CN108629449A - 一种用于交直流混合微网的分布鲁棒式优化调度方法 - Google Patents

一种用于交直流混合微网的分布鲁棒式优化调度方法 Download PDF

Info

Publication number
CN108629449A
CN108629449A CN201810384664.0A CN201810384664A CN108629449A CN 108629449 A CN108629449 A CN 108629449A CN 201810384664 A CN201810384664 A CN 201810384664A CN 108629449 A CN108629449 A CN 108629449A
Authority
CN
China
Prior art keywords
formula
value
diesel
direct current
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810384664.0A
Other languages
English (en)
Other versions
CN108629449B (zh
Inventor
顾伟
邱海峰
周苏洋
吴志
窦晓波
吴在军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Liyang Research Institute of Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810384664.0A priority Critical patent/CN108629449B/zh
Publication of CN108629449A publication Critical patent/CN108629449A/zh
Application granted granted Critical
Publication of CN108629449B publication Critical patent/CN108629449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Administration (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种用于交直流混合微网的分布鲁棒式优化调度方法,包括以下步骤:步骤10)获取源荷不确定性预测参数,建立分布型不确定性集;步骤20)获取交直流混合微网中各设备的运行成本系数和运行限值,基于步骤10)的不确定性集建立交直流混合微网的分布鲁棒式优化调度模型;步骤30)求解分布鲁棒式优化调度模型的问题:利用对偶分解法迭代求解该分布鲁棒式问题,获得交直流混合微网的鲁棒运行计划。该方法考虑到交直流混合微网中源荷不确定性的分布特性,利用概率分布函数描述源荷不确定性集,改善了传统鲁棒优化调度的保守性,制定合理的交直流混合微网的运行调度计划。

Description

一种用于交直流混合微网的分布鲁棒式优化调度方法
技术领域
本发明涉及微电网的能量管理和优化调度技术领域,特别是一种用于交直流混合微网的分布鲁棒式优化调度方法。
背景技术
随着越来越多的可再生能源通过微网接入电力系统,电网中可再生能源渗透率大大提高,这些可再生能源大大降低了环境污染,提高了发电的经济效益,然而可再生能源与自然条件密切相关,其较强的不确定性和不可控性给电网的安全经济运行带来了巨大挑战,此外负荷预测总会存在一定的偏差,因此如何在众多不确定性因素下开展有效的能量管理成为目前的研究热点。
随着越来越多直流型电源及负荷接入了微网,学者提出一种新型微网结构——交直流混合微网,该类微网通过双向换流器连接交流母线与直流母线,实现了交流和直流的分区供电。事实上,交直流混合微网是在考虑多重不确定因素下进行的区域间协调调度,其双向换流器的运行状态需保证所有场景下两个区域的协调运行。鲁棒优化作为一种考虑不确定性集的优化方法已经被应用于交直流混合微网的优化调度中。传统鲁棒优化通过区间不确定性集描述源荷预测误差,未考虑预测误差的具体概率分布情况,优化出的最恶劣场景在部分时段选取区间不确定性集的极值点,即仅仅将源荷不确定性归咎于少数几个时段发生最大偏差,而其余时段均为预测标称值,在实际中这类极端场景几乎不会出现,因此传统鲁棒优化方法的优化结果具有很强的保守性。
发明内容
本发明所要解决的技术问题是克服现有技术的不足而提供一种用于交直流混合微网的分布鲁棒式优化调度方法,该方法利用源荷预测均值、偏差区间及置信概率构造分布式不确定性集,基于所构造的不确定性集建立交直流混合微网的分布鲁棒式优化调度模型,通过对偶分解法将复杂的三层优化问题转化为两阶段优化问题,可快速有效求解。
本发明为解决上述技术问题采用以下技术方案:
根据本发明提出的一种用于交直流混合微网的分布鲁棒式优化调度方法,包括以下步骤:
步骤10、获取源荷不确定性预测参数,建立分布型不确定性集;
步骤20、获取交直流混合微网中各设备的运行成本系数和运行限值,基于步骤10的不确定性集建立交直流混合微网的分布鲁棒式优化调度模型;
步骤30、求解分布鲁棒式优化调度模型的问题:利用对偶分解法迭代求解该分布鲁棒式问题,获得交直流混合微网的鲁棒运行计划。
作为本发明所述的一种用于交直流混合微网的分布鲁棒式优化调度方法进一步优化方案,所述步骤10中,所获取的源荷不确定性预测参数包括源荷不确定性预测的标称值、上偏差值和下偏差值,此外还包括源荷不确定性的时段预算数和置信概率;将源荷不确定性预测参数代入下式建立分布型不确定性集;
式中,Ω和Γ分别为源荷的区间不确定性集和分布函数不确定性集,二者构成源荷分布型不确定性集;wt分别是t时段风机最大可输出功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为风机出力不确定性的上偏差引入参数和下偏差引入参数;pt分别是t时段光伏最大可输出功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为光伏出力不确定性的上偏差引入参数和下偏差引入参数;ldc,t分别是t时段直流负荷最大功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为直流负荷不确定性的上偏差引入参数和下偏差引入参数;lac,t分别是t时段交流负荷最大功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为交流负荷不确定性的上偏差引入参数和下偏差引入参数;w、p、ldc、lac分别为wt、pt、ldc,t、lac,t的集合;z为w、p、ldc、lac组成的集合;z*为组成的集合;f(z)为z的概率分布函数;ρ为z落入Ω的置信概率;υ为z的时段预算数。
作为本发明所述的一种用于交直流混合微网的分布鲁棒式优化调度方法进一步优化方案,所述步骤20中,交直流混合微网中各设备的运行成本系数和运行限值包括与风机、光伏、柴油发电机、储能、双向换流器及交直流负荷相关的所有的成本系数和运行限值,将成本系数、运行限值、步骤10的分布型不确定性集代入下式建立交直流混合微网的分布鲁棒式优化调度模型:
式(3)为该分布鲁棒式优化调度模型的目标函数;UDE,t表示t时段柴油发电机的运行状态,IDE,t为t时段柴油发电机的启动标志位,MDE,t为t时段柴油发电机的关停标志位,是t时段双向换流器正向换流运行状态标志位,是t时段双向换流器负向换流运行状态标志位,分别为柴油发电机的启动、关停和燃料成本;C分别为柴油发电机、双向换流器、风机和光伏的运行维护成本;为负荷切除停电惩罚成本;为储能损耗成本;PWT,t和PPV,t分别是风机和光伏在t时段的发电功率;PDE,t为柴油发电机在t时段的运行功率;分别为储能在t时段的充电功率和放电功率;为双向换流器在t时段从交流母线到直流母线的正向换流功率;为双向换流器在t时段从直流母线到交流母线的负向换流功率;分别表示t时段交流区被切除的负荷功率和直流区被切除的负荷功率;
式中的相关成本项根据下式计算得到:
式中,Nt为一个调度周期的总时段数,Δt为一个调度时段间隔;分别为柴油发电机的启动、关停和燃料成本系数;aDE和bDE为柴油发电机的油耗特性成本系数;为柴油发电机的额定功率;分别为柴油发电机、储能、双向换流器、风机和光伏的运行维护成本系数;为负荷切除停电惩罚成本系数;为储能损耗成本系数;
该分布鲁棒式优化调度模型的约束条件包括:
0≤PWT,t≤wt,0≤PPV,t≤pt (8)
IDE,t+MDE,t≤1,IDE,t-MDE,t=UDE,t-UDE,t-1 (11)
式(8)为风机和光伏的发电功率约束;式(9)-(11)为柴油发电机的最小持续开机时间、最小持续关机时间和最大持续开机时间约束,分别为柴油发电机的最小持续开机时段数限值、最小持续关机时段数限值和最大持续开机时段数限值;q表示柴油发电机状态变量的起始时段;式(12)为柴油发电机运行功率上下限及爬坡速度约束,为柴油发电机开机状态下运行功率的上限值和下限值,为柴油发电机的单位时段内下爬坡和上爬坡的速率限值;式(13)-(14)为储能最大充放电功率和储能荷电状态约束,为储能的最大充电和放电功率限值,SOCmax和SOCmin为储能允许荷电状态的上下限值,SOCt和SOCt-1分别为t和t-1时段储能的荷电状态,SOC0为储能在调度周期的始末荷电状态限值,ηC和ηD为储能充放电效率;式(15)-(16)为双向换流器的换流功率及功率波动约束,表示正向换流和负向换流的运行功率限值,表示双向换流器在相邻时段功率波动的下限值和上限值;式(17)为各时段交直流被切除负荷运行功率约束,是t时段交流和直流最大的可切除负荷功率限值;式(18)-(19)为直流区和交流区的功率平衡约束,为双向换流器的正向和负向换流效率限值。
作为本发明所述的一种用于交直流混合微网的分布鲁棒式优化调度方法进一步优化方案,UDE,t取值为1时表示柴油发电机在t时段处于开机状态,取值为0时表示处于停机状态;IDE,t取值为1表示柴油发电机在t时段被启动,取值为0表示未被启动;MDE,t取值为1表示柴油发电机在t时段被关停,取值为0表示未被关停;取值为1表示t时段存在正向换流,取值为0表示不存在正向换流;取值为1表示t时段存在负向换流,取值为0表示不存在负向换流。
作为本发明所述的一种用于交直流混合微网的分布鲁棒式优化调度方法进一步优化方案,所述步骤30的具体内容包括:
步骤301):将式(3)-(19)表示的交直流混合微网的分布鲁棒式优化调度模型写成以下矩阵表示形式:
s.t.Ax≤b,Bx=e,x∈{0,1} (21)
Dy≤f,Ey=g, (22)
Fy≤h-Gx, (23)
Jy≤w,Ky≤p, (24)
My=ldc,Ny=lac (25)
式中,x为第一层的0-1状态变量,y为第三层功率变量;式(21)表示仅与x相关的约束条件,式(22)表示仅与y相关的约束,式(23)表示与x和y相关的约束,式(24)表示与w,p和y相关的约束,式(25)表示与ldc,lac和y相关的约束;cT和dT为目标函数中的常数矩阵,A、b、B、e、D、f、E、g、F、h、G、J、K、M、N均为约束条件中的常数矩阵;
步骤302):基于步骤301)中矩阵表示的分布鲁棒式优化调度模型,该优化模型的主问题为:
式中,l为总迭代次数;η和τ为与式(2)对应的对偶变量;zk={wk,pk,ldc,k,lac,k}和yk为子问题的第k次优化结果;主问题的优化结果为xk,ηk和τk;上标T表示矩阵的转置;zk,wk,pk,ldc,k,lac,k分别为Ω内对应变量的第k次优化结果;yk和xk分别表示y和x的第k次优化结果;ηk和τk为对偶变量η和τ的第k次优化结果;
步骤303):基于步骤301)中矩阵表示形式的分布鲁棒式优化调度模型,将步骤302)中主问题的第k次优化结果xk和τk代入子问题,则该分布鲁棒式优化调度模型的子问题如下:
s.t.Dy≤f,Ey=g,Fy≤h-Gxk, (28)
Jy≤w,Ky≤p,My=ldc,Ny=lac (29)
引入对偶变量将该子问题转化为max形式的单层优化问题:
式中,α、β、χ、γ、ψ、μdc和μac为式(28)-(29)中y的对偶变量;
步骤304):利用整数优化建模工具箱YALMIP调用求解器SCIP迭代求解步骤302)的主问题和步骤303)的子问题,获得交直流混合微网的鲁棒协调运行计划。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
本发明采用区间不确定性集和分布函数不确定性集构成的分布型不确定性集来描述源荷预测误差,基于分布型不确定性集建立的分布鲁棒式优化调度方法进一步考虑了源荷不确定性的概率分布特性,降低了传统鲁棒优化调度的保守性,优化出的结果更加符合实际场景。
附图说明
图1为本发明实施例的流程图;
图2为本发明实施例中交直流混合微网的拓扑结构图;
图3为本发明实施例中风光出力及交直流负荷的功率预测标称值;
图4为本发明实施例的鲁棒优化调度结果;其中,(a)为交直流混合微网中风机、光伏、交流负荷和直流负荷的功率优化结果,(b)为交直流混合微网中双向换流器、柴油发电机和储能的功率优化结果。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本发明进行详细描述。
如图1所示,本发明方法的实施例,交直流混合微网的拓扑结构如图2所示。该方法包括以下步骤:
步骤10)获取源荷不确定性预测参数,建立分布型不确定性集;
步骤20)获取交直流混合微网中各设备的运行成本系数和运行限值,基于步骤10)的不确定性集建立交直流混合微网的分布鲁棒式优化调度模型;
步骤30)求解分布鲁棒式优化调度模型的问题:利用对偶分解法迭代求解该分布鲁棒式问题,获得交直流混合微网的鲁棒运行计划。
作为优选方案,所述步骤10)中,所获取的源荷不确定性预测参数包括源荷不确定性预测的标称值、上偏差值和下偏差值,此外还包括源荷不确定性的时段预算数和置信概率。将源荷不确定性预测参数代入下式建立分布型不确定性集。
式中,Ω和Γ分别为源荷的区间不确定性集和分布函数不确定性集,二者构成源荷分布型不确定性集;wt分别是t时段风机最大可输出功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为风机出力不确定性的上偏差引入参数和下偏差引入参数;pt分别是t时段光伏最大可输出功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为光伏出力不确定性的上偏差引入参数和下偏差引入参数;ldc,t分别是t时段直流负荷最大功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为直流负荷不确定性的上偏差引入参数和下偏差引入参数;lac,t分别是t时段交流负荷最大功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为交流负荷不确定性的上偏差引入参数和下偏差引入参数;w、p、ldc、lac分别为wt、pt、ldc,t、lac,t的集合;z为w、p、ldc、lac组成的集合;z*为组成的集合;f(z)为z的概率分布函数;ρ为z落入Ω的置信概率;υ为z的时段预算数。
作为优选方案,所述步骤20)中,交直流混合微网中各设备的运行成本系数和运行限值包括与风机、光伏、柴油发电机、储能、双向换流器及交直流负荷相关的所有的成本系数和运行限值,将成本系数、运行限值、步骤10)的分布型不确定性集代入下式建立交直流混合微网的分布鲁棒式优化调度模型:
式(3)为该分布鲁棒式优化调度模型的目标函数;UDE,t表示t时段柴油发电机的运行状态,取值为1时表示柴油发电机在t时段处于开机状态,取值为0时表示处于停机状态;IDE,t为t时段柴油发电机的启动标志位,1表示柴油发电机在t时段被启动,0表示未被启动;MDE,t为t时段柴油发电机的关停标志位,1表示柴油发电机在t时段被关停,0表示未被关停;是t时段双向换流器正向换流运行状态标志位,1表示t时段存在正向换流,0表示不存在正向换流,是t时段双向换流器负向换流运行状态标志位,1表示t时段存在负向换流,0表示不存在负向换流;分别为柴油发电机的启动、关停和燃料成本;分别为柴油发电机、双向换流器、风机和光伏的运行维护成本;为负荷切除停电惩罚成本;为储能损耗成本;PWT,t和PPV,t分别是风机和光伏在t时段的发电功率;PDE,t为柴油发电机在t时段的运行功率;分别为储能在t时段的充电功率和放电功率;为双向换流器在t时段从交流母线到直流母线的正向换流功率;为双向换流器在t时段从直流母线到交流母线的负向换流功率;分别表示t时段交流区被切除的负荷功率和直流区被切除的负荷功率。
式中的相关成本项根据下式计算得到:
式中,Nt为一个调度周期的总时段数,Δt为一个调度时段间隔;分别为柴油发电机的启动、关停和燃料成本系数;aDE和bDE为柴油发电机的油耗特性成本系数;为柴油发电机的额定功率;分别为柴油发电机、储能、双向换流器、风机和光伏的运行维护成本系数;为负荷切除停电惩罚成本系数;为储能损耗成本系数。
该分布鲁棒式优化调度模型的约束条件包括:
0≤PWT,t≤wt,0≤PPV,t≤pt (8)
IDE,t+MDE,t≤1,IDE,t-MDE,t=UDE,t-UDE,t-1 (11)
式(8)为风机和光伏的发电功率约束;式(9)-(11)为柴油发电机的最小持续开机时间、最小持续关机时间和最大持续开机时间约束,分别为柴油发电机的最小持续开机时段数限值、最小持续关机时段数限值和最大持续开机时段数限值;q表示柴油发电机状态变量的起始时段;式(12)为柴油发电机运行功率上下限及爬坡速度约束,为柴油发电机开机状态下运行功率的上限值和下限值,为柴油发电机的单位时段内下爬坡和上爬坡的速率限值;式(13)-(14)为储能最大充放电功率和储能荷电状态约束,为储能的最大充电和放电功率限值,SOCmax和SOCmin为储能允许荷电状态的上下限值,SOCt和SOCt-1分别为t和t-1时段储能的荷电状态,SOC0为储能在调度周期的始末荷电状态限值,ηC和ηD为储能充放电效率;式(15)-(16)为双向换流器的换流功率及功率波动约束,表示正向换流和负向换流的运行功率限值,表示双向换流器在相邻时段功率波动的下限值和上限值;式(17)为各时段交直流被切除负荷运行功率约束,是t时段交流和直流最大的可切除负荷功率限值;式(18)-(19)为直流区和交流区的功率平衡约束,为双向换流器的正向和负向换流效率限值。
UDE,t取值为1时表示柴油发电机在t时段处于开机状态,取值为0时表示处于停机状态;IDE,t取值为1表示柴油发电机在t时段被启动,取值为0表示未被启动;MDE,t取值为1表示柴油发电机在t时段被关停,取值为0表示未被关停;取值为1表示t时段存在正向换流,取值为0表示不存在正向换流;取值为1表示t时段存在负向换流,取值为0表示不存在负向换流。
作为优选方案,所述步骤30)的具体内容包括:
步骤301):将式(3)-(19)表示的交直流混合微网的分布鲁棒式优化调度模型写成以下矩阵表示形式:
s.t.Ax≤b,Bx=e,x∈{0,1} (21)
Dy≤f,Ey=g, (22)
Fy≤h-Gx, (23)
Jy≤w,Ky≤p, (24)
My=ldc,Ny=lac (25)
式中,x为第一层的0-1状态变量,y为第三层功率变量;式(21)表示仅与x相关的约束条件,式(22)表示仅与y相关的约束,式(23)表示与x和y相关的约束,式(24)表示与w,p和y相关的约束,式(25)表示与ldc,lac和y相关的约束。cT和dT为目标函数中的常数矩阵,A、b、B、e、D、f、E、g、F、h、G、J、K、M、N均为约束条件中的常数矩阵;
步骤302):基于步骤301)中矩阵表示的分布鲁棒式优化调度模型,该优化模型的主问题为:
式中,l为总迭代次数;η和τ为与式(2)对应的对偶变量;zk={wk,pk,ldc,k,lac,k}和yk为子问题的第k次优化结果;主问题的优化结果为xk,ηk和τk;上标T表示矩阵的转置;zk,wk,pk,ldc,k,lac,k分别为Ω内对应变量的第k次优化结果;yk和xk分别表示y和x的第k次优化结果;ηk和τk为对偶变量η和τ的第k次优化结果。
步骤303):基于步骤301)中矩阵表示形式的分布鲁棒式优化调度模型,将步骤302)中主问题的第k次优化结果xk和τk代入子问题,则该分布鲁棒式优化调度模型的子问题如下:
s.t.Dy≤f,Ey=g,Fy≤h-Gxk, (28)
Jy≤w,Ky≤p,My=ldc,Ny=lac (29)
引入对偶变量将该子问题转化为max形式的单层优化问题:
式中,α、β、χ、γ、ψ、μdc和μac为式(28)-(29)中y的对偶变量。
步骤304):利用整数优化建模工具箱YALMIP调用求解器SCIP迭代求解步骤302)的主问题和步骤303)的子问题,获得交直流混合微网的鲁棒协调运行计划。
本发明实施例的方法,利用分布型不确定性集来描述交直流混合微网中的源荷预测误差,建立一种分布鲁棒式优化调度模型。模型中将启停和状态变量作为第一阶段优化变量,将机组出力作为第二阶段优化变量。采用对偶分解法将所提模型分解为主问题和子问题,通过商业求解器能够快速有效求解。
下面例举一具体实施例。
某独立型交直流混合微网结构如图2所示,针对该微网开展鲁棒优化调度,微网中的相关参数如表1所示。
表1微网相关参数
该地区典型日的风光出力及交直流负荷的功率预测标称值如图3所示。风光出力预测功率95%概率落入±10%偏差范围内。各时段交直流区最大可切除负荷功率为预测标称值的50%。
优化结果如图4所示。分析图4中的(a)可知,对于分布鲁棒式优化调度,wt和pt在其预测值较大的时段取偏差区间的下限值,在其预测值较小的时段取偏差区间的上限值,此时风光出力相比于预测值减小最大,增加最小,导致运行费用上升;而lac,t和ldc,t在其预测值较大的时段取偏差区间的上限值,在其预测值较小的时段取偏差区间的下限值,此时负荷功率相比于预测值增加最大,减小最小,进一步导致运行费用上升;由于对称的分布特性,任何一个不确定性优化结果,取上限值的时段数等于取下限值的时段数;未出现弃风弃光和切负荷现象。
对于图4中的(b),柴发在早晨和傍晚时段启动运行,此时风光储不足以为交直流负荷供电;储能将夜间和中午多余风光转移至早晨和傍晚时段;双线换流器夜间将交流区功率换流至直流区,白天则相反;分布鲁棒式优化调度结果保证了对于不确定性集内可能出现的任意场景,不改变柴发和双向换流器运行状态,可以通过调整设备出力来补偿源荷功率预测波动。优化调度的目标函数值为549.59元。
以上显示和描述了本发明的基本原理、主要特征和优点。本领域的技术人员应该了解,本发明不受上述具体实施例的限制,上述具体实施例和说明书中的描述只是为了进一步说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护的范围由权利要求书及其等效物界定。

Claims (5)

1.一种用于交直流混合微网的分布鲁棒式优化调度方法,其特征在于,包括以下步骤:
步骤10、获取源荷不确定性预测参数,建立分布型不确定性集;
步骤20、获取交直流混合微网中各设备的运行成本系数和运行限值,基于步骤10的不确定性集建立交直流混合微网的分布鲁棒式优化调度模型;
步骤30、求解分布鲁棒式优化调度模型的问题:利用对偶分解法迭代求解该分布鲁棒式问题,获得交直流混合微网的鲁棒运行计划。
2.根据权利要求1所述的一种用于交直流混合微网的分布鲁棒式优化调度方法,其特征在于,所述步骤10中,所获取的源荷不确定性预测参数包括源荷不确定性预测的标称值、上偏差值和下偏差值,此外还包括源荷不确定性的时段预算数和置信概率;将源荷不确定性预测参数代入下式建立分布型不确定性集;
式中,Ω和Γ分别为源荷的区间不确定性集和分布函数不确定性集,二者构成源荷分布型不确定性集;wt分别是t时段风机最大可输出功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为风机出力不确定性的上偏差引入参数和下偏差引入参数;pt分别是t时段光伏最大可输出功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为光伏出力不确定性的上偏差引入参数和下偏差引入参数;ldc,t分别是t时段直流负荷最大功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为直流负荷不确定性的上偏差引入参数和下偏差引入参数;lac,t分别是t时段交流负荷最大功率的实际值、预测标称值、预测上偏差值和预测下偏差值;分别为交流负荷不确定性的上偏差引入参数和下偏差引入参数;w、p、ldc、lac分别为wt、pt、ldc,t、lac,t的集合;z为w、p、ldc、lac组成的集合;z*为组成的集合;f(z)为z的概率分布函数;ρ为z落入Ω的置信概率;υ为z的时段预算数。
3.根据权利要求2所述的一种用于交直流混合微网的分布鲁棒式优化调度方法,其特征在于,所述步骤20中,交直流混合微网中各设备的运行成本系数和运行限值包括与风机、光伏、柴油发电机、储能、双向换流器及交直流负荷相关的所有的成本系数和运行限值,将成本系数、运行限值、步骤10的分布型不确定性集代入下式建立交直流混合微网的分布鲁棒式优化调度模型:
式(3)为该分布鲁棒式优化调度模型的目标函数;UDE,t表示t时段柴油发电机的运行状态,IDE,t为t时段柴油发电机的启动标志位,MDE,t为t时段柴油发电机的关停标志位,是t时段双向换流器正向换流运行状态标志位,是t时段双向换流器负向换流运行状态标志位,分别为柴油发电机的启动、关停和燃料成本; 分别为柴油发电机、双向换流器、风机和光伏的运行维护成本;为负荷切除停电惩罚成本;为储能损耗成本;PWT,t和PPV,t分别是风机和光伏在t时段的发电功率;PDE,t为柴油发电机在t时段的运行功率;分别为储能在t时段的充电功率和放电功率;为双向换流器在t时段从交流母线到直流母线的正向换流功率;为双向换流器在t时段从直流母线到交流母线的负向换流功率;分别表示t时段交流区被切除的负荷功率和直流区被切除的负荷功率;
式中的相关成本项根据下式计算得到:
式中,Nt为一个调度周期的总时段数,Δt为一个调度时段间隔;分别为柴油发电机的启动、关停和燃料成本系数;aDE和bDE为柴油发电机的油耗特性成本系数;为柴油发电机的额定功率;分别为柴油发电机、储能、双向换流器、风机和光伏的运行维护成本系数;为负荷切除停电惩罚成本系数;为储能损耗成本系数;
该分布鲁棒式优化调度模型的约束条件包括:
0≤PWT,t≤wt,0≤PPV,t≤pt (8)
IDE,t+MDE,t≤1,IDE,t-MDE,t=UDE,t-UDE,t-1 (11)
式(8)为风机和光伏的发电功率约束;式(9)-(11)为柴油发电机的最小持续开机时间、最小持续关机时间和最大持续开机时间约束,分别为柴油发电机的最小持续开机时段数限值、最小持续关机时段数限值和最大持续开机时段数限值;q表示柴油发电机状态变量的起始时段;式(12)为柴油发电机运行功率上下限及爬坡速度约束,为柴油发电机开机状态下运行功率的上限值和下限值,为柴油发电机的单位时段内下爬坡和上爬坡的速率限值;式(13)-(14)为储能最大充放电功率和储能荷电状态约束,为储能的最大充电和放电功率限值,SOCmax和SOCmin为储能允许荷电状态的上下限值,SOCt和SOCt-1分别为t和t-1时段储能的荷电状态,SOC0为储能在调度周期的始末荷电状态限值,ηC和ηD为储能充放电效率;式(15)-(16)为双向换流器的换流功率及功率波动约束,表示正向换流和负向换流的运行功率限值,表示双向换流器在相邻时段功率波动的下限值和上限值;式(17)为各时段交直流被切除负荷运行功率约束,是t时段交流和直流最大的可切除负荷功率限值;式(18)-(19)为直流区和交流区的功率平衡约束,为双向换流器的正向和负向换流效率限值。
4.根据权利要求3所述的一种用于交直流混合微网的分布鲁棒式优化调度方法,其特征在于,UDE,t取值为1时表示柴油发电机在t时段处于开机状态,取值为0时表示处于停机状态;IDE,t取值为1表示柴油发电机在t时段被启动,取值为0表示未被启动;MDE,t取值为1表示柴油发电机在t时段被关停,取值为0表示未被关停;取值为1表示t时段存在正向换流,取值为0表示不存在正向换流;取值为1表示t时段存在负向换流,取值为0表示不存在负向换流。
5.根据权利要求3所述的一种用于交直流混合微网的分布鲁棒式优化调度方法,其特征在于,所述步骤30的具体内容包括:
步骤301):将式(3)-(19)表示的交直流混合微网的分布鲁棒式优化调度模型写成以下矩阵表示形式:
s.t.Ax≤b,Bx=e,x∈{0,1} (21)
Dy≤f,Ey=g, (22)
Fy≤h-Gx, (23)
Jy≤w,Ky≤p, (24)
My=ldc,Ny=lac (25)
式中,x为第一层的0-1状态变量,y为第三层功率变量;式(21)表示仅与x相关的约束条件,式(22)表示仅与y相关的约束,式(23)表示与x和y相关的约束,式(24)表示与w,p和y相关的约束,式(25)表示与ldc,lac和y相关的约束;cT和dT为目标函数中的常数矩阵,A、b、B、e、D、f、E、g、F、h、G、J、K、M、N均为约束条件中的常数矩阵;
步骤302):基于步骤301)中矩阵表示的分布鲁棒式优化调度模型,该优化模型的主问题为:
式中,l为总迭代次数;η和τ为与式(2)对应的对偶变量;zk={wk,pk,ldc,k,lac,k}和yk为子问题的第k次优化结果;主问题的优化结果为xk,ηk和τk;上标T表示矩阵的转置;zk,wk,pk,ldc,k,lac,k分别为Ω内对应变量的第k次优化结果;yk和xk分别表示y和x的第k次优化结果;ηk和τk为对偶变量η和τ的第k次优化结果;
步骤303):基于步骤301)中矩阵表示形式的分布鲁棒式优化调度模型,将步骤302)中主问题的第k次优化结果xk和τk代入子问题,则该分布鲁棒式优化调度模型的子问题如下:
s.t.Dy≤f,Ey=g,Fy≤h-Gxk, (28)
Jy≤w,Ky≤p,My=ldc,Ny=lac (29)
引入对偶变量将该子问题转化为max形式的单层优化问题:
式中,α、β、χ、γ、ψ、μdc和μac为式(28)-(29)中y的对偶变量;
步骤304):利用整数优化建模工具箱YALMIP调用求解器SCIP迭代求解步骤302)的主问题和步骤303)的子问题,获得交直流混合微网的鲁棒协调运行计划。
CN201810384664.0A 2018-04-26 2018-04-26 一种用于交直流混合微网的分布鲁棒式优化调度方法 Active CN108629449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810384664.0A CN108629449B (zh) 2018-04-26 2018-04-26 一种用于交直流混合微网的分布鲁棒式优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810384664.0A CN108629449B (zh) 2018-04-26 2018-04-26 一种用于交直流混合微网的分布鲁棒式优化调度方法

Publications (2)

Publication Number Publication Date
CN108629449A true CN108629449A (zh) 2018-10-09
CN108629449B CN108629449B (zh) 2021-04-13

Family

ID=63694568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810384664.0A Active CN108629449B (zh) 2018-04-26 2018-04-26 一种用于交直流混合微网的分布鲁棒式优化调度方法

Country Status (1)

Country Link
CN (1) CN108629449B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109298634A (zh) * 2018-10-18 2019-02-01 东南大学 一种综合能源系统两阶段鲁棒优化调度方法
CN109800927A (zh) * 2019-03-21 2019-05-24 东南大学 双边电力市场环境下的配电网分布式优化方法
CN111239724A (zh) * 2020-01-20 2020-06-05 中国人民解放军国防科技大学 一种基于雷达传感网络的目标识别方法
CN111985686A (zh) * 2020-07-15 2020-11-24 河海大学 一种基于概率预测的配电网分布鲁棒优化调度方法
CN112257229A (zh) * 2020-09-18 2021-01-22 西安理工大学 一种微网两阶段鲁棒调度方法
CN112290531A (zh) * 2020-07-27 2021-01-29 四川大学 一种用于交直流配电网结合改进乘子法的优化系统和方法
CN112668751A (zh) * 2020-11-26 2021-04-16 广西大学 一种机组优化调度模型的建立方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106355344A (zh) * 2016-09-08 2017-01-25 四川大学 一种基于正交阵列的微电网鲁棒优化运行方法
CN107039977A (zh) * 2017-06-03 2017-08-11 广东博慎智库能源科技发展有限公司 以综合成本最小为目标的电力系统鲁棒调度不确定集构建方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106355344A (zh) * 2016-09-08 2017-01-25 四川大学 一种基于正交阵列的微电网鲁棒优化运行方法
CN107039977A (zh) * 2017-06-03 2017-08-11 广东博慎智库能源科技发展有限公司 以综合成本最小为目标的电力系统鲁棒调度不确定集构建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CUO ZHANG,ET AL: "" Robust Operation of Microgrids via Two-Stage"", 《IEEE TRANSACTIONS ON POWRR SYSTRMS》 *
周任军 等: ""电力环保经济调度矩不确定分布鲁棒优化方法"", 《中国电机工程学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109298634A (zh) * 2018-10-18 2019-02-01 东南大学 一种综合能源系统两阶段鲁棒优化调度方法
CN109800927A (zh) * 2019-03-21 2019-05-24 东南大学 双边电力市场环境下的配电网分布式优化方法
CN109800927B (zh) * 2019-03-21 2021-04-20 东南大学 双边电力市场环境下的配电网分布式优化方法
CN111239724A (zh) * 2020-01-20 2020-06-05 中国人民解放军国防科技大学 一种基于雷达传感网络的目标识别方法
CN111239724B (zh) * 2020-01-20 2022-01-28 中国人民解放军国防科技大学 一种基于雷达传感网络的目标识别方法
CN111985686A (zh) * 2020-07-15 2020-11-24 河海大学 一种基于概率预测的配电网分布鲁棒优化调度方法
CN111985686B (zh) * 2020-07-15 2021-07-20 河海大学 一种基于概率预测的配电网分布鲁棒优化调度方法
CN112290531A (zh) * 2020-07-27 2021-01-29 四川大学 一种用于交直流配电网结合改进乘子法的优化系统和方法
CN112257229A (zh) * 2020-09-18 2021-01-22 西安理工大学 一种微网两阶段鲁棒调度方法
CN112257229B (zh) * 2020-09-18 2024-04-16 西安理工大学 一种微网两阶段鲁棒调度方法
CN112668751A (zh) * 2020-11-26 2021-04-16 广西大学 一种机组优化调度模型的建立方法及装置
CN112668751B (zh) * 2020-11-26 2022-06-17 广西大学 一种机组优化调度模型的建立方法及装置

Also Published As

Publication number Publication date
CN108629449B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
CN108629449A (zh) 一种用于交直流混合微网的分布鲁棒式优化调度方法
CN108258695B (zh) 一种交直流混联微网的随机鲁棒耦合型优化调度方法
Kong et al. Hierarchical distributed model predictive control of standalone wind/solar/battery power system
CN108539732B (zh) 基于多区间不确定性鲁棒优化的交直流微网经济调度
CN108108846A (zh) 一种交直流混合微网鲁棒优化协调调度方法
Tabar et al. Sustainable planning of hybrid microgrid towards minimizing environmental pollution, operational cost and frequency fluctuations
CN107239863B (zh) 一种电网安全约束的鲁棒机组组合方法
CN105071389B (zh) 计及源网荷互动的交直流混合微电网优化运行方法及装置
CN108233430B (zh) 一种计及系统能源波动性的交直流混合微网优化方法
CN108448619A (zh) 计及不可控发电机功率跟踪的交直流微网鲁棒调度方法
CN105449666B (zh) 适用于微电网的多状态等值分析方法及系统
CN108388964A (zh) 一种多微网系统的双层协调鲁棒优化调度方法
CN111445107B (zh) 冷热电联供型微电网多目标优化配置方法
CN108539793A (zh) 一种海岛微电网综合优化配置方法及装置
Kheradmand-Khanekehdani et al. Well-being analysis of distribution network in the presence of electric vehicles
CN110098611A (zh) 一种独立型交直流混合微网的两阶段鲁棒优化调度方法
CN103577891A (zh) 一种含分布式电源的多孤岛微网优化合作运行方法
CN103956773A (zh) 含风电系统机组的备用配置优化方法
CN111293718A (zh) 基于场景分析的交直流混合微网分区二层优化运行方法
CN105207207B (zh) 基于能量管理的孤网状态下的微电网系统调度方法
Tyagunov Distributed energysystem's is the future of the world's power industry
Nasr et al. System performance in microgrids based hybrid PV systems
CN108629445A (zh) 计及储能动态损耗的交直流混合微网鲁棒调度方法
CN107026448A (zh) 基于多智能体的混合动力船舶微电网系统
CN108599148B (zh) 计及交直流微网应对灾害事件弹性能力的鲁棒调度方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20201208

Address after: 213300 room 428, building a, 218 Hongkou Road, Kunlun Street, Liyang City, Changzhou City, Jiangsu Province (in Zhongguancun Science and Technology Industrial Park, Jiangsu Province)

Applicant after: Liyang Research Institute of Southeast University

Applicant after: SOUTHEAST University

Address before: Four pailou Nanjing Xuanwu District of Jiangsu Province, No. 2 210096

Applicant before: SOUTHEAST University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant