CN108630216B - 一种基于双麦克风模型的mpnlms声反馈抑制方法 - Google Patents

一种基于双麦克风模型的mpnlms声反馈抑制方法 Download PDF

Info

Publication number
CN108630216B
CN108630216B CN201810152518.5A CN201810152518A CN108630216B CN 108630216 B CN108630216 B CN 108630216B CN 201810152518 A CN201810152518 A CN 201810152518A CN 108630216 B CN108630216 B CN 108630216B
Authority
CN
China
Prior art keywords
microphone
signal
algorithm
mpnlms
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810152518.5A
Other languages
English (en)
Other versions
CN108630216A (zh
Inventor
张正文
陈卓
包泽胜
韦琳
郑毅豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN201810152518.5A priority Critical patent/CN108630216B/zh
Publication of CN108630216A publication Critical patent/CN108630216A/zh
Application granted granted Critical
Publication of CN108630216B publication Critical patent/CN108630216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/27Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明公开了一种基于双麦克风模型的MPNLMS声反馈抑制方法,主要解决单个麦克风的声反馈抑制系统中,基于μ准则的比例归一化最小均方算法对滤波器系数的有偏估计会而导致其性能显著降低的问题。其实现过程是:(1)该系统中副麦克风估计主麦克风的有效输入信号;(2)将估计信号与主麦克风输出信号相减之后所得的误差信号用于自适应滤波器系数的更新。本发明提出的基于双麦克风模型的MPNLMS算法不再受制于扬声器输出信号与有效信号之间的相关性,而且该算法的收敛速度、误差与最大增益均优于传统单个麦克风声反馈抑制系统中的MPNLMS算法,可用于对性能要求较高的会议系统。

