CN108640276A - 一种基于west模型的污水处理厂aao工艺优化运行方法 - Google Patents

一种基于west模型的污水处理厂aao工艺优化运行方法 Download PDF

Info

Publication number
CN108640276A
CN108640276A CN201810344059.0A CN201810344059A CN108640276A CN 108640276 A CN108640276 A CN 108640276A CN 201810344059 A CN201810344059 A CN 201810344059A CN 108640276 A CN108640276 A CN 108640276A
Authority
CN
China
Prior art keywords
sewage treatment
treatment plant
west
models
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810344059.0A
Other languages
English (en)
Inventor
朱光灿
覃榴滨
陆勇泽
杨忠莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810344059.0A priority Critical patent/CN108640276A/zh
Publication of CN108640276A publication Critical patent/CN108640276A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Abstract

本发明属于污水处理工艺优化技术领域,特别涉及一种基于WEST模型的污水处理厂AAO工艺优化运行方法,包括以下步骤:1)调研获取污水处理厂各类参数;2)运用WEST模型开展污水处理厂工艺过程和构造仿真;3)基于建立的WEST污水处理厂工艺仿真模型,进行控制策略模拟,模拟优化运行,获取优化运行参数;4)将优化运行方案应用于污水处理厂,优化污水处理工艺运行;5)优化运行阶段,监测污水处理系统进出水水质,调整运行参数,实现污水处理的节能降耗;本发明为乡镇污水处理厂工艺优化运行提供技术指导,大量减少试验研究的工作量,降低了污水处理能耗。

Description

一种基于WEST模型的污水处理厂AAO工艺优化运行方法
技术领域
本发明属于污水处理工艺优化技术领域,特别涉及一种基于WEST模型的污水处理厂AAO工艺优化运行方法。
背景技术
近年,污水处理的基础理论和处理工艺日益成熟,而污水处理过程优化控制技术依然落后。当前我国污水处理厂的控制水平较低,大多使用简单的手动控制,几乎没有优化控制方法的应用。另一方面,我国污水处理厂的管理水平较低,在一定程度上影响了污水处理系统的运行效率,增加了不必要的能源和人力资源的浪费,从而增加了污水处理成本。
WEST软件是基于活性污泥数学模型建立的一个功能强大的污水处理厂模拟系统,它可以对污水处理厂的各种工艺过程和构造进行建模与模拟。WEST软件可辅助污水处理厂过程设计、协助污水处理厂运营管理、支持污水处理厂过程优化、实现污水处理厂过程自动化,其不但在问题解决、预案检测等方面性能卓越,同时也是基层操作者、工程咨询及技术人员不可或缺的决策支持工具。利用WEST软件模拟污水厂优化运行,得出污水厂优化运行参数,为污水厂优化运行提供技术参考,同时将大量减少试验研究的工作量。
国内外对于污水处理的优化运行的研究多数在于小试试验的研究,对优化运行的仅限于理论研究,针对污水处理实际运行的优化应用方法鲜有报道,并且利用仿真模型针对乡镇污水处理厂AAO工艺进行模拟优化运行的方法,鲜有报道。
中国专利CN200910264136.2记载了一种AAO工艺曝气量的优化设计方法,根据经验设计方法,对AAO工艺模型中的主要参数进行了设计,克服单纯数学模型设计结果易偏于理论化的缺陷,能够有效节约曝气能耗12%以上,降低系统运行成本;但该方法仅针对AAO工艺中曝气池曝气量的优化设计,需要引入经验公式才能实现;而AAO工艺主要的运行参数包括曝气池曝气量、内回流量、污泥回流量,无法实现AAO工艺的全面优化运行。
中国专利CN 200910034948.8记载了一种AAO工艺反应池的优化设计方法,综合了经验设计方法和数学模拟仿真技术的优点,设计出的反应池既能满足国家标准对污染物的去除要求,同时能够大大节约反应池的体积,降低基建投资;但对于已建成的反应池,该方法提供的优化设计方法需要对AAO工艺反应池体积进行改建,改建需要消耗巨大的投资,同时也影响了污水处理厂正常运行。对于已建、将建的AAO工艺反应池,本发明所提供的AAO工艺优化运行方法为在不需要改建反应池体积基础上,优化AAO工艺曝气量、内回流量、污泥回流量参数的运行方式,能够快速地优化AAO工艺运行,不影响污水厂正常运行。
发明内容
本发明解决现有技术中存在的上述技术问题,提供一种基于WEST模型的污水处理厂AAO工艺优化运行方法。
为解决上述问题,本发明的技术方案如下:
一种基于WEST模型的污水处理厂AAO工艺优化运行方法,包括以下步骤:
步骤1,获取污水处理厂工艺结构、各处理单元尺寸、污水处理量、进出水水质、进水组分浓度参数、工艺运行能耗数据、各工艺段运行参数;
步骤2,将步骤1获取的数据、参数输入WEST模型仿真构造污水处理厂工艺运行过程,利用WEST模型开展敏感性参数试验确定主要的化学计量学参数、动力学参数,在敏感性参数原参数值的基础上,根据增加或减少参数值对模拟结果正负相关性,在原参数值的基础上每一次调整固定百分数,使模型模拟的污水处理过程与污水处理厂实际运行过程相吻合,建立WEST污水处理厂工艺仿真模型;
步骤3,基于步骤2建立的WEST污水处理厂工艺仿真模型,进行控制策略模拟,分别模拟调整曝气池DO浓度、内回流比、外回流比三个工艺运行参数的出水水质,输出模拟水质结果;
步骤4,根据步骤3获得的模拟水质结果,在出水水质满足排放要求的条件下,选择内回流量、污泥回流量少的运行参数以及曝气池低DO浓度控制策略,应用于污水处理厂实际工艺优化运行中。
优选地,在步骤4污水处理厂实际工艺优化运行过程中,监测污水处理系统中内回流量、污泥回流量、曝气池DO浓度及污水处理系统出水水质,根据出水水质分别调整内回流量、污泥回流量、曝气池DO浓度,实现污水处理的节能降耗。
优选地,步骤1所述的工艺结构包括污水处理厂工艺流程、工艺中各处理单元。
优选地,所述步骤2选定的模型机理为具有除碳、脱氮功能的ASM1或ASM3模型,或选择具有除碳、脱氮和除磷功能的ASM2或ASM2D模型,或选择具有温度模拟的模型ASM?Tem模型。
优选地,步骤2所述固定百分数为10%。
优选地,步骤1所述的进出水水质包括化学需氧量(Chemical Oxygen Demand,COD)、氨氮、总氮(Total Nitrogen,TN)、总磷(Total Phosphorus,TP)、混合液悬浮固体浓度(Mixed Liquid Suspended Solids,MLSS)、混合液挥发性悬浮固体浓度(Mixed LiquorVolatile Suspended Solids,MLVSS)。
优选地,步骤1所述的工艺运行能耗包括电耗、药剂消耗量。
优选地,步骤1所述的各工艺段运行参数包括水力停留时间(HydraulicRetention Time,HRT),污泥停留时间(Hydraulic Retention Time,SRT),溶解氧(Dissolved Oxygen,DO)、pH值、内回流比、外回流比;更优选地,所述内回流比为AAO反应池出水回流至缺氧池的混合液回流量与进水量之比;所述外回流比为二沉池剩余污泥回流量与进水量之比。
优选地,步骤2所述的进水组分浓度参数包括:f_S_PO(总磷与磷酸盐的比值)、F_TSS_COD{TSS(总悬浮物浓度,Total Suspended Solids)对COD的转换因子)}、f_S_A(溶解性COD与S_A的比值)、f_S_F(溶解性COD与S_F的比值)、f_S_NH(总氮与氨氮的比值)、f_X_H(颗粒态COD与X_H的比值)、f_X_S(颗粒态COD与X_S的比值)。
其中,S_A为发酵产物(乙酸)的浓度{(g(COD)/m3)},S_F为易生物降解基质的浓度{g(COD)/m3},X_H为异养菌生物量{g(COD)/m3},X_S为慢速可生物降解基质的浓度{(g(COD)/m3)}。
优选地,步骤2所述的化学计量系数及动力学参数包括:自养菌的最大生长率,(1/d),溶菌和衰减的速率常数(1/d),基于基质的最大生长速率(1/d),异养菌衰减系数(1/d),氨氮的自养菌饱和系数(mg/L),基于易生物降解基质的生长饱和/抑制系数(mg/L)。
优选地,所述步骤2仿真构造模拟过程中模拟的出水各项水质指标(COD、氨氮、TN、TP)浓度均值与实测值均值相对误差小于10%,即认为模型模拟的污水处理过程与污水处理厂实际运行过程相吻合。
优选地,步骤4所述的的出水水质排放要求参照《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级A标准。
相对于现有技术,本发明的优点如下,
(1)针对已建成的污水厂AAO工艺优化运行,本发明提供的优化运行方法不需要对反应池进行改建,优化运行过程中不影响污水厂正常运行。
(2)本发明能够为AAO工艺提供较全面的运行参数的优化控制方法,不需要额外引入经验公式,并能够快速、准确预测污水处理厂调整运行参数后运行状态、出水水质,为污水厂运行管理者提供优化运行参考方案,减少试验研究的工作量。
(3)利用WEST模型模拟乡镇污水处理厂AAO工艺优化运行,为污水处理厂工作决策者提供污水处理节能降耗运行控制方式。
附图说明
图1为WEST仿真模拟软件污水处理厂工艺仿真模拟步骤图
图2为基于WEST模型的乡镇污水处理厂AAO工艺优化运行方法的实施流程图
图3为出水COD模拟值与实测值曲线图
图4为出水氨氮模拟值与实测值曲线图
图5为出水TP模拟值与实测值曲线图
图6为模拟改变DO浓度对出水COD的影响图
图7为模拟改变DO浓度对出水氨氮的影响图
图8为模拟改变DO浓度对出水TP的影响图
图9为模拟改变内回流比对出水COD的影响图
图10为模拟改变内回流比对出水氨氮的影响图
图11为模拟改变内回流比对出水TP的影响图
图12为模拟改变外回流比对出水COD的影响图
图13为模拟改变外回流比对出水氨氮的影响图
图14为模拟改变外回流比对出水TP的影响图
具体实施方式
实施例1:
图1为本发明中WEST仿真模拟软件污水处理厂工艺仿真模拟步骤图,图2为本发明一种基于WEST模型的乡镇污水处理厂AAO工艺优化运行方法的实施流程图。本实例进行太湖流域某乡镇污水处理厂AAO工艺优化运行方案研究,模拟调整内回流比、外回流比、曝气池DO浓度对出水COD、氨氮、TP的影响。
(一)调研获取模型建立的基础数据
太湖流域某乡镇污水处理厂处理规模、进水水质、进水组分浓度参数、污水处理厂工艺结构、各处理单元尺寸、各工艺段运行参数如下:
(1)处理规模、进水水质浓度如下:
表1处理规模、进水水质浓度
(2)获取的工艺运行参数如下:
表2 AAO工艺运行参数
(3)获取的进水组分浓度参数如下:
表3进水组分浓度参数
(二)利用WEST模型仿真构造污水处理厂工艺运行过程
本实例选用ASM2d模型机理,选定进水单元、厌氧池、缺氧池、好氧池、二沉池、出水单元、排泥单元为污水厂处理单元,选定多功能传感器、定比控制器、分流器为模型中各组件,构建污水处理厂仿真工艺运行:
通过输入污水处理厂工艺结构、各处理单元尺寸、污水处理量、进出水水质、工艺运行能耗数据、各工艺段运行参数,得出初步模拟结果,对模拟结果进行分析;根据测定获取主要的进水组分浓度参数,利用模型开展敏感性参数获取了对模拟结果影响较大的化学计量学参数、动力学参数(敏感性参数),在敏感性参数原参数值的基础上,根据增加或减少参数值对模拟结果正负相关性,在原参数值的基础上每一次调整10%,直至确定模型可靠性,使模型模拟的污水处理过程与污水处理厂实际运行过程相吻合,实现合理模拟;建立WEST污水处理厂工艺仿真模型;
表4主要的动力学参数、化学计量学参数调整前后数值
调整参数后,模拟乡镇污水处理厂AAO工艺运行结果如图3-5。
经过参数调整后,出水COD、氨氮、TP模拟值与实测值相对误差分别为3.7%、6.63%、1.6%,模拟值与实测值较符合,模拟结果表明WEST软件能较好模拟该污水处理厂运行。
(三)进行AAO工艺优化控制策略模拟
基于WEST污水处理厂工艺仿真模型,进行控制策略模拟,分别模拟调整曝气池DO浓度、内回流比、外回流比三个工艺运行参数的出水水质,输出模拟水质结果;
具体步骤包括:
(1)模拟调整曝气池不同的DO浓度对应的出水水质,输出模拟结果,进行结果分析,模拟结果如图6-8。
分析:当模拟DO浓度由DO=5mg/L降低至DO=1mg/L过程中,出水氨氮模拟值随着DO浓度降低而升高,在DO=1~2mg/L时,出水氨氮模拟浓度比实测值高,此时模拟的最高浓度低于3mg/L。模拟结果表明,当DO浓度降低至1~2mg/L时,出水氨氮值仍然满足《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级A标准(以下简称一级A排放)要求,因此优化运行中可通过降低曝气量以降低好氧池中DO浓度,在出水各指标浓度满足一级A排放要求的同时也可降低污水处理能耗。
(2)模拟调整不同的内回流比对应的出水水质:在模型内通过设置内回流量定比控制器,模拟在不同的内回流比情况下的出水水质,分析出水水质达标情况,模拟结果如图9-11。
分析:当模拟改变内回流比时,出水COD、氨氮、TP浓度均未发生大幅度变化,模拟内回流比为0.5、1.5、2时,出水COD、氨氮、TP浓度均与实际内回流比(R=1)时模拟值相近,出水各指标浓度均满足达标排放要求,模拟结果表明降低内回流比对出水效果未造成影响。因此,在实际优化运行中,可通过降低内回流比以降低污水处理能耗。
(4)模拟调整不同的外回流比对应的出水水质:在模型内通过设置污泥回流量定比控制器,模拟在不同的污泥回流比情况下的出水水质,分析出水水质达标情况。模拟结果如图12-14。
分析:改变外回流比对TP出水效果影响较大,当外回流比由R=2降低为R=0.25时,出水TP模拟值随着外回流比降低而降低,原因为剩余污泥量排放量增加,TP去除量增加。因此,在优化运行中,可通过降低外回流比,增加剩余污泥排泥量,降低出水TP浓度的同时也可降低污水处理能耗。
(四)确定AAO工艺优化运行参数
基于步骤(三)控制策略模拟,在出水水质满足排放要求的条件下,分别优选内回流量、污泥回流量少的运行参数以及曝气池低DO浓度控制策略,应用于污水处理厂实际工艺优化运行中。
本实例提出的优化运行方案:在该乡镇污水处理厂的优化运行中,可通过降低内回流比、外回流比及减少好氧池曝气量降低污水处理能耗,而不影响污水厂出水达标排放,实际运行过程中将大大降低污水处理能耗。
(五)污水处理厂工艺优化运行结果跟踪监测分析
优化运行阶段,监测污水处理系统中内回流量、污泥回流量、曝气池DO浓度及污水处理系统出水水质,根据出水水质分别合理调整内回流量、污泥回流量、曝气池DO浓度,实现污水处理的节能降耗。
通过优化运行,该污水处理厂处理吨水电耗较优化运行前减少了26.74%,优化运行6个月内总节省耗电量2.6491万kW·h;COD、TP削减量分别增加14.52%、14.28%。
需要说明的是上述实施例仅仅是本发明的较佳实施例,并没有用来限定本发明的保护范围,在上述基础上做出的等同替换或者替代均属于本发明的保护范围。

Claims (10)

1.一种基于WEST模型的污水处理厂AAO工艺优化运行方法,其特征在于,包括以下步骤:
步骤1,获取污水处理厂工艺结构、各处理单元尺寸、污水处理量、进出水水质、进水组分浓度参数、工艺运行能耗数据、各工艺段运行参数;
步骤2,将步骤1获取的数据、参数输入WEST模型仿真构造污水处理厂工艺运行过程,利用WEST模型开展敏感性参数试验确定主要的化学计量学参数、动力学参数,在敏感性参数原参数值的基础上,根据增加或减少参数值对模拟结果正负相关性,在原参数值的基础上每一次调整固定百分数,使模型模拟的污水处理过程与污水处理厂实际运行过程相吻合,建立WEST污水处理厂工艺仿真模型;
步骤3,基于步骤2建立的WEST污水处理厂工艺仿真模型,进行控制策略模拟,分别模拟调整曝气池DO浓度、内回流比、外回流比三个工艺运行参数的出水水质,输出模拟水质结果;
步骤4,根据步骤3获得的模拟水质结果,在出水水质满足排放要求的条件下,选择内回流量、污泥回流量少的运行参数以及曝气池低DO浓度控制策略,应用于污水处理厂实际工艺优化运行中。
2.如权利要求1所述的基于WEST模型的污水处理厂AAO工艺优化运行方法,其特征在于,在步骤4污水处理厂实际工艺优化运行过程中,对污水处理系统中内回流量、污泥回流量、曝气池DO浓度及污水处理系统出水水质进行监测。
3.如权利要求1所述的基于WEST模型的污水处理厂AAO工艺优化运行方法,其特征在于,步骤1所述的工艺结构包括污水处理厂工艺流程、工艺中各处理单元。
4.如权利要求1所述的基于WEST模型的污水处理厂AAO工艺优化运行方法,其特征在于,步骤1所述的进出水水质包括化学需氧量、氨氮、总氮、总磷、混合液悬浮固体浓度、混合液挥发性悬浮固体浓度。
5.如权利要求1所述的基于WEST模型的污水处理厂AAO工艺优化运行方法,其特征在于,步骤1所述的工艺运行能耗包括电耗、药剂消耗量。
6.如权利要求1所述的基于WEST模型的污水处理厂AAO工艺优化运行方法,其特征在于,步骤1所述的各工艺段运行参数包括水力停留时间,污泥停留时间,溶解氧、pH值、内回流比、外回流比。
7.如权利要求1所述的基于WEST模型的污水处理厂AAO工艺优化运行方法,其特征在于,步骤2所述的进水组分浓度参数包括:总磷与磷酸盐的比值、总悬浮物浓度对COD的转换因子、溶解性COD与S_A的比值、溶解性COD与S_F的比值、总氮与氨氮的比值、颗粒态COD与X_H的比值、颗粒态COD与X_S的比值;
其中,S_A为发酵产物的浓度,S_F为易生物降解基质的浓度,X_H为异养菌生物量,X_S为慢速可生物降解基质的浓度。
8.如权利要求1所述的基于WEST模型的污水处理厂AAO工艺优化运行方法,其特征在于,所述步骤2选定的模型机理为具有除碳、脱氮功能的ASM1或ASM3模型,或选择具有除碳、脱氮和除磷功能的ASM2或ASM2D模型,或选择具有温度模拟的模型ASM?Tem模型。
9.如权利要求1所述的基于WEST模型的污水处理厂AAO工艺优化运行方法,其特征在于,步骤2所述的化学计量系数及动力学参数包括自养菌的最大生长率,溶菌和衰减的速率常数,基于基质的最大生长速率,异养菌衰减系数,氨氮的自养菌饱和系数,基于易生物降解基质的生长饱和/抑制系数。
10.如权利要求1所述的基于WEST模型的污水处理厂AAO工艺优化运行方法,其特征在于,所述步骤2仿真构造模拟过程中模拟的出水各项水质指标浓度均值与实测值均值相对误差小于10%时,即认为模型模拟的污水处理过程与污水处理厂实际运行过程相吻合。
CN201810344059.0A 2018-04-17 2018-04-17 一种基于west模型的污水处理厂aao工艺优化运行方法 Pending CN108640276A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810344059.0A CN108640276A (zh) 2018-04-17 2018-04-17 一种基于west模型的污水处理厂aao工艺优化运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810344059.0A CN108640276A (zh) 2018-04-17 2018-04-17 一种基于west模型的污水处理厂aao工艺优化运行方法

Publications (1)

Publication Number Publication Date
CN108640276A true CN108640276A (zh) 2018-10-12

Family

ID=63746312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810344059.0A Pending CN108640276A (zh) 2018-04-17 2018-04-17 一种基于west模型的污水处理厂aao工艺优化运行方法

Country Status (1)

Country Link
CN (1) CN108640276A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109933027A (zh) * 2019-02-28 2019-06-25 重庆工商大学 基于厂群水质监控和模型化管理的污水管理平台
CN110451661A (zh) * 2019-09-12 2019-11-15 南京大学 一种污水中微生物类溶解性有机氮的预测模型及其应用
CN111125936A (zh) * 2020-01-09 2020-05-08 广州市市政工程设计研究总院有限公司 污水设计水质与模型水质的转换方法、系统及存储介质
CN111180015A (zh) * 2019-12-31 2020-05-19 上海坤工环境科技有限公司 基于三维一体化模型污水处理厂虚拟现实的管理控制方法
CN111533290A (zh) * 2020-04-30 2020-08-14 重庆市水务资产经营有限公司 污水处理工艺优化运行预案库生成与复杂场景的应用方法
CN112723649A (zh) * 2020-11-19 2021-04-30 江苏农林职业技术学院 一种污水处理厂虚拟调试操作方法
CN113033917A (zh) * 2021-04-19 2021-06-25 重庆工商大学 一种基于外围数据的污水处理厂预测规划运行管理方法
CN113391554A (zh) * 2021-06-16 2021-09-14 周节 一种基于人工智能的电镀方法
CN113666486A (zh) * 2021-07-19 2021-11-19 北京工业大学 一种基于多模式优化的污水处理sbr工艺过程控制专家系统
JP7292559B1 (ja) * 2022-12-06 2023-06-16 三菱電機株式会社 水処理場運転支援システムおよび水処理場運転支援方法
CN116553790A (zh) * 2023-07-04 2023-08-08 河南裕隆水环境股份有限公司 一种用于污水处理工艺的测试系统
CN116718742A (zh) * 2023-05-06 2023-09-08 四川文韬工程技术有限公司 一种未建污水厂地区的水质组分分析方法
CN116718742B (zh) * 2023-05-06 2024-05-24 四川文韬工程技术有限公司 一种未建污水厂地区的水质组分分析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012188A1 (en) * 2003-07-31 2005-02-10 Aqua-10 Laboratories Seaweed-based product for treating liquid waste, together with method for making and using the seaweed-based product
CN101746929A (zh) * 2009-12-30 2010-06-23 中环(中国)工程有限公司 一种aao工艺曝气量的优化设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012188A1 (en) * 2003-07-31 2005-02-10 Aqua-10 Laboratories Seaweed-based product for treating liquid waste, together with method for making and using the seaweed-based product
CN101746929A (zh) * 2009-12-30 2010-06-23 中环(中国)工程有限公司 一种aao工艺曝气量的优化设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钟德江: "洛龙河污水厂雨季优化运行的模拟研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109933027A (zh) * 2019-02-28 2019-06-25 重庆工商大学 基于厂群水质监控和模型化管理的污水管理平台
CN110451661A (zh) * 2019-09-12 2019-11-15 南京大学 一种污水中微生物类溶解性有机氮的预测模型及其应用
CN110451661B (zh) * 2019-09-12 2021-07-30 南京大学 一种污水中微生物类溶解性有机氮的预测模型及其应用
CN111180015A (zh) * 2019-12-31 2020-05-19 上海坤工环境科技有限公司 基于三维一体化模型污水处理厂虚拟现实的管理控制方法
CN111125936A (zh) * 2020-01-09 2020-05-08 广州市市政工程设计研究总院有限公司 污水设计水质与模型水质的转换方法、系统及存储介质
CN111125936B (zh) * 2020-01-09 2024-01-30 广州市市政工程设计研究总院有限公司 污水设计水质与模型水质的转换方法、系统及存储介质
CN111533290A (zh) * 2020-04-30 2020-08-14 重庆市水务资产经营有限公司 污水处理工艺优化运行预案库生成与复杂场景的应用方法
CN112723649A (zh) * 2020-11-19 2021-04-30 江苏农林职业技术学院 一种污水处理厂虚拟调试操作方法
CN113033917B (zh) * 2021-04-19 2022-04-12 重庆工商大学 一种基于外围数据的污水处理厂预测规划运行管理方法
CN113033917A (zh) * 2021-04-19 2021-06-25 重庆工商大学 一种基于外围数据的污水处理厂预测规划运行管理方法
CN113391554A (zh) * 2021-06-16 2021-09-14 周节 一种基于人工智能的电镀方法
CN113666486A (zh) * 2021-07-19 2021-11-19 北京工业大学 一种基于多模式优化的污水处理sbr工艺过程控制专家系统
JP7292559B1 (ja) * 2022-12-06 2023-06-16 三菱電機株式会社 水処理場運転支援システムおよび水処理場運転支援方法
CN116718742A (zh) * 2023-05-06 2023-09-08 四川文韬工程技术有限公司 一种未建污水厂地区的水质组分分析方法
CN116718742B (zh) * 2023-05-06 2024-05-24 四川文韬工程技术有限公司 一种未建污水厂地区的水质组分分析方法
CN116553790A (zh) * 2023-07-04 2023-08-08 河南裕隆水环境股份有限公司 一种用于污水处理工艺的测试系统
CN116553790B (zh) * 2023-07-04 2023-10-10 河南裕隆水环境股份有限公司 一种用于污水处理工艺的测试系统

Similar Documents

Publication Publication Date Title
CN108640276A (zh) 一种基于west模型的污水处理厂aao工艺优化运行方法
AU2021101438A4 (en) Adaptive control method and system for aeration process
Vanrolleghem et al. Integration of wastewater treatment plant design and operation—a systematic approach using cost functions
Jeppsson et al. Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs
CN106495321B (zh) 生物池工艺优化及运行控制系统及其控制方法
Zhu et al. Performance and optimization of biological nitrogen removal process enhanced by anoxic/oxic step feeding
CN113104961B (zh) 一种基于活性污泥处理污水工艺中实时曝气精确控制方法
CN111762958A (zh) 基于asm2d模型的污水处理厂深井曝气工艺优化方法及装置
CN113428976A (zh) 一种biocos生物池工艺智能控制方法
Chen et al. Optimal strategies evaluated by multi-objective optimization method for improving the performance of a novel cycle operating activated sludge process
Seco et al. Plant-wide modelling in wastewater treatment: showcasing experiences using the Biological Nutrient Removal Model
CN101693573B (zh) 一种aao工艺反应池的优化设计方法
Zhu et al. Evaluation of the control strategy for aeration energy reduction in a nutrient removing wastewater treatment plant based on the coupling of ASM1 to an aeration model
CN101928064B (zh) 造纸废水活性污泥法处理的仿真方法
CN105906032A (zh) 污水处理厂拟人化经验管理控制系统及方法
Plaza et al. Impact of seeding with nitrifying bacteria on nitrification process efficiency
CN101201592A (zh) 废水处理过程控制仿真方法及其仿真系统
CN109019892A (zh) 一种基于数据同化在线优化曝气量的调控方法
CN115421525A (zh) 曝气量智能控制方法、装置、控制器和存储介质
Flores-Alsina et al. Evaluation of plant-wide WWTP control strategies including the effects of filamentous bulking sludge
Nolasco et al. The use of mathematical modeling and pilot plant testing to develop a new biological phosphorus and nitrogen removal process
CN104111666A (zh) 优化的cast生活污水污泥减量化控制系统及工作方法
Cierkens et al. Integrated model-based optimisation at the WWTP of Eindhoven
Fotso Development of a Dynamic Simulation Model for Equalization Tanks
CN115259360B (zh) 一种农村户用sbr污水处理装备的多模式控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181012