。
2)将在环己烷与水的界面处形成的二维单层Ag SHINs膜转移至亲水处理过的硅片或其他衬底材料上备用。
本发明以Ag SHINs纳米粒子为原料,以环己烷为油性物质与水形成油/水两相界面,再以乙醇为两种物质的共溶剂,最终使Ag SHINs在环己烷与水的界面处自组装形成二维单层AgSHINs膜。本发明所采用的物质仅仅包含环己烷和乙醇。
本发明制备工艺简单、方便、快捷,安全无毒,仅仅需要简单的设备即可获得大批量大规模的二维单层Ag SHINs膜,该方法能够很好地应用于表面增强拉曼光谱技术、荧光增强技术等多种表面科学方面的研究。
本发明不仅能够解决材料稳定性,而且能很好解决信号可重复性和普适性问题。此外,该制备方法简单、方便、快捷,所用化学药品均无毒性。因此,非常适用于大批量生产使用。
附图说明
图1为实施例的二维单层Ag SHINs的扫描电镜图,插图为Ag SHINs的透射电镜图。
图2为实施例的常规方法下制备的Ag SHINs的扫描电镜图。
图3为实施例的以二维单层Ag SHINs为基底对相同浓度的三聚氰胺分子进行检测的不同批次样品以及不同位置处采集的表面增强拉曼散射光谱图。在图3中,(a)为不同批次样品,(b)为不同位置处。
图4为实施例的以常规方法下制备的以Ag SHINs为基底对相同浓度的三聚氰胺分子进行检测的不同批次样品以及不同位置处采集的表面增强拉曼散射光谱图。在图4中,(a)为不同批次样品,(b)为不同位置处。
图5为实施例的以常规方法和二维单层Ag SHINs膜为基底对相同浓度下的三聚氰胺分子进行检测的对比表面增强拉曼散射光谱图。在图5中,曲线a为单层壳层隔绝银纳米粒子膜,曲线b为滴加的银纳米粒子。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
1)取20mlAg SHINs加入到50ml容器中;
2)加入1ml环己烷,超声30s后静置1min,;
3)加入1ml乙醇后静置1min,将处在环己烷和水界面处的二维单层Ag SHINs膜转移至亲水处理过的硅基底上。得到的二维单层Ag SHINs如图1所示,插图为Ag SHINs在透射电镜(TEM)下的微观结构图。以常规方法制备的Ag SHINs的扫描电镜(SEM)形貌图如图2所示,以二维单层Ag SHINs以及以常规方法制备的基底对表面的三聚氰胺增强拉曼散射光谱信号在不同批次和不同位点的稳定性对比图如图3和4所示。由图1和图2对比可以看出,本发明比常规滴加方法制备的Ag SHINs更加均匀致密,其插图TEM显示惰性二氧化硅很好的包覆在银纳米粒子表面;从图3和4可以看出二维单层Ag SHINs对相同浓度的三聚氰胺分子的增强信号强度基本一致,而常规的滴加方法对三聚氰胺分子的增强信号强度变化过大难以获得较为可靠的信号。此外,与常规方法制备相比二维单层Ag SHINs对相同浓度的三聚氰胺分子的检测具有更高的检测灵敏度(图5),这很好证明了本发明与其他常规方法相比具有独特的优势。
本发明由Ag SHINs在两性溶液界面处直接自组装而成,随后将其转移至不同衬底材料上,可以直接应用于食品安全、环境污染物、有毒化学品的定量以及定性检测。相比较目前常用的Ag纳米粒子以及Au纳米粒子进行定性或定量检测,该二维单层Ag SHINs膜不仅具有更高的检测灵敏度,同时还具有更好的检测稳定性和普适性。本发明制备的二维单层AgSHINs膜方法简单,稳定性强,检测灵敏度高,适用于大批量生产。

Claims (6)

1.一种二维单层Ag SHINs膜的制备方法,其特征在于包括以下步骤:
1)将制备好的Ag SHINs置于容器中,随后加入环己烷,超声,再加入乙醇后静置;
2)将在环己烷与水的界面处形成的二维单层Ag SHINs膜转移至亲水处理过的硅片或其他衬底材料上备用。
2.如权利要求1所述一种二维单层Ag SHINs膜的制备方法,其特征在于在步骤1),所述Ag SHINs︰环己烷︰乙醇的体积比为20︰1︰1。
3.如权利要求1所述一种二维单层Ag SHINs膜的制备方法,其特征在于在步骤1),所述容器的体积为50ml。
4.如权利要求1所述一种二维单层Ag SHINs膜的制备方法,其特征在于在步骤1),所述超声的时间为30s。
5.如权利要求1所述一种二维单层Ag SHINs膜的制备方法,其特征在于在步骤1),所述静置的时间为1min。
6.如权利要求1所述一种二维单层Ag SHINs膜的制备方法,其特征在于在步骤1),所述Ag SHINs是以SiO2为壳层形成壳层隔绝的Ag纳米粒子,是以环己烷和乙醇为两性溶剂在其界面处通过自组装形成致密的二维单层Ag SHINs膜。
CN201810501588.7A 2018-05-23 2018-05-23 一种二维单层Ag SHINs膜的制备方法 Pending CN108642487A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810501588.7A CN108642487A (zh) 2018-05-23 2018-05-23 一种二维单层Ag SHINs膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810501588.7A CN108642487A (zh) 2018-05-23 2018-05-23 一种二维单层Ag SHINs膜的制备方法

Publications (1)

Publication Number Publication Date
CN108642487A true CN108642487A (zh) 2018-10-12

Family

ID=63757716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810501588.7A Pending CN108642487A (zh) 2018-05-23 2018-05-23 一种二维单层Ag SHINs膜的制备方法

Country Status (1)

Country Link
CN (1) CN108642487A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069930A (zh) * 2007-06-15 2007-11-14 北京化工大学 一种银/二氧化硅核壳结构纳米颗粒制备方法
CN101380625A (zh) * 2008-10-15 2009-03-11 湖南大学 大面积纳米微粒单层膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069930A (zh) * 2007-06-15 2007-11-14 北京化工大学 一种银/二氧化硅核壳结构纳米颗粒制备方法
CN101380625A (zh) * 2008-10-15 2009-03-11 湖南大学 大面积纳米微粒单层膜的制备方法

Similar Documents

Publication Publication Date Title
Asfaram et al. Rapid removal of Auramine-O and Methylene blue by ZnS: Cu nanoparticles loaded on activated carbon: a response surface methodology approach
Guo et al. Preparation and application of microfluidic SERS substrate: Challenges and future perspectives
Fang et al. Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy
Li et al. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants
Betz et al. Simple SERS substrates: powerful, portable, and full of potential
WO2016150125A1 (zh) 一种内含内标分子的核壳结构纳米粒子及表面增强拉曼定量检测方法
Lin et al. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core–shell nanospheres for reliable quantitative SERS measurements
CN106290296B (zh) 一种基于金属点阵的sers基底及其制备方法和利用该基底进行拉曼检测的方法
CN106885797B (zh) 一种基于高活性位点的定向表面增强拉曼光谱检测方法
Chen et al. Fabrication of long-range ordered, broccoli-like SERS arrays and application in detecting endocrine disrupting chemicals
Wallace et al. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates
Martins et al. Inkjet printing of Ag and polystyrene nanoparticle emulsions for the one-step fabrication of hydrophobic paper-based surface-enhanced Raman scattering substrates
Hao et al. Flexible surface-enhanced Raman scattering chip: A universal platform for real-time interfacial molecular analysis with femtomolar sensitivity
Zheng et al. Gel-assisted synthesis of oleate-modified Fe 3 O 4@ Ag composite microspheres as magnetic SERS probe for thiram detection
Vélez‐Escamilla et al. Latest advances and developments to detection of micro‐and nanoplastics using surface‐enhanced Raman spectroscopy
Zhang et al. 3D flexible SERS substrates integrated with a portable raman analyzer and wireless communication for point-of-care application
Wu et al. Detection of thiram on fruit surfaces and in juices with minimum sample pretreatment via a bendable and reusable substrate for surface‐enhanced Raman scattering
Zhang et al. Production of stable and sensitive SERS substrate based on commercialized porous material of silanized support
Vogel Surface patterning with colloidal monolayers
WO2020186834A1 (zh) 一种用于检测合成色素的sers基底及拉曼检测方法
Wu et al. A simple SERS-based trace sensing platform enabled by AuNPs-analyte/AuNPs double-decker structure on wax-coated hydrophobic surface
Lu et al. Multiplexed surface-enhanced Raman scattering detection of melamine and dicyandiamide in dairy food enabled by three-dimensional polystyrene@ silver@ graphene oxide hybrid substrate
CN106929915A (zh) 一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法
CN108642487A (zh) 一种二维单层Ag SHINs膜的制备方法
Geng et al. A route to apply Ag nanoparticle array integrated with microfluidic for surface enhanced Raman scattering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181012