Description

一种基于双麦克风模型的MPNLMS声反馈抑制方法
技术领域
本发明属于语音信号处理技术领域,具体涉及一种基于双麦克风模型的MPNLMS声反馈抑制方法。
背景技术
扬声器与麦克风之间的声学耦合引起的啸叫现象称为声反馈。一般的扩声系统与助听器,均会受到声反馈的困扰。近年来,基于自适应的声反馈抑制技术(Acousticfeedback cancellation,AFC)受到了学者们的广泛关注,该技术通过自适应算法建立整体声学环境模型,分析反馈路径并预测声反馈信号,然后将之从实际输入信号中去除,以实现啸叫抑制。
由于结构简单和易于实现,最小均方(Least mean squares,LMS)算法以及归一化最小均方(Normalized LMS,NLMS)算法在自适应滤波器中的应用最为广泛。然而,当输入信号的功率在信号处理过程中有较大的波动时,LMS算法和NLMS算法的收敛速度会变慢。为了解决这个问题,比例归一化最小均方(Proportionate normalized least mean square,PNLMS)算法被Duttweiler提出。该算法给滤波器的每一个权系数提供一个与该系数幅值成正比的步长,这样可以使得大抽头权系数比小抽头权系数的调整速度更快,进而提高了该算法的收敛速度。但当滤波器的大抽头权系数快速收敛后,余下的滤波器小抽头权系数不能够快速收敛,进而导致收敛速度变得十分缓慢,甚至不如NLMS。因此很多学者针对PNLMS算法在后期收敛速度降低比较严重的缺点进行了改进。
Deng H提出了基于μ准则的比例归一化最小均方(Proportionate normalizedleast mean square based onμ-law,MPNLMS)算法。MPNLMS算法中步长计算函数
Figure BDA0001580241590000011
为:
Figure BDA0001580241590000012
该算法通过结合滤波器权系数的收敛过程,平衡了滤波器中各大、小系数的更新速度,使得权系数的分配更加合理,克服了PNLMS算法后期收敛速度降低的缺陷。MPNLMS算法的收敛速度比其他的系数比例自适应算法更快。此外当目标冲激响应的稀疏程度不是很大时,该算法后期的收敛速度不会有明显的降低。但当系统中只有一个麦克风时,由于扬声器输出信号与有效输入信号(目标信号)向量序列之间较强的相关性,导致自适应算法对滤波器系数的有偏估计,进而对声反馈信号的估计误差较大,使得该算法的性能被降低。因此,实现声反馈信号与有效输入信号之间的去相关在AFC实际应用中十分必要。
发明内容
本发明的目的是:针对MPNLMS算法在传统单个麦克风的声反馈抑制系统中由于相关性导致性能被削弱的问题,本发明将一种双麦克风系统与MPNLMS算法相结合以抑制声反馈,提出一种基于双麦克风模型的MPNLMS声反馈抑制方法(MPNLMS Acoustic Feedbackcancellation Algorithm Based on Two Microphone System,TM-AFC-MPNLMS)。
为了达到上述目的,本发明所采用的技术方案是:一种基于双麦克风模型的MPNLMS声反馈抑制方法,其特征在于,将双麦克风模型与MPNLMS算法相结合以抑制声反馈,所述双麦克风模型为在主麦克风的基础上加入一个空间上离扬声器更远的副麦克风,主、副两个麦克风所在传声路径分别通过自适应滤波器
Figure BDA0001580241590000021
Figure BDA0001580241590000022
模拟;
该方法首先分别初始化自适应滤波器
Figure BDA0001580241590000023
Figure BDA0001580241590000024
的权系数向量,将它们分别初始化为长度是
Figure BDA0001580241590000025
Figure BDA0001580241590000026
的0向量;
然后,将副麦克风所在传声路径的自适应滤波器
Figure BDA0001580241590000027
的输出信号
Figure BDA0001580241590000028
减去主麦克风所在传声路径的自适应滤波器
Figure BDA0001580241590000029
的误差信号
Figure BDA00015802415900000210
得到本方法所需误差信号e1(n),并以此方法迭代计算误差信号e1(n),n≥0;
在迭代计算误差信号e1(n)的同时根据MPNLMS算法分别更新自适应滤波器
Figure BDA00015802415900000211
的权系数与自适应滤波器
Figure BDA00015802415900000212
的权系数;其中误差信号e1(n)同时控制
Figure BDA00015802415900000213
的系数更新;最后,将自适应滤波器
Figure BDA00015802415900000214
的输出作为整个声反馈抑制方法的输出。
进一步地,所述双麦克风模型具体描述为:该模型有两个麦克风和一个扬声器,主麦克风置于耳朵内,副麦克风在耳朵旁,主麦克风离反馈信号源更近,扬声器与两个麦克风之间的反馈路径被假定为两个FIR滤波器,其系数向量分别为:
Figure BDA00015802415900000215
Figure BDA00015802415900000216
Figure BDA00015802415900000217
滤波器长度均为Lg,滤波器多项式传递函数为
Figure BDA00015802415900000218
Figure BDA00015802415900000219
自适应滤波器
Figure BDA00015802415900000220
用于识别和跟踪声反馈路径的变化,并产生声反馈信号f1(n)的估计信号
Figure BDA0001580241590000031
其长度为
Figure BDA0001580241590000032
系数向量为:
Figure BDA0001580241590000033
FIR自适应滤波器
Figure BDA0001580241590000034
被用来模拟副麦克风到主麦克风的传声路径H(q),其长度为
Figure BDA0001580241590000035
系数向量为
Figure BDA0001580241590000036
主麦克风与副麦克风输入的有效信号分别为ui(n),i=1,2,反馈信号分别为fi(n)=Gi(q)y1(n),i=1,2,输入信号分别为:
m1(n)=u1(n)+f1(n) (1)
m2(n)=u2(n)+f2(n) (2)
其中,反馈信号f2(n)相对于f1(n)被衰减得更厉害,主麦克风m1的输入信号u1(n)与副麦克风m2的输入信号u2(n)之间关系的时域离散表达式为:
u1(n-dm)=hT(n)u2(n)+ζ(n) (3)
其中,H(q)是长度为Lh的FIR滤波器,ζ(n)为u1(n)中不能由u2(n)转换而得到的部分,为了使仿真更加接近实际情况,在第一个麦克风所在路径中加入延时dm,在本双麦克风模型下,式(3)中的u1(n)与u2(n)是相干信号;
另外,主麦克风的输入信号m1(n)减去自适应滤波器
Figure BDA0001580241590000037
的反馈估计信号
Figure BDA0001580241590000038
得到误差信号
Figure BDA0001580241590000039
Figure BDA00015802415900000310
误差信号
Figure BDA00015802415900000311
经过前向传递路径K(q)放大并最终被输入扬声器,前向传递路径K(q)的时延为dk,dk≥1,增益为K,如果误差信号
Figure BDA00015802415900000312
被直接用来更新自适应滤波器系数,则由于u1(n)与它的相关性,将给系统带来干扰并最终造成滤波器系数的估计偏差,因此,在双麦克风系统中,利用副麦克风估计u1(n),然后将估计信号从
Figure BDA00015802415900000313
中减掉,副麦克风的输入信号m2(n)经过自适应滤波器
Figure BDA00015802415900000314
处理后得到其估计信号
Figure BDA00015802415900000315
Figure BDA00015802415900000316
减去
Figure BDA00015802415900000317
得到误差信号e1(n):
Figure BDA00015802415900000318
误差信号e1(n)用于控制自适应滤波器
Figure BDA0001580241590000041
Figure BDA0001580241590000042
系数的更新,利用归一化最小均方算法对自适应滤波器
Figure BDA0001580241590000043
Figure BDA0001580241590000044
进行控制:
Figure BDA0001580241590000045
Figure BDA0001580241590000046
式(6)与式(7)中μ为滤波器步长大小;y1(n)为扬声器信号,同时也是自适应滤波器
Figure BDA0001580241590000047
的输入信号;m2(n)是副麦克风的输入信号,同时也作为自适应滤波器
Figure BDA0001580241590000048
的输入;y1(n)表示为:
Figure BDA0001580241590000049
其中,S(q)为灵敏度函数,其表示为:
Figure BDA00015802415900000410
在按如上方式引入双麦克风模型的基础上,本方法将该模型与MPNLMS算法结合,对声反馈信号进行抑制。
进一步地,所述MPNLMS算法具体描述为:在MPNLMS算法中,自适应滤波器的输入信号被用于更新滤波器系数,对应双麦克风模型中自适应滤波器
Figure BDA00015802415900000411
以及副麦克风所在反馈路径的自适应滤波器
Figure BDA00015802415900000412
的输入信号分别被表示为:
Figure BDA00015802415900000413
Figure BDA00015802415900000414
其中,
Figure BDA00015802415900000415
分别为自适应滤波器
Figure BDA00015802415900000416
Figure BDA00015802415900000417
的长度,y1(n)及m2(n)分别为扬声器信号及副麦克风输入信号,误差信号
Figure BDA00015802415900000418
由下式计算:
Figure BDA00015802415900000419
Figure BDA0001580241590000051
其中,主麦克风的输入信号m1(n)由式(1)计算,u1(n)的估计信号
Figure BDA0001580241590000052
以及最终用于更新滤波器的误差信号e1(n)分别由以下两式计算:
Figure BDA0001580241590000053
Figure BDA0001580241590000054
进一步地,在双麦克风模型中用MNPLMS算法代替式(6)、(7)所列的NLMS算法,自适应滤波器
Figure BDA0001580241590000055
Figure BDA0001580241590000056
的滤波器系数更新方程写为:
Figure BDA0001580241590000057
Figure BDA0001580241590000058
其中,μg与μh分别为自适应滤波器
Figure BDA0001580241590000059
Figure BDA00015802415900000510
的更新步长,控制算法的收敛速度与稳态失调;δ为一个数值很小的正数,作为调整参数防止出现分母为零的情况,P(n+1)与Q(n+1)分别为自适应滤波器
Figure BDA00015802415900000511
Figure BDA00015802415900000512
的步长控制矩阵,它们给各个滤波器系数赋予不同的步长,其中P(n+1)表示为:
Figure BDA00015802415900000513
本方法按如下递归关系式计算P(n+1):
Figure BDA00015802415900000514
Figure BDA00015802415900000515
Figure BDA00015802415900000516
Figure BDA00015802415900000517
式中,δ为修正系数,防止权系数全为零时pl(n+1)不成立;ρ一般取在
Figure BDA00015802415900000518
之间;
Figure BDA0001580241590000061
为自适应滤波器
Figure BDA0001580241590000062
长度;
Figure BDA0001580241590000063
为避免抽头权值
Figure BDA0001580241590000064
远小于滤波器最大抽头权值引起的迭代停顿而设置,Q(n+1)的更新方式与P(n+1)相同;
另外,用于滤波器系数更新的误差信号e1(n)的计算表达式如下:
Figure BDA0001580241590000065
与现有技术相比,本发明的有益效果是:本发明提出的基于双麦克风模型的MPNLMS声反馈抑制方法,该系统中副麦克风估计主麦克风的有效输入信号,将估计信号与主麦克风输出信号相减之后所得的误差信号用于自适应滤波器系数的更新。仿真结果表明,本发明提出的基于双麦克风模型的MPNLMS声反馈抑制方法不再受制于扬声器输出信号与有效信号之间的相关性,而且该方法的收敛速度、误差与最大增益均优于传统单个麦克风声反馈抑制系统中的MPNLMS算法。该方法具有收敛速度更快、稳态误差更小、最大稳定增益更大、市场前景广阔的优点。
附图说明
图1为双麦克风声反馈抑制系统模型示意图。
图2为本发明基于双麦克风模型的MPNLMS声反馈抑制方法的流程图。
图3为无噪声时TM-AFC-MPNLMS算法、MPNLMS算法、PNLMS算法、NLMS算法最大稳定增益及误差性能对比。
图4为注入30dB噪声时TM-AFC-MPNLMS算法、MPNLMS算法、PNLMS算法、NLMS算法最大稳定增益及误差性能对比。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合实施例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
针对MPNLMS算法在传统单个麦克风的声反馈抑制系统中由于相关性导致性能被削弱的问题,本发明将一种双麦克风系统与MPNLMS算法相结合以抑制声反馈,提出一种基于双麦克风模型的MPNLMS声反馈抑制方法(MPNLMS Acoustic Feedback cancellationAlgorithm Based on Two Microphone System,TM-AFC-MPNLMS)。
如图1,该方法在单个麦克风系统的基础上加入一个空间上离扬声器更远的副麦克风,以增加一路麦克风传声路径来提高声反馈抑制性能,若已知有效输入信号,则可消除原传声路径的估计偏差。相比主麦克风,副麦克风收到的声反馈信号有一定程度的衰减。
副麦所在的传声路径2的主要目的是估计有效输入信号u1(n),若已知有效输入信号,则可消除原传声路径的估计偏差。如图1所示,传声路径2的自适应滤波器
Figure BDA0001580241590000071
的输出信号
Figure BDA0001580241590000072
与自适应滤波器
Figure BDA0001580241590000073
的误差信号
Figure BDA0001580241590000074
相减后得到误差信号e1(n),自适应算法利用e1(n)来更新两个滤波器的系数。双麦克风自适应声反馈抑制的方案能够在保证稳定性的同时使系统获得更大的增益,并且让主麦采集的语音信号更加贴近原音。
本发明提出的抑制方法首先获得误差信号e1(n),该误差信号是通过副麦克风所在传声路径的自适应滤波器
Figure BDA0001580241590000075
的输出信号
Figure BDA0001580241590000076
与主麦克风所在传声路径的自适应滤波器
Figure BDA0001580241590000077
的误差信号
Figure BDA0001580241590000078
相减后得到。接着MPNLMS算法利用e1(n)来同时更新滤波器
Figure BDA0001580241590000079
Figure BDA00015802415900000710
的系数。最后针对无噪声输入以及输入信噪比为30dB的干扰信号两种情景下,将本发明方法与传统MPNLMS、PNLMS、NLMS算法分别就收敛速度、误差及最大稳定增益三个指标作对比,并且对声场改变时的情况进行了分析。
1.双麦克风声反馈抑制系统模型描述
图1给出了双麦克风声反馈抑制系统。该系统有两个麦克风和一个扬声器,主麦克风置于耳朵内,副麦克风在耳朵旁,主麦克风离反馈信号源更近(|G2(ω)|<|G1(ω)|)。扬声器与两个麦克风之间的反馈路径被假定为两个FIR(有限冲击响应)滤波器,其系数向量分别为:
Figure BDA00015802415900000711
Figure BDA00015802415900000712
Figure BDA00015802415900000713
滤波器长度均为Lg。滤波器多项式传递函数为
Figure BDA00015802415900000714
w(n)为可能被注入到扬声器信号y1(n)中的高斯白噪声,用以实现两种不同仿真情景的对比。
自适应滤波器
Figure BDA00015802415900000715
用于识别和跟踪声反馈路径的变化,并产生声反馈信号f1(n)的估计信号
Figure BDA00015802415900000716
其长度为
Figure BDA00015802415900000717
系数向量为:
Figure BDA00015802415900000718
FIR自适应滤波器
Figure BDA00015802415900000719
被用来模拟副麦克风到主麦克风的传声路径H(q),其长度为
Figure BDA00015802415900000720
系数向量为
Figure BDA00015802415900000721
主麦克风与副麦克风输入的有效信号分别为ui(n),(i=1,2),反馈信号分别为fi(n)=Gi(q)y1(n),(i=1,2),输入信号分别为:
m1(n)=u1(n)+f1(n) (1)
m2(n)=u2(n)+f2(n) (2)
其中,反馈信号f2(n)相对于f1(n)被衰减得更加厉害。主麦克风m1的输入信号u1(n)与副麦克风m2的输入信号u2(n)之间关系的时域离散表达式为:
u1(n-dm)=hT(n)u2(n)+ζ(n) (3)
其中,H(q)是长度为Lh的FIR滤波器,ζ(n)为u1(n)中不能由u2(n)转换而得到的部分。为了使仿真更加接近实际情况,在第一个麦克风所在路径中加入延时dm。在本发明的双麦克风模型下,式(3)中的u1(n)与u2(n)是相干信号。
另外,主麦克风的输入信号m1(n)减去自适应滤波器
Figure BDA0001580241590000081
的反馈估计信号
Figure BDA0001580241590000082
得到误差信号
Figure BDA0001580241590000083
Figure BDA0001580241590000084
误差信号
Figure BDA0001580241590000085
经过前向传递路径K(q)放大并最终被输入扬声器,前向传递路径K(q)的时延为dk(dk≥1),增益为K。如果误差信号
Figure BDA0001580241590000086
被直接用来更新自适应滤波器系数,则由于u1(n)与它的相关性,将给系统带来干扰并最终造成滤波器系数的估计偏差。因此,在双麦克风系统中,利用副麦克风估计u1(n),然后将估计信号从
Figure BDA0001580241590000087
中减掉。副麦克风的输入信号m2(n)经过自适应滤波器
Figure BDA0001580241590000088
处理后得到其估计信号
Figure BDA0001580241590000089
Figure BDA00015802415900000810
减去
Figure BDA00015802415900000811
得到误差信号e1(n):
Figure BDA00015802415900000812
如图1,误差信号e1(n)没有被像在传统自适应滤波器中那样经放大后作为扬声器的输入,而是将其用于控制自适应滤波器
Figure BDA00015802415900000813
Figure BDA00015802415900000814
系数的更新,尽管第二条反馈路径仍会带来一定的估计偏差,但此方法使得滤波器系数的有偏估计被显著降低。利用归一化最小均方(normalized LMS,NLMS)算法对自适应滤波器
Figure BDA0001580241590000091
Figure BDA0001580241590000092
进行控制:
Figure BDA0001580241590000093
Figure BDA0001580241590000094
式(6)与式(7)中μ为滤波器步长大小;y1(n)为扬声器信号,同时也是自适应滤波器
Figure BDA0001580241590000095
的输入信号;m2(n)是副麦克风的输入信号,同时也作为自适应滤波器
Figure BDA0001580241590000096
的输入。y1(n)表示为:
Figure BDA0001580241590000097
其中,S(q)为灵敏度函数,其表示为:
Figure BDA0001580241590000098
在按如上方式引入双麦克风模型的基础上,本发明将该模型与MPNLMS算法结合,分别就正常声场、麦克风附近有障碍物的声场两不同情况对反馈信号进行抑制。
2.MPNLMS算法
在MPNLMS算法中,自适应滤波器的输入信号被用于更新滤波器系数。对应双麦克风模型中自适应滤波器
Figure BDA0001580241590000099
以及副麦克风所在反馈路径的自适应滤波器
Figure BDA00015802415900000910
的输入信号可以分别被表示为:
Figure BDA00015802415900000911
Figure BDA00015802415900000912
其中,
Figure BDA00015802415900000913
分别为自适应滤波器
Figure BDA00015802415900000914
Figure BDA00015802415900000915
的长度,y1(n)及m2(n)分别为扬声器信号及副麦克风输入信号。误差信号
Figure BDA00015802415900000916
