CN108630746A - 一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管 - Google Patents

一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管 Download PDF

Info

Publication number
CN108630746A
CN108630746A CN201810384089.4A CN201810384089A CN108630746A CN 108630746 A CN108630746 A CN 108630746A CN 201810384089 A CN201810384089 A CN 201810384089A CN 108630746 A CN108630746 A CN 108630746A
Authority
CN
China
Prior art keywords
nearly
grid
type
source level
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810384089.4A
Other languages
English (en)
Inventor
王伟
李伟阳
沈志豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201810384089.4A priority Critical patent/CN108630746A/zh
Publication of CN108630746A publication Critical patent/CN108630746A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • H01L29/7392Gated diode structures with PN junction gate, e.g. field controlled thyristors (FCTh), static induction thyristors (SITh)

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管,沟道分为多个部分,包括梯度掺杂区域。本发明采用量子力学模型,运用非平衡格林函数林函数和泊松(Poisson)方程的自洽求解法,构建了新型多层次梯度掺杂异质金属栅结构隧穿型场效应管的输运模型,利用该模型比较分析梯度掺杂,异质栅结构,隧穿型场效应管的电学特性,主要从亚阈值摆幅、关态电流、开关电流比、迟滞时间,以及电压增益截止频率等方面进行研究。经过仿真研究得知该结构具有较低的泄漏电流与亚阈值摆幅,较大的开关电流比;沟道中的梯度掺杂区域可以减弱沟道中的电场,降低了栅电容,提高了截止频率。

Description

一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管
技术领域
本发明属于石墨烯隧穿场效应管领域,涉及一种适用于石墨烯器件的结构器件。
背景技术
自从2004年通过胶带剥离法首次发现独立存在的石墨烯以来,石墨烯以其独特的性能迅速成为各个领域的研究热点。通过采用新型的纳米电子材料,改进器件的电学特性,有希望突破目前电子器件小型化的物理极限。目前,硅基器件依然是集成电路设计的主流,而随着半导体技术对电子器件性能要求的逐步提高,硅基CMOS的尺寸和性能都将达到极限,量子效应、功耗、成本以及尺寸缩小引起的器件性能下降等问题日益凸显。为此,大量研究者都致力于探索新型纳米材料。
碳的常见的同素异形体有:富勒烯、石墨、碳纳米管、金刚石。石墨烯的出现使人们对碳基材料的研究达到了一个前所未有的高度。石墨烯拥有很好的电学,光学特性。石墨烯在材料学、微纳加工、能源、等方面具有重要的应用前景,科学研究者们一致认为石墨烯是未来最具有发展潜力的碳纳米材料之一。2004年英国曼彻斯特大学的安德烈·海姆教授和康斯坦丁·诺沃肖洛夫教授使用一种简单的机械剥离方法从石墨薄片中剥离出了石墨烯,该项成果也使得他二人荣获2010年诺贝尔物理学奖。石墨烯是一种二维平面状晶体,由碳原子按照六边形进行排布,以sp2杂化共价键构成相互连接,形成一个碳分子,该结构非常稳定;当所连接的碳原子数量逐渐增多时,该二维碳分子平面不断扩大,分子也随之变大。单层石墨烯厚度相当薄,仅仅只有0.335纳米,即一个碳原子的厚度。石墨烯不仅是目前最薄的一种材料,同时还具有极高的比表面积、超强的导电性和强度等优点。
常见的石墨烯晶体管种类有类MOS石墨烯纳米条带场效应管(C-GNRFETs),肖特基势垒石墨烯纳米条带场效应管(SB-GNRFETs)和隧穿型石墨烯纳米条带场效应管(T-GNRFETs)。
当金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor FieldEffect Transistor,MOSFET)的栅长缩小到45nm以下时,因为受到载流子波尔兹曼热分布的限制,亚阈值摆幅(Subthreshold Swing,SS)的存在严重影响到MOSFET器件在相应的栅电压下的开关速率,并导致MOSFET的漏电流随着电源电压的降低呈指数增长,从而极大增加了静态功耗。隧穿场效应晶体管(Tunneling Field Effect Transistor,TFET)近年来一直被看做MOSFET的潜在替代者。隧穿效应,也称作势垒贯穿效应,是一种载流子贯穿势垒的现象。在量子学中,电子具有波动性,电子的运动形式可通过薛定谔方程的波函数来表述。通过解方程可以算出电子穿过势垒的概率,并发现随着势垒宽度的增加,该概率呈指数衰减。
隧穿场效应管的工作原理与传统MOSFET有着本质的区别,MOSFET的工作原理是载流子的扩散漂移机制,而TFET器件的工作电流是由带隧穿形成的。从工作原理上来看,因为TFET的开启电流与温度不存在指数依赖关系,所以其亚阈电流不受载流子热分布的限制,从而可实现较小的亚阈值摆幅,降低工作电压,减小器件的关断电流,并使得器件静态功耗大大减小。
发明内容
发明目的:为了使隧穿场效应管更适用于石墨烯、漏电流更小、延迟时间更短、栅控能力更强,本发明提供一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管。
技术方案:一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管,包括源级、漏极、沟道、栅氧化层、栅极;沟道位于源级和漏极之间,由石墨烯纳米条带制成,沟道从靠近源级端到靠近漏极端依次包括近源级N型重掺杂区、近源级N型梯度掺杂区、本征石墨烯纳米条带、近漏极N型梯度掺杂区、近漏极N型重掺杂区;所述近源级N型梯度掺杂区从近源级N型重掺杂区端到本征石墨烯纳米条带端的掺杂浓度呈梯度排列,且掺杂浓度越来越低;所述近漏极N型梯度掺杂区从近漏极N型重掺杂区端到本征石墨烯纳米条带端的掺杂浓度呈梯度排列,且掺杂浓度越来越低;本征石墨烯纳米条带无掺杂;所述栅极包括近源级栅极、近漏极栅极与中间段栅极,近源级栅极位于源级侧,近漏极栅极位于漏极侧,中间段栅极位于近源级栅极与近漏极栅极之间,近源级栅极、近漏极栅极与中间段栅极分别由三种金属材料填充而成,设近源级栅极、中间段栅极与近漏极栅极的金属材料的功函数分别为M1,M2,M3,其中M2>M1=M3;栅极与本征石墨烯纳米条带之间为栅氧化层。
优选的,近源级N型重掺杂区、近源级N型梯度掺杂区、近漏极N型梯度掺杂区、近漏极N型重掺杂区在沟道方向的长度均相等。
优选的,近源级栅极、中间段栅极与近漏极栅极在沟道方向的长度均相等。优选的,所述栅极为双栅极结构,所述栅极为双栅极结构;两个栅极与本征石墨烯纳米条带之间均有栅氧化层,两个栅氧化层采用同种材料填充,且以沟道为中心形成对称结构。
优选的,所述近源级N型梯度掺杂区与近漏极N型梯度掺杂区均包括五个掺杂浓度梯度,分别为:3*10-3dopant/atom、1.5*10-3dopant/atom、9.5*104dopant/atom、7*10- 4dopant/atom、5*10-4dopant/atom。
优选的,近源级N型重掺杂区、近漏级N型重掺杂区的掺杂浓度高于近源极N型梯度掺杂区、近漏极N型梯度掺杂区中任一梯度的掺杂浓度。
有益效果:本发明基于量子力学非平衡格林函数的方法,研究了异质金属栅和梯度掺杂结构对于隧穿器件输运特性的影响,提供了一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管(DG-HTFETs),相比较现有技术,在较高的开态电流的同时具有更低的漏电流、更高的开关电流比,更低的亚阈区栅压摆幅。异质金属栅结构可以减少器件的栅电容,使器件拥有更好的栅控能力,从而可以更好的抑制短沟道效应。沟道中的梯度掺杂区域可以减弱沟道中的电场,降低了栅电容,提高了截止频率,使得器件抑制热载流子效应的能力也增强。并且在较低的工作电压下,该结构能够获得较大的驱动电流,并有望在数字电路中获得应用。
附图说明
图1:石墨烯条带系统简图;
图2:本发明的垂直截面示意图;
图3:基于非平衡格林函数(NEGF)的自洽迭代求解过程;
图4:本发明沟道的掺杂浓度示意图。
图中有:源极1;漏极2;栅极3;近源级栅极31、近漏极栅极32与中间段栅极33;由石墨烯纳米条带制成的沟道4;近源级N型重掺杂区41;近源级梯度掺杂区42;本征石墨烯纳米条带43;近漏极梯度掺杂区44;近漏极N型重掺杂区45。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
如图1所示,梯度掺杂异质材料栅结构的石墨烯隧穿型效应管,包括源级1、漏极2、栅极3、由石墨烯纳米条带制成的沟道4,栅极3为双栅极结构。如图2所示,沟道4位于源级1和漏极2之间,沟道4从靠近源级端到靠近漏极端依次包括近源级N型重掺杂区41、近源级N型梯度掺杂区42、本征石墨烯纳米条带43、近漏极N型梯度掺杂区44、近漏极N型重掺杂区45;所述近源级N型梯度掺杂区42从近源级N型重掺杂区端到本征石墨烯纳米条带端的掺杂浓度呈梯度排列,且掺杂浓度越来越低;所述近漏极N型梯度掺杂区44从近漏极N型重掺杂区端到本征石墨烯纳米条带端的掺杂浓度呈梯度排列,且掺杂浓度越来越低;本征石墨烯纳米条带43无掺杂;所述栅极3包括近源级栅极31,近漏极栅极32与中间段栅极33,近源级栅极31位于源级侧,近漏极栅极32位于漏极侧,中间段栅极位于近源极栅极和近漏极栅极之间,近源级栅极31,中间段栅极33与近漏极栅极32分别由三种不同电介质材料填充而成,其功函数分别为M1,M2,M3,其中M2>M1=M3;栅极3与本征石墨烯纳米条带43之间为栅氧化层5。
近源级N型重掺杂区41、近源级N型梯度掺杂区42、近漏极N型梯度掺杂区44、近漏极N型重掺杂区45在沟道方向的长度(即图中的左右横向方向)均相等。即近源级N型重掺杂区41与近源级N型梯度掺杂区42构成源拓展区,其长度为LS;近漏极N型梯度掺杂区44、近漏极N型重掺杂区45构成漏拓展区,其长度为LD,且Ls=LD。近源级N型梯度掺杂区42长度为Lu1,近漏极N型梯度掺杂区44的长度为Lu2,其中,Lu1=Lu2=1/2Ls
近源级栅极31,近漏极栅极32与中间段栅极33在沟道方向的长度也相等。近源级栅极31的长度为LG1,近漏极栅极32的长度为LG2,中间段栅极33长度为LG3,其中LG1=LG2=LG3
近源级N型重掺杂区41、近漏级N型重掺杂区45的掺杂浓度高于近源极N型梯度掺杂区42、近漏极N型梯度掺杂区44中任一梯度的掺杂浓度。本实施例中将近源级N型梯度掺杂区42与近漏极N型梯度掺杂区44均分为五个掺杂浓度梯度,分别为:3*10-3dopant/atom、1.5*10-3dopant/atom、9.5*10-4dopant/atom、7*10-4dopant/atom、5*10-4dopant/atom。近源级N型重掺杂区41、近漏级N型重掺杂区45的掺杂浓度为5*10-3dopant/atom。
本发明的类MOSFET结构的GNRFET如图2所示,它是一种双栅结构,其中用Armchair型的石墨烯条带作为导电沟道,其中沟道两边是关于沟道对称的栅氧化层,靠近源端金属栅和靠近漏端金属栅采用不同的电介质材料填充而成,器件的源/漏扩展区通过气相或液相化学离子注入方式进行N型重掺杂,另在石墨烯纳米条带沟道靠近源区和漏区附近进行轻掺杂,从而形成双梯度掺杂异质材料栅结构。器件仿真方法如下:通过在实空间下构建紧束缚哈密顿量,将GNRFET看成一个如图1所示的石墨烯条带系统,然后基于非平衡格林函数方法,自洽迭代求解泊松和薛定谔方程组(过程如图3所示),最后利用Landauer-Buttiker公式进一步求取系统的其他电学参量。
经研究发现,类金属-氧化层-半导体场效应管(MOSFET)的石墨烯器件,
不断缩小器件尺寸会减少栅极对器件沟道的控制能力,造成短沟道效应。通常,为提高器件的性能,可以采用沟道工程技术或栅工程技术。本实施例从横向沟道工程的角度出发,提出一种用于改善常规石墨烯纳米条带场效应管电学性能的新型掺杂方式。基于量子力学非平衡格林函数(NEGF)理论框架,在开放边界条件下,通过自洽求解三维泊松和薛定谔方程,构建出适用于梯掺杂的石墨烯场效应管的输运模型,并利用该模型分析异质栅梯度掺杂策略对石墨烯纳米条带场效应管(GNRFET)电学特性的影响。总体上看,该结构模型具有以下特征:
A.它是一种双栅结构,其中用AGNR(边缘是Armchair型的石墨烯条带)作为导电沟道,两个栅极氧化层用同种材料填充,且以沟道为中心形成对称结构。
B.器件的源扩展区采用N型重掺杂,漏扩展区均采用N型重掺杂,另在器件源端靠近沟道区域和漏端靠近沟道区域处采用梯度掺杂,最终形成双梯度掺杂漏隧穿结构。
C.器件靠近源端,靠近漏端的金属栅极和中间段栅极均采用三种不同电介质材料填充而成,其功函数分别为M1,M2,M3,其中M2>M1=M3。
D.模型的计算主要采用NEGF方法,在开放边界条件下,自洽求解三维泊松和薛定谔方程。具体过程为:给定初始沟道电势,带入NEGF方程计算出其电荷密度,再将求得的电荷密度代入泊松方程求解出GNR沟道中的静电势,然后再将此电势重新代入NEGF方程中进行计算,如此反复迭代直到得到自洽解为止。整个计算迭代过程如图3所示。本发明所计算的石墨烯纳米条带场效应管可以用图1所示的电子系统来描述,即整个系统包括两个自能矩阵∑S和∑D,分别用于描述导电沟道与源/漏端的耦合关系,在选定了合适的基组和用于描述沟道的哈密顿量以及自能项后,对于给定的自洽电势,系统的迟滞格林函数有如下形式:
G(E)=[(E+iη+)I-H-∑D-∑S]-1 (1)
式中E为能量,η+是一个正无穷小量,I是单位矩阵,∑S和∑D分别为器件源和漏电极贡献的自能项,可根据表面格林函数通过迭代求出。在紧束缚近似下,描述GNR沟道的哈密顿矩阵H可表示为三对角矩阵的形式:
其中N为GNR沿沟道方向所含碳原子数目,[αi]是n阶对角矩阵(n为GNR宽度方向上的碳原子数目),用来描述石墨烯晶胞中同类型碳原子之间的耦合关系,其中αi表示沟道方向上第i列碳原子的电势;[β]也是n阶矩阵,表示相邻的不同类型碳原子的耦合。
另外,A-GNR的能带结构在紧束缚近似下可以表示为:
其中,γ是紧束缚阶跃参数,acc是GNR中碳碳键长,约为0.142nm,k为沿GNR沟道方向的波矢量,α代表子能带。假设源漏区的电势与GNR的平衡费米能级持平,且没有完全的限制态,当求得表面格林函数后,那么器件中任一位置的电子和空穴密度可由下式求得:
其中El为GNR部分的费米能级,f是费米-狄拉克分布函数,EFS(D)是源(漏)区的费米能级。
将求出的电子和空穴密度代入三维泊松方程以求解静电势,其中三维泊松方程可由下式表示
上式中是介电常量,是静电势,分别表示电离化的施主和受主浓度,ρfix是固定电荷。最后,为了计算器件沟道电流,可以利用Landauer-Buttiker公式:
其中q是电子电荷,h是普朗克常量,T(E)是电子通过沟道的透射系数:
在上述量子模型框架下,对采用不同掺杂策略的石墨烯纳米条带场效应管的电流特性和亚阈值特性进行了模拟分析。模拟中,GNR沟道方向(z方向)和宽度方向(x方向)的网格点间距分别取0.15nm和0.2nm。另外,碳碳键长acc=0.142nm,正无穷小量η+=10-16,紧束缚阶跃参数γ=2.7eV,环境温度T=300K。
通过仿真,采用不同功函数的栅极材料,会降低泄漏电流,提高开关电流比。考虑到隧穿场效应管的带带隧穿的工作原理,采用异质金属栅这种结构,这种结构的开态电流与传统的隧穿场效应管的开态电流大小基本相等,而漏电流有明显的减小,开关比有了明显的提升。
通过对沟道掺杂策略和隧穿场效应管工作原理的研究,采用梯度掺杂的结构进一步降低了沟道的漏电流,同时,梯度掺杂这种结构能够有效的抑制热电子效应,使得器件性能得到了明显的提升。
实验研究了DG-HTFETs的I-V特性,亚阈值特性等,并将其与普通隧穿场效应管TFETs,异质栅隧穿场效应管HTFETs,线性掺杂隧穿场效应管LTFETs进行了对比。
通过对器件仿真可以发现,相比于普通的隧穿场效应管TFETs,由于DG-HTFETs结构关态带带隧穿宽度较宽,使得其泄露电流比较小,而其开态的隧穿宽度与传统的TFETs基本一致,并且源端和漏端梯度掺杂结构对于开态电流基本没有影响,使得DG-HTFETs具有较高的开关电流比。由于在靠近源极N型重掺杂区域和本征沟道之间加入浓度较低的掺杂可以使得TFETs沟道与漏区的交接处电势变化变得平和,电场变低。但是,若采用线性掺杂,不仅掺杂工艺难度较大,在掺杂过程中很难控制实现其掺杂浓度理想化,而且用呈线性变化浓度进行掺杂对于缓和电势变化和降低电场的效果非常有限,本文所提出的非线性梯度浓度掺杂可有效的缓和漏区与本征沟道交接处的电势变化,可以有效降低电场。因此相比双线性掺杂隧穿场效应管DL-HTFETs,双梯度掺杂隧穿场效应管DG-HTFETs能更够更有效的抑制热载流子效应。本发明中提到的异质金属栅结构HMG-可以有效提高器件的栅控能力,增大沟道平均电场,从而大大增加了热载流子迁移率,有效减小了其亚阈值摆幅。正是由于HMG-这种结构良好栅极控制能力和亚阈特性,使得HMG-DG-HTFET其具有很好的尺寸缩小特性,较低的工作电压,较大的驱动电流,较高的开关电流比,使得其能够在低功耗、高开关电流比的应用领域得到广泛的应用。

Claims (6)

1.一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管,其特征在于,包括源级、漏极、沟道、栅氧化层、栅极;沟道位于源级和漏极之间,由石墨烯纳米条带制成,沟道从靠近源级端到靠近漏极端依次包括近源级N型重掺杂区、近源级N型梯度掺杂区、本征石墨烯纳米条带、近漏极N型梯度掺杂区、近漏极N型重掺杂区;所述近源级N型梯度掺杂区从近源级N型重掺杂区端到本征石墨烯纳米条带端的掺杂浓度呈梯度排列,且掺杂浓度越来越低;所述近漏极N型梯度掺杂区从近漏极N型重掺杂区端到本征石墨烯纳米条带端的掺杂浓度呈梯度排列,且掺杂浓度越来越低;本征石墨烯纳米条带无掺杂;所述栅极包括近源级栅极、近漏极栅极与中间段栅极,近源级栅极位于源级侧,近漏极栅极位于漏极侧,中间段栅极位于近源级栅极与近漏极栅极之间,近源级栅极、近漏极栅极与中间段栅极分别由三种金属材料填充而成,设近源级栅极、中间段栅极与近漏极栅极的金属材料的功函数分别为M1,M2,M3,其中M2>M1=M3;栅极与本征石墨烯纳米条带之间为栅氧化层。
2.根据权利要求1所述的梯度掺杂异质材料栅结构的石墨烯隧穿型效应管,其特征在于,近源级N型重掺杂区、近源级N型梯度掺杂区、近漏极N型梯度掺杂区、近漏极N型重掺杂区在沟道方向的长度均相等。
3.根据权利要求1所述的梯度掺杂异质材料栅结构的石墨烯隧穿型效应管,其特征在于,近源级栅极、中间段栅极与近漏极栅极在沟道方向的长度均相等。
4.根据权利要求1所述的梯度掺杂异质材料栅结构的石墨烯隧穿型效应管,其特征在于,所述栅极为双栅极结构;两个栅极与本征石墨烯纳米条带之间均有栅氧化层,两个栅氧化层采用同种材料填充,且以沟道为中心形成对称结构。
5.根据权利要求1所述的梯度掺杂异质材料栅结构的石墨烯隧穿型效应管,其特征在于,所述近源级N型梯度掺杂区与近漏极N型梯度掺杂区均包括五个掺杂浓度梯度,分别为:3*10-3dopant/atom、1.5*10-3dopant/atom、9.5*10-4dopant/atom、7*10-4dopant/atom、5*10-4dopant/atom。
6.根据权利要求1所述的梯度掺杂异质材料栅结构的石墨烯隧穿型效应管,其特征在于,近源级N型重掺杂区、近漏级N型重掺杂区的掺杂浓度高于近源极N型梯度掺杂区、近漏极N型梯度掺杂区中任一梯度的掺杂浓度。
CN201810384089.4A 2018-04-25 2018-04-25 一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管 Pending CN108630746A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810384089.4A CN108630746A (zh) 2018-04-25 2018-04-25 一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810384089.4A CN108630746A (zh) 2018-04-25 2018-04-25 一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管

Publications (1)

Publication Number Publication Date
CN108630746A true CN108630746A (zh) 2018-10-09

Family

ID=63694620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810384089.4A Pending CN108630746A (zh) 2018-04-25 2018-04-25 一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管

Country Status (1)

Country Link
CN (1) CN108630746A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109325304A (zh) * 2018-10-10 2019-02-12 复旦大学 石墨烯隧穿场效应管量子隧穿系数和电流的计算方法
CN109841689A (zh) * 2019-01-25 2019-06-04 南京邮电大学 一种非对称峰值掺杂结合梯度掺杂的黑磷场效应管
CN111106179A (zh) * 2019-12-11 2020-05-05 华东师范大学 一种双金属功函数栅的可重构场效应晶体管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147071A1 (en) * 2002-12-30 2004-07-29 Dongbu Electronics Co., Ltd. Method of manufacturing a semiconductor device
CN103165469A (zh) * 2013-01-31 2013-06-19 西安电子科技大学 基于Ni膜退火的Si衬底侧栅石墨烯晶体管制备方法
US20140273414A1 (en) * 2013-03-13 2014-09-18 Academia Sinica Method for manufacturing graphene film and graphene channel of transistor
CN106711087A (zh) * 2016-12-26 2017-05-24 武汉华星光电技术有限公司 薄膜晶体管的制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147071A1 (en) * 2002-12-30 2004-07-29 Dongbu Electronics Co., Ltd. Method of manufacturing a semiconductor device
CN103165469A (zh) * 2013-01-31 2013-06-19 西安电子科技大学 基于Ni膜退火的Si衬底侧栅石墨烯晶体管制备方法
US20140273414A1 (en) * 2013-03-13 2014-09-18 Academia Sinica Method for manufacturing graphene film and graphene channel of transistor
CN106711087A (zh) * 2016-12-26 2017-05-24 武汉华星光电技术有限公司 薄膜晶体管的制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG WEI ET AL: ""Performance of asymmetric linear doping triple-material-gate GNRFETs"", 《计算物理》 *
周海亮等: ""基于梯度掺杂策略的碳纳米管场效应管性能优化"", 《物理学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109325304A (zh) * 2018-10-10 2019-02-12 复旦大学 石墨烯隧穿场效应管量子隧穿系数和电流的计算方法
CN109325304B (zh) * 2018-10-10 2022-12-20 复旦大学 石墨烯隧穿场效应管量子隧穿系数和电流的确定方法
CN109841689A (zh) * 2019-01-25 2019-06-04 南京邮电大学 一种非对称峰值掺杂结合梯度掺杂的黑磷场效应管
CN111106179A (zh) * 2019-12-11 2020-05-05 华东师范大学 一种双金属功函数栅的可重构场效应晶体管

Similar Documents

Publication Publication Date Title
Cao et al. A compact current–voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect
Wang et al. Compact virtual-source current–voltage model for top-and back-gated graphene field-effect transistors
Meric et al. Graphene field-effect transistors based on boron–nitride dielectrics
Lam et al. Device performance of heterojunction tunneling field-effect transistors based on transition metal dichalcogenide monolayer
Mobarakeh et al. A novel graphene tunnelling field effect transistor (GTFET) using bandgap engineering
CN108630746A (zh) 一种梯度掺杂异质材料栅结构的石墨烯隧穿型效应管
Jayaswal et al. Design and analysis of electrostatic-charge plasma based dopingless IGZO vertical nanowire FET for ammonia gas sensing
Goel et al. Benchmarking of analog/RF performance of fin-FET, NW-FET, and NS-FET in the ultimate scaling limit
Tayal et al. A comprehensive investigation of vertically stacked silicon nanosheet field effect transistors: an analog/rf perspective
Liu et al. Investigation on the effects of gate-source overlap/underlap and source doping gradient of n-type Si cylindrical gate-all-around tunnel field-effect transistors
Dash et al. Strain-engineering in nanowire field-effect transistors at 3 nm technology node
Dubey et al. A charge plasma-based monolayer transition metal dichalcogenide tunnel FET
Cherik et al. Switching performance enhancement in nanotube double-gate tunneling field-effect transistor with germanium source regions
Lv et al. Band structure effects in extremely scaled silicon nanowire MOSFETs with different cross section shapes
Jiang et al. Tuning the hysteresis voltage in 2D multilayer MoS2 FETs
Xie et al. High-performance Schottky-barrier field-effect transistors based on monolayer SiC contacting different metals
Schwarz et al. The Schottky barrier transistor in emerging electronic devices
CN103077968A (zh) 一种非对称峰值轻掺杂漏结构的石墨烯纳米条带场效应管
CN103247688B (zh) 一种双材料栅线性掺杂的石墨烯场效应管
CN104091829A (zh) 双线性掺杂漏异质材料栅氧化层石墨烯隧穿场效应管
Nanda et al. Modeling and simulation of graphene field effect transistor (GFET)
CN103258858A (zh) 一种三材料异质栅结构的石墨烯纳米条带场效应管
Akbari Eshkalak et al. A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor
Wang et al. Cold source field-effect transistors: Breaking the 60-mV/decade switching limit at room temperature
CN110010681A (zh) 非对称峰值掺杂的二硫化钼隧穿场效应管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181009