可由下式计算:
Figure BDA00015802415900000917
Figure BDA0001580241590000101
其中,主麦克风的输入信号m1(n)由式(1)计算。u1(n)的估计信号
Figure BDA0001580241590000102
以及最终用于更新滤波器的误差信号e1(n)分别由以下两式计算:
Figure BDA0001580241590000103
Figure BDA0001580241590000104
3.基于MPNLMS算法的双麦克风声反馈抑制系统
在双麦克风抑制系统中用MNPLMS算法代替式(6)、(7)所列的NLMS算法,自适应滤波器
Figure BDA0001580241590000105
Figure BDA0001580241590000106
的滤波器系数更新方程可写为:
Figure BDA0001580241590000107
Figure BDA0001580241590000108
其中,μg与μh分别为自适应滤波器
Figure BDA0001580241590000109
Figure BDA00015802415900001010
的更新步长,控制算法的收敛速度与稳态失调;δ为一个数值很小的正数,作为调整参数防止出现分母为零的情况。P(n+1)与Q(n+1)分别为自适应滤波器
Figure BDA00015802415900001011
Figure BDA00015802415900001012
的步长控制矩阵,它们给各个滤波器系数赋予不同的步长。其中P(n+1)可表示为:
Figure BDA00015802415900001013
本方法按如下递归关系式计算P(n+1):
Figure BDA00015802415900001014
Figure BDA00015802415900001015
Figure BDA00015802415900001016
Figure BDA00015802415900001017
式中,δ为修正系数,防止权系数全为零时pl(n+1)不成立;ρ一般取在
Figure BDA0001580241590000111
之间;
Figure BDA0001580241590000112
为自适应滤波器
Figure BDA0001580241590000113
长度;
Figure BDA0001580241590000114
为避免抽头权值
Figure BDA0001580241590000115
远小于滤波器最大抽头权值引起的迭代停顿而设置。Q(n+1)的更新方式与P(n+1)相同。
另外,用于滤波器系数更新的误差信号e1(n)的计算表达式如下:
Figure BDA0001580241590000116
综上,本发明提出的基于MPNLMS的双麦克风声反馈抑制方法实现步骤如下:
步骤1:初始化
Figure BDA0001580241590000117
Figure BDA0001580241590000118
步骤2:迭代计算误差信号e1(n)(n≥0)
Figure BDA0001580241590000119
Figure BDA00015802415900001110
Figure BDA00015802415900001111
步骤3:更新自适应滤波器
Figure BDA00015802415900001112
的系数:
Figure BDA00015802415900001113
Figure BDA00015802415900001114
Figure BDA00015802415900001115
Figure BDA00015802415900001116
Figure BDA00015802415900001117
Figure BDA0001580241590000121
步骤4:更新自适应滤波器
Figure BDA0001580241590000122
的系数:
Figure BDA0001580241590000123
Figure BDA0001580241590000124
Figure BDA0001580241590000125
Figure BDA0001580241590000126
Figure BDA0001580241590000127
Figure BDA0001580241590000128
该方法主要由四部分组成:系数向量初始化,计算误差信号e1(n),更新自适应滤波器
Figure BDA0001580241590000129
的系数,更新自适应滤波器
Figure BDA00015802415900001210
的系数。其中误差信号e1(n)同时控制
Figure BDA00015802415900001211
的系数。整个方法的流程图如图2所示。
仿真结果
以误差MisAL及最大稳定增益MSG作为性能指标。其中误差计算表达式和最大稳定增益分别定义为:
Figure BDA00015802415900001212
Figure BDA00015802415900001213
式中,dg为反馈路径G1(q)以及G2(q)中由AD转换,DA转换及声音传递过程带来的延时。
下面将本发明的TM-AFC-MPNLMS方法分别与传统的MPNLMS算法、PNLMS算法、NLMS算法进行对比仿真分析。在以下的仿真中,TM-AFC-MPNLMS算法中自适应滤波器
Figure BDA00015802415900001214
步长为μg=0.001,其长度
Figure BDA00015802415900001215
自适应滤波器
Figure BDA00015802415900001216
的步长为μh=0.001,并且其长度为
Figure BDA0001580241590000131
其它传统算法中的自适应滤波器步长为μ=0.001。在所有仿真中,设置时延dg=1ms,dm=62.5μs。滤波器G1(q)、G2(q)长度Lg=38。采样频率为16kHz,且前向通道增益为K=35dB,前向通道时延为dk=2ms。
图3呈现了无噪声注入时TM-AFC-MPNLMS算法、MPNLMS算法、PNLMS算法、NLMS算法的误差及最大稳定增益的图像。其中,反馈路径G1(q)以及G2(q)在第40秒时由正常声场切换到声反馈信号更强的有障碍物声场。从图3可知,在正常声场下,本发明提出的基于双麦克风模型的MPNLMS(TM-AFC-MPNLMS)方法相对于传统的算法在最大稳定增益MSG上有3-4dB提升,在误差MisAL上有4-5dB提升。当反馈变强时,也分别有2-3dB及3-4dB提升。
图4中给出了注入30dB噪声时TM-AFC-MPNLMS算法、MPNLMS算法、PNLMS算法、NLMS算法的最大稳定增益及误差性能对比,其中,注入到扬声器输入信号K(q)u1(n)之中的高斯噪声信号w(n)的信噪比为:
Figure BDA0001580241590000132
反馈路径在第40秒时由正常声场切换到声反馈信号更强的声场。由图4可知,正常声场下,本方法相对于传统的算法在最大稳定增益MSG上的提升有2-3dB,在误差MisAL上的提升有3-4dB。当反馈信号变强时,也分别有1dB及2dB左右的提升。
综上,由图3和图4可知,本发明提出的方法相比于传统算法在无噪声,及注入噪声两种情况下收敛速度均更快。这是因为本方法降低了声反馈信号与有效输入信号之间的相关性,进而降低了自适应滤波器系数的设计偏差,提高了算法的误差、最大稳定增益及收敛速度的性能。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
应当理解的是,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。

Claims (3)

1.一种基于双麦克风模型的MPNLMS声反馈抑制方法,其特征在于,将双麦克风模型与MPNLMS算法相结合以抑制声反馈,所述双麦克风模型为在主麦克风的基础上加入一个空间上离扬声器更远的副麦克风,主、副两个麦克风所在传声路径分别通过自适应滤波器
Figure FDA0003147235090000011
Figure FDA0003147235090000012
模拟;
该方法首先分别初始化自适应滤波器
Figure FDA0003147235090000013
Figure FDA0003147235090000014
的权系数向量,将它们分别初始化为长度是
Figure FDA0003147235090000015
Figure FDA0003147235090000016
的0向量;
然后,将副麦克风所在传声路径的自适应滤波器
Figure FDA0003147235090000017
的输出信号
Figure FDA0003147235090000018
减去主麦克风所在传声路径的自适应滤波器
Figure FDA0003147235090000019
的误差信号
Figure FDA00031472350900000110
得到本方法所需误差信号e1(n),并以此方法迭代计算误差信号e1(n),n≥0;
在迭代计算误差信号e1(n)的同时根据MPNLMS算法分别更新自适应滤波器
Figure FDA00031472350900000111
的权系数与自适应滤波器
Figure FDA00031472350900000112
的权系数;其中误差信号e1(n)同时控制
Figure FDA00031472350900000113
的系数更新;最后,将自适应滤波器
Figure FDA00031472350900000114
的输出作为整个声反馈抑制方法的输出;
所述双麦克风模型具体描述为:该模型有两个麦克风和一个扬声器,主麦克风置于耳朵内,副麦克风在耳朵旁,主麦克风离反馈信号源更近,扬声器与两个麦克风之间的反馈路径被假定为两个FIR滤波器,其系数向量分别为:
Figure FDA00031472350900000115
Figure FDA00031472350900000116
滤波器长度均为Lg,滤波器多项式传递函数为
Figure FDA00031472350900000117
自适应滤波器
Figure FDA00031472350900000118
用于识别和跟踪声反馈路径的变化,并产生声反馈信号f1(n)的估计信号
Figure FDA00031472350900000119
其长度为
Figure FDA00031472350900000120
系数向量为:
Figure FDA00031472350900000121
FIR自适应滤波器
Figure FDA00031472350900000122
被用来模拟副麦克风到主麦克风的传声路径H(q),其长度为
Figure FDA00031472350900000123
系数向量为
Figure FDA00031472350900000124
主麦克风与副麦克风输入的有效信号分别为ui(n),i=1,2,反馈信号分别为fi(n)=Gi(q)y1(n),i=1,2,输入信号分别为:
m1(n)=u1(n)+f1(n) (1)
m2(n)=u2(n)+f2(n) (2)
其中,反馈信号f2(n)相对于f1(n)被衰减得更厉害,主麦克风m1的输入信号u1(n)与副麦克风m2的输入信号u2(n)之间关系的时域离散表达式为:
u1(n-dm)=hT(n)u2(n)+ζ(n) (3)
其中,H(q)是长度为Lh的FIR滤波器,ζ(n)为u1(n)中不能由u2(n)转换而得到的部分,为了使仿真更加接近实际情况,在第一个麦克风所在路径中加入延时dm,在本双麦克风模型下,式(3)中的u1(n)与u2(n)是相干信号;
另外,主麦克风的输入信号m1(n)减去自适应滤波器
Figure FDA0003147235090000021
的反馈估计信号
Figure FDA0003147235090000022
得到误差信号
Figure FDA0003147235090000023
Figure FDA0003147235090000024
误差信号
Figure FDA0003147235090000025
经过前向传递路径K(q)放大并最终被输入扬声器,前向传递路径K(q)的时延为dk,dk≥1,增益为K,如果误差信号
Figure FDA0003147235090000026
被直接用来更新自适应滤波器系数,则由于u1(n)与它的相关性,将给系统带来干扰并最终造成滤波器系数的估计偏差,因此,在双麦克风系统中,利用副麦克风估计u1(n),然后将估计信号从
Figure FDA0003147235090000027
中减掉,副麦克风的输入信号m2(n)经过自适应滤波器
Figure FDA0003147235090000028
处理后得到其估计信号
Figure FDA0003147235090000029
Figure FDA00031472350900000210
减去
Figure FDA00031472350900000211
得到误差信号e1(n):
Figure FDA00031472350900000212
误差信号e1(n)用于控制自适应滤波器
Figure FDA00031472350900000213
Figure FDA00031472350900000214
系数的更新,利用归一化最小均方算法对自适应滤波器
Figure FDA00031472350900000215
Figure FDA00031472350900000216
进行控制:
Figure FDA00031472350900000217
Figure FDA00031472350900000218
式(6)与式(7)中μ为滤波器步长大小;y1(n)为扬声器信号,同时也是自适应滤波器
Figure FDA0003147235090000031
的输入信号;m2(n)是副麦克风的输入信号,同时也作为自适应滤波器
Figure FDA0003147235090000032
的输入;y1(n)表示为:
Figure FDA00031472350900000316
其中,S(q)为灵敏度函数,其表示为:
Figure FDA0003147235090000033
在按如上方式引入双麦克风模型的基础上,本方法将该模型与MPNLMS算法结合,对声反馈信号进行抑制。
2.如权利要求1所述的基于双麦克风模型的MPNLMS声反馈抑制方法,其特征在于,所述MPNLMS算法具体描述为:在MPNLMS算法中,自适应滤波器的输入信号被用于更新滤波器系数,对应双麦克风模型中自适应滤波器
Figure FDA0003147235090000034
以及副麦克风所在反馈路径的自适应滤波器
Figure FDA0003147235090000035
的输入信号分别被表示为:
Figure FDA0003147235090000036
Figure FDA0003147235090000037
其中,
Figure FDA0003147235090000038
分别为自适应滤波器
Figure FDA0003147235090000039
Figure FDA00031472350900000310
的长度,y1(n)及m2(n)分别为扬声器信号及副麦克风输入信号,误差信号
Figure FDA00031472350900000311
由下式计算:
Figure FDA00031472350900000312
其中,主麦克风的输入信号m1(n)由式(1)计算,u1(n)的估计信号
Figure FDA00031472350900000313
以及最终用于更新滤波器的误差信号e1(n)分别由以下两式计算:
Figure FDA00031472350900000314
Figure FDA00031472350900000315
3.如权利要求2所述的基于双麦克风模型的MPNLMS声反馈抑制方法,其特征在于,在双麦克风模型中用MNPLMS算法代替式(6)、(7)所列的NLMS算法,自适应滤波器
Figure FDA0003147235090000041
Figure FDA0003147235090000042
的滤波器系数更新方程写为:
Figure FDA0003147235090000043
Figure FDA0003147235090000044
其中,μg与μh分别为自适应滤波器
Figure FDA0003147235090000045
Figure FDA0003147235090000046
的更新步长,控制算法的收敛速度与稳态失调;δ为一个数值很小的正数,作为调整参数防止出现分母为零的情况,P(n+1)与Q(n+1)分别为自适应滤波器
Figure FDA0003147235090000047
Figure FDA0003147235090000048
的步长控制矩阵,它们给各个滤波器系数赋予不同的步长,其中P(n+1)表示为:
Figure FDA0003147235090000049
本方法按如下递归关系式计算P(n+1):
Figure FDA00031472350900000410
Figure FDA00031472350900000411
Figure FDA00031472350900000412
Figure FDA00031472350900000413
式中,δ为修正系数,防止权系数全为零时pl(n+1)不成立;ρ一般取在
Figure FDA00031472350900000414
之间;
Figure FDA00031472350900000415
为自适应滤波器
Figure FDA00031472350900000416
长度;γPmin为避免抽头权值
Figure FDA00031472350900000417
远小于滤波器最大抽头权值引起的迭代停顿而设置,Q(n+1)的更新方式与P(n+1)相同;
另外,用于滤波器系数更新的误差信号e1(n)的计算表达式如下:
Figure FDA00031472350900000418
Figure FDA0003147235090000051
CN201810152518.5A 2018-02-15 2018-02-15 一种基于双麦克风模型的mpnlms声反馈抑制方法 Active CN108630216B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810152518.5A CN108630216B (zh) 2018-02-15 2018-02-15 一种基于双麦克风模型的mpnlms声反馈抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810152518.5A CN108630216B (zh) 2018-02-15 2018-02-15 一种基于双麦克风模型的mpnlms声反馈抑制方法

Publications (2)

Publication Number Publication Date
CN108630216A CN108630216A (zh) 2018-10-09
CN108630216B true CN108630216B (zh) 2021-08-27

Family

ID=63706034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810152518.5A Active CN108630216B (zh) 2018-02-15 2018-02-15 一种基于双麦克风模型的mpnlms声反馈抑制方法

Country Status (1)

Country Link
CN (1) CN108630216B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2590346A (en) * 2019-10-10 2021-06-30 Gibby Adrian Elimination of feedback or howlround due to microphones, pickups and audio input transducers feeding back through loudspeakers
CN111508464B (zh) * 2020-04-14 2023-07-14 深圳市友杰智新科技有限公司 滤波参数自更新方法、滤波器、设备和存储介质
CN111970410B (zh) * 2020-08-26 2021-11-19 展讯通信(上海)有限公司 回声消除方法及装置、存储介质、终端
CN114584901A (zh) * 2022-03-03 2022-06-03 西北工业大学 一种基于克罗内克分解的rls声反馈抑制算法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1251192A (zh) * 1997-11-22 2000-04-19 皇家菲利浦电子有限公司 具有多个输入源的音频处理设备
US6611594B1 (en) * 2000-10-25 2003-08-26 Agere Systems, Inc. Robust signed regressor PNLMS method and apparatus for network echo cancellation
CN1607740A (zh) * 2003-09-24 2005-04-20 卓联半导体股份有限公司 不稳定信号的改进型仿射投影算法
CN101192411A (zh) * 2007-12-27 2008-06-04 北京中星微电子有限公司 大距离麦克风阵列噪声消除的方法和噪声消除系统
CN101273663A (zh) * 2005-10-11 2008-09-24 唯听助听器公司 助听器和在助听器中处理输入信号的方法
CN101438603A (zh) * 2006-04-01 2009-05-20 唯听助听器公司 助听器和助听器的抗反馈系统中自适应速率的控制方法
CN101874412A (zh) * 2007-10-03 2010-10-27 奥迪康有限公司 具有预测和抵消声反馈的反馈布置的助听器系统、方法及使用
CN102077607A (zh) * 2008-05-02 2011-05-25 Gn奈康有限公司 组合至少两个音频信号的方法和包括至少两个麦克风的麦克风系统
CN102104821A (zh) * 2009-12-22 2011-06-22 西门子医疗器械公司 利用定向麦克风进行反馈识别和抑制的方法和助听器
CN102509552A (zh) * 2011-10-21 2012-06-20 浙江大学 一种基于联合抑制的麦克风阵列语音增强方法
CN103098132A (zh) * 2010-08-25 2013-05-08 旭化成株式会社 声源分离装置、声源分离方法、以及程序
CN103475980A (zh) * 2013-07-19 2013-12-25 杭州联汇数字科技有限公司 一种自适应声反馈消除方法
CN103680515A (zh) * 2013-11-21 2014-03-26 苏州大学 采用系数重用的比例自适应滤波器系数向量更新方法
CN104050971A (zh) * 2013-03-15 2014-09-17 杜比实验室特许公司 声学回声减轻装置和方法、音频处理装置和语音通信终端
CN105070295A (zh) * 2015-07-10 2015-11-18 西南交通大学 一种活性因子成比例子带的自适应方法应用于回声消除

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433908B2 (en) * 2002-07-16 2008-10-07 Tellabs Operations, Inc. Selective-partial-update proportionate normalized least-mean-square adaptive filtering for network echo cancellation

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1251192A (zh) * 1997-11-22 2000-04-19 皇家菲利浦电子有限公司 具有多个输入源的音频处理设备
US6611594B1 (en) * 2000-10-25 2003-08-26 Agere Systems, Inc. Robust signed regressor PNLMS method and apparatus for network echo cancellation
CN1607740A (zh) * 2003-09-24 2005-04-20 卓联半导体股份有限公司 不稳定信号的改进型仿射投影算法
CN101273663A (zh) * 2005-10-11 2008-09-24 唯听助听器公司 助听器和在助听器中处理输入信号的方法
CN101438603A (zh) * 2006-04-01 2009-05-20 唯听助听器公司 助听器和助听器的抗反馈系统中自适应速率的控制方法
CN101874412A (zh) * 2007-10-03 2010-10-27 奥迪康有限公司 具有预测和抵消声反馈的反馈布置的助听器系统、方法及使用
CN101192411A (zh) * 2007-12-27 2008-06-04 北京中星微电子有限公司 大距离麦克风阵列噪声消除的方法和噪声消除系统
CN102077607A (zh) * 2008-05-02 2011-05-25 Gn奈康有限公司 组合至少两个音频信号的方法和包括至少两个麦克风的麦克风系统
CN102104821A (zh) * 2009-12-22 2011-06-22 西门子医疗器械公司 利用定向麦克风进行反馈识别和抑制的方法和助听器
CN103098132A (zh) * 2010-08-25 2013-05-08 旭化成株式会社 声源分离装置、声源分离方法、以及程序
CN102509552A (zh) * 2011-10-21 2012-06-20 浙江大学 一种基于联合抑制的麦克风阵列语音增强方法
CN104050971A (zh) * 2013-03-15 2014-09-17 杜比实验室特许公司 声学回声减轻装置和方法、音频处理装置和语音通信终端
CN103475980A (zh) * 2013-07-19 2013-12-25 杭州联汇数字科技有限公司 一种自适应声反馈消除方法
CN103680515A (zh) * 2013-11-21 2014-03-26 苏州大学 采用系数重用的比例自适应滤波器系数向量更新方法
CN105070295A (zh) * 2015-07-10 2015-11-18 西南交通大学 一种活性因子成比例子带的自适应方法应用于回声消除

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A zero attracting proportionate normalized least mean square algorithm;RL Das etc;《Signal & Information Processing》;20130117;第1-4页 *
Dual microphone solution for acoustic cancellation for assistive listening;Carlos Renato C.Nakagawa etc;《IEEE International Conference on Acoustics》;20120831;第149-152页 *
数字助听器自适应声反馈消除的研究;唐燕;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20130615(第06期);第43-46页 *

Also Published As

Publication number Publication date
CN108630216A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
CN108630216B (zh) 一种基于双麦克风模型的mpnlms声反馈抑制方法
US10403299B2 (en) Multi-channel speech signal enhancement for robust voice trigger detection and automatic speech recognition
JP4177882B2 (ja) 適応帰還抑制システムを備えた補聴器
Spriet et al. Adaptive feedback cancellation in hearing aids with linear prediction of the desired signal
JP2882364B2 (ja) 雑音消去方法及び雑音消去装置
EP3563562A1 (en) Acoustic echo canceling
CN110996203B (zh) 一种耳机降噪方法、装置、系统及无线耳机
CN110191245B (zh) 一种基于时变参数的自适应回声消除方法
Tran et al. Proportionate NLMS for adaptive feedback control in hearing aids
JP2004349806A (ja) 多チャネル音響エコー消去方法、その装置、そのプログラム及びその記録媒体
CN110572525A (zh) 一种用于语音通信的自适应通信回声消除方法
CN113078884B (zh) 添加非线性拟合的自适应算法
CN106782595B (zh) 一种降低语音泄露的鲁棒阻塞矩阵方法
Kalamani et al. Modified noise reduction algorithm for speech enhancement
JP2000332574A (ja) 適応フィルタ、適応フィルタの制御方法及びプログラムを記憶した記憶媒体
CN110731088B (zh) 信号处理装置、远程会议装置以及信号处理方法
CN110767245B (zh) 基于s型函数的语音通信自适应回声消除方法
CN112863532A (zh) 回音抑制装置、回音抑制方法以及存储介质
JP3616341B2 (ja) 多チャネルエコーキャンセル方法、その装置、そのプログラム及び記録媒体
CN117767915A (zh) 基于改进的归一化变步长lms算法的自适应滤波方法
Goetze et al. A decoupled filtered-x LMS algorithm for listening-room compensation
TWI624830B (zh) 一種仿射組合的回聲消除方法與系統
Puder et al. Controlling the adaptation of feedback cancellation filters-problem analysis and solution approaches
Motar et al. Echo Cancellation in Telecommunications Using Variable Step-Size, Dynamic Selection, Affine Projection Algorithm.
CN111899751B (zh) 抗饱和失真的广义混合范数自适应回声消除方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant