CN108629093B - 一种噪声感知的动态电压频率调节过渡序列设计方法 - Google Patents

一种噪声感知的动态电压频率调节过渡序列设计方法 Download PDF

Info

Publication number
CN108629093B
CN108629093B CN201810360721.1A CN201810360721A CN108629093B CN 108629093 B CN108629093 B CN 108629093B CN 201810360721 A CN201810360721 A CN 201810360721A CN 108629093 B CN108629093 B CN 108629093B
Authority
CN
China
Prior art keywords
noise
response
transition sequence
linear programming
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810360721.1A
Other languages
English (en)
Other versions
CN108629093A (zh
Inventor
卓成
骆少衡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Xingxin Technology Co ltd
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810360721.1A priority Critical patent/CN108629093B/zh
Publication of CN108629093A publication Critical patent/CN108629093A/zh
Application granted granted Critical
Publication of CN108629093B publication Critical patent/CN108629093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种噪声感知的动态电压频率调节过渡序列设计方法,涉及片上电源分配网络的噪声分析及动态电压频率调节操作的高效分析以及规划;通过将相关的问题定义为混合型0/1线性规划模型,并改进分支界限法联合启发式算法求解;而对于启发式算法存在难以对所得规划结果进行评估的问题,线性规划的方法通过建立并求解对偶问题,可准确评估当前所得解与最优解间的距离,并以此准确评估所得解的优化程度,且具备搜索获得最优解的能力;而对于启发式算法容易陷入局部最优导致搜索停滞的问题,使用线性规划模型并利用分支界限法求解能够保证正确的搜索方向,迅速搜索到明显优于启发式算法的结果且具备保证最优解的能力。

Description

一种噪声感知的动态电压频率调节过渡序列设计方法
技术领域
本发明涉及片上电源分配网络的参数提取以及噪声分析,动态电压频率调节过渡序列中门控操作的高效分析以及规划,适用于芯片电源分配网络的降噪以及移动设备的低功耗设计。
背景技术
为了保证移动设备的电池持续时间,动态电压频率调节等技术通过根据任务的需求,动态地调节分配芯片资源与工作,在低功耗系统的设计上取得了显著地效果,成为了现代系统芯片设计中的关键基本技术。在动态电压频率调节的过程中,大量的电流随着时钟频率的过渡在短时间内集中出现在电源网上,在芯片电源分配网络(PDN)引起大幅度的电源噪声。而随着持续降低的芯片电源电压,保证芯片正常工作的噪声容限正变得越来越小,如何高效在较低的电源电压下完成电压频率调节并保证较小的电源分配网噪声以使得电路能够正常工作这一问题成为低功耗片上系统芯片设计的关键。由于成本和芯片面积的限制,引入更多退耦合电容这一传统解决方案变得不再现实。而另一个常用的解决方案则是通过执行一个动态电压频率调节过渡序列,分阶段的去掉或者引入时钟的某些周期,延长时钟频率变化的过程从而平缓在电源网上引起的噪声。针对这一解决方案,本发明重点从电源状态和管理策略两方面进行分析,通过建立混合0/1线性规划模型进行求解,找到一个最优的时钟门控过渡序列使得它所引起的电源噪声能达到最小,并以此设计噪声感知的动态电压频率调节过渡序列优化技术。相比传统算法和启发式算法,本发明设计可以达到53%和15%的最大噪声幅度优化。
本发明设计的实现首先基于对已有的PDN电路模型电学参数的精确提取以及计算,并以此为基础计算一系列门控操作将在电源网络上引起噪声情况。其次,基于PDN电路模型参数对噪声响应情况的精确模拟,使得设计者能够对此类门控序列进行详细严谨的规划使得它们所引起的噪声在PDN上的叠加能够达到理论最小值。即,通过相关的算法搜索一个门控序列组合,执行这个组合操作在PDN上所引起的噪声叠加起来的最大值最小。至此,对电源噪声的优化转变为对一些噪声波形的时间以及幅度的组合排列优化问题。
对于此类优化,目前比较常用的算法有动态规划以及启发式算法等方法。针对本发明设计的目标问题,由于问题规模大以及不存在子问题结构等特点,动态规划等算法在解决此问题上难以获得很好的效率提升。而对于启发式的搜索算法,相对随机的搜索过程使得设计者难以对所获得的结果的好坏程度进行一个较为准确的评估,且此类算法存在容易陷入局部最优的问题,其搜索结果以及效率难以满足设计要求。
非专利文献1(W.Lam,et.al."Clock scheduling for power supply noisesuppression using genetic algorithm with selective gene therapy."Proc.ISQED,2003.)中所提出的随机式搜索算法,由于搜索方向整体随机,使其稳定性低且搜索效率低下,通常出现分配很长的搜索时间却无法获得与之匹配的的较好的搜索结果。
非专利文献2(Y.Kim,et.al."Power Supply Noise Reduction by ClockScheduling with Gate-Level Current Waveform Estimation."Proc.InternationalSoC Design,2008.)中所提出的利用启发式算法的模型,存在容易陷入局部最优缺点且无法对当前解做有效评估等缺点。
非专利文献3(H.Jiang,et.al."Power gating scheduling for power/groundnoise reduction."Proc.DAC,2008.)中所提出的利用三角波近似电压降落并用遗传算法进行噪声优化的方法存在精度不足、难以对优化结果进行评估等问题。
发明内容
本发明针对现有技术的不足,提供一种噪声感知的动态电压频率调节过渡序列设计方法。
典型的电源分配网络上的噪声通常有一个持续的震荡过程,持续几到十个时钟周期然后缓慢褪去。本发明利用这一特性,对引入或屏蔽的时钟周期进行特定的优化,使这些噪声波形能够相互利用波形的震荡抵消减少最大值出现的那一部分,从而使得这一系列的引入屏蔽操作引起的噪声能够达到最小。本发明所提出的技术方案将动态电压频率调节过渡序列的优化描述为一个两步的过程。
1)对于过渡序列中门控引起片上电源分配网络噪声的高效评估。由于对这些噪声的操作在实际上是离散的,并借助片上电源网的线性时不变特性以及冲击响应的概念,我们提出了基于梯形脉冲的电源网分析技术。我们以一系列的梯形脉冲:
Figure GDA0002458985450000021
来近似执行引入或屏蔽某些时钟周期的门控操作时所引起的突入电流,并从所需分析电源网的电路模型中提取其频域阻抗信息并通过傅里叶反变化计算其冲激响应hPDN(t),冲激响应hPDN(t)与单个突入电流It(t-ti)的卷积:
Figure GDA0002458985450000022
结果即为这一突入电流在PDN上所引起的电源噪声。利用片上电源网的线性时不变特性,这一系列操作在电源分配网络上引起的总噪声叠加响应则可以写为:
Figure GDA0002458985450000031
此响应的最大值则用作评估一个过渡序列好坏的尺度。因此,相较于进行复杂的电源分配网络分析,通过这一方法,我们可以预先计算好一个梯形脉冲的响应,然后通过平移叠加的方式计算得到所有梯形脉冲的响应叠加,大大减低了噪声估计的计算复杂度。且相较于使用简单的三角波对电压降落进行近似,以此方法进行电压降落的评估所得波形更为准确。
2)对过渡序列中这一系列的时钟周期引入或屏蔽操作进行合理的规划,以达到降低电源噪声的目的。进一步地,对时钟序列的优化问题可以被描述为:在一定时间范围0≤ti≤M内找到一组时间信息
Figure GDA0002458985450000032
使得这些突入电流
Figure GDA0002458985450000033
所引起的噪声响应叠加R(St)的最大值最小,即求解:
Figure GDA0002458985450000034
利用已知规划时间M、规划数量N以及噪声响应R(St)定义混合型0-1线性规划的数学模型,并通过相关搜索算法在满足规划时间和周期数量这两个约束条件的解集合中搜索达到要求的优化规划决策,最终得到对应的最优转换序列。
本发明的有益效果是:本发明针对已有技术方法的不足,提出了通过将相关的问题定义为混合型0-1线性规划模型,并利用分支界限法联合启发式算法求解。对应启发式算法存在难以对所得规划结果进行评估的问题,线性规划的方法通过建立并求解对偶问题,可以准确评估当前所得解与最优解间的距离,并以此准确评估所得解的优化程度。而对于启发式算法容易陷入局部最优导致搜索停滞的问题,使用线性规划模型并利用分支界限法求解能够保证正确的搜索方向,迅速搜索到明显优于启发式算法的结果且具备保证最优解的能力,搜索速度与最终优化结果两方面都明显优于遗传算法等启发式算法。且通过仿真实验,线性规划模型的优越性得到进一步证明。尽管在搜索规模急剧增大的情况下,通过线性规划模型搜索到最优解可能耗费较长时间,但在搜索过程中其搜索结果优化程度以及效率也同样高于其他传统算法以及启发式算法。
附图说明
图1是本发明的实现总流程图;
图2是本发明的电路模型参数提取结果示例;
图3是本发明的优化过程的仿真示例;
图4是本发明的仿真优化搜索过程展示;
图5是本发明的仿真结果展示。
具体实施方式
参照图1,本发明的具体实施步骤为:
1)获取片上电路开关操作的电源噪声单位响应,具体包括以下子步骤:
1.1)通过SPICE仿真器和PDN模型提取电源分配网络的频域阻抗参数Z(f);
1.2)对所得频域阻抗参数进行插值以及傅里叶反变换等计算,得到电源分配网络的时域冲激响应数hPDN(t);
1.3)以梯形脉冲近似突入电流,计算t时刻的单位梯形脉冲Is(t)与hPDN(t)的卷积得到响应
Figure GDA0002458985450000041
那么对应一个电流脉冲序列,它所引起的电源噪声即为
Figure GDA0002458985450000042
即为此电流脉冲在电源网上所引起的电压变化,对响应作离散采样rj=r(jΔt)得到向量r=[r0 r1 … rn],n为采样点数,则本设计的目标为最小化vtotal(t,St)的最大值。
2)依据步骤1)获取的电源噪声单位响应建立0/1混合线性规划求解模型。
2.1)针对动态电压频率调节过渡序列优化,设定规划时间M以及规划数量N,定义如下线性规划的不等式约束矩阵:
Figure GDA0002458985450000043
矩阵A的第i行为噪声响应r向右平移i-1个位置,表示在i-1时刻门控此时钟周期引入一个突入电流I并在电源网上引起噪声响应r1×n
2.2)定义一维0/1决策向量X1×M
X1XM=[x1 x2 … xM]
xi=1表示在i时刻采取门控操作,引起突入电流Is(t),反之则不做任何操作,整个向量即为待求解优化序列。
2.3)定义混合线性规划数学模型约束:
-vmax≤ATX1×M T≤vmax (6)
以保证叠加后的总噪声波形小于所定义的噪声最大值变量vmax。由于只需要门控N个比特,定义约束决策变量
Figure GDA0002458985450000044
整个线性规划问题的数学模型则可以写为:
Minimize:
vmax
S.T.
-vmax≤ATX1×M T≤vmax
Figure GDA0002458985450000051
xi∈{0,1}
3)求解步骤二中的线性规划问题,所得决策变量即为相应的过渡序列规划结果。
本发明的优化过程可以通过仿真进一步说明展示:
1.仿真条件
仿真从特定电源网SPICE模型中得到相应参数(见图2)并计算其对梯形脉冲的响应,以在8个周期内控制3个时钟域为条件,定义0-1决策变量矩阵X1×8为:
X1×8=[x11 x12 … x18]
2.仿真内容
仿真优化的目标以及约束可以写为:
Minimize:
vmax
S.T.
vmax≤ATX1×8 T≤vmax
Figure GDA0002458985450000052
图3(a)中展示了优化前的门控序列所产生的所有突入电流,其所对应的变量矩阵为:
X1×8=[1 1 1 0 0 0 0 0]
经过线性规划模型优化后的序列如图3(b)所示,所对应的变量矩阵为:
X1×8=[1 0 0 0 1 0 1 0]
优化后的最终噪声结果如图3(c)虚线所示,且对比实线所表示的未优化的噪声波形,优化后的波形噪声最大值降低超过50%。
图4展示了当优化一个32周期16时钟域时遗传算法的优化过程与本发明优化过程的对比。从图中可以看出,用实线表示的本发明的搜索结果明显优于虚线所示的遗传算法,其所获得优化序列相比于遗传算法所得结果在噪声最大值上降低了超过百分之二十。对于此实例,我们在图5中展示了本发明(实线)与遗传算法(虚线)以及传统方法(点画线)所得结果的对比。

Claims (5)

1.一种噪声感知的动态电压频率调节过渡序列设计方法,其特征在于,该方法包括以下步骤:
1)获取片上电路开关操作的电源噪声单位响应;
2)依据步骤1)获取的电源噪声单位响应建立0/1混合线性规划求解模型,具体为:
记规划时间为M、规划数量为N,将每次门控周期所引起的电流近似为梯形脉冲Is(t),则此操作在对应时刻所引起的电源噪声响应为
Figure FDA0002458985440000011
hPDN(t)为电源分配网络的冲激响应,总噪声为
Figure FDA0002458985440000012
St=[t0 t1 … tN]表示规划后过渡序列中执行各门控操作的时间;
定义不等式约束矩阵A:
Figure FDA0002458985440000013
其中,runit,j=runit(jΔt),j=1,2,..n;n为采样点数;Δt为单位时钟周期;
定义一维0/1决策向量X1×M
X1×M=[x1 x2 … xM]
xi=1表示在i时刻采取门控操作,引起突入电流Is(t),xi=0则表示在i时刻不采取任何操作;
定义约束
Figure FDA0002458985440000014
以保证有且仅有N次门控操作被执行;
整个0/1混合线性规划求解模型为:
Minimize:
vmax
S.T.
-vmax≤ATX1×M T≤vmax
Figure FDA0002458985440000015
xi∈{0,1}
其中vmax即为待求的vtotal(t,St)的最大值;
3)通过确定上下界的方式减少线性规划约束中的冗余约束,提高线性规划的求解性能,具体为:
3.1)由于电源噪声响应的波形特征,第一个被引入的噪声波形无法被其他噪声波形所减弱,所以确定幅值最小的突入电流所引起噪声响应的最大值为此优化的下界LowerBound:
LowerBound=max(runit(t))
3.2)分别降序排列向量X1×M T、矩阵AT的每一行,所得乘积即为此优化的上界UpperBound:
UpperBound=sort(AT)*sort(X1×M T)
3.3)超过上界或低于下界的约束均为冗余约束,去掉这些约束不对整个约束产生任何影响;去掉矩阵A中对应冗余约束的列即完成对冗余约束的缩减;
4)结合步骤3)求解步骤2)中的线性规划问题,所得决策变量即为相应的过渡序列门控操作规划结果,即所设计的优化过渡序列。
2.根据权利要求1所述的一种噪声感知的动态电压频率调节过渡序列设计方法,其特征在于,所述步骤1)中,电源噪声单位响应的获取方法如下:
1.1)获取电源分配网络的频域阻抗参数Z(f);
1.2)对所得频域阻抗参数进行插值以及傅里叶反变换,得到电源分配网络的时域冲激响应hPDN(t);
1.3)以梯形脉冲近似突入电流,计算t时刻的单位梯形脉冲Is(t)与hPDN(t)的卷积得到响应
Figure FDA0002458985440000021
对响应r(t)作离散采样rj=r(jΔt)得到向量r=[r0 r1 …rn],n为采样点数,则本设计的目标为最小化向量r的最大值。
3.根据权利要求2所述的一种噪声感知的动态电压频率调节过渡序列设计方法,其特征在于,所述步骤1.1)中,通过SPICE仿真器和PDN模型提取电源分配网络的频域阻抗参数Z(f)。
4.根据权利要求2所述的一种噪声感知的动态电压频率调节过渡序列设计方法,其特征在于,所属步骤1.3)中,利用PDN模型的线性时不变特性,将多个电流所引起的响应等效为单个噪声响应的线性叠加,降低了计算量从而实现快速的噪声估计。
5.根据权利要求1所述的一种噪声感知的动态电压频率调节过渡序列设计方法,其特征在于,将对噪声的优化问题的目标明确为一个最小化最大值的优化问题;利用PDN模型的线性时不变性,将噪声的响应以及参数设置列为线性不等式组,使得本问题能够利用线性规划算法进行求解。
CN201810360721.1A 2018-04-20 2018-04-20 一种噪声感知的动态电压频率调节过渡序列设计方法 Active CN108629093B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810360721.1A CN108629093B (zh) 2018-04-20 2018-04-20 一种噪声感知的动态电压频率调节过渡序列设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810360721.1A CN108629093B (zh) 2018-04-20 2018-04-20 一种噪声感知的动态电压频率调节过渡序列设计方法

Publications (2)

Publication Number Publication Date
CN108629093A CN108629093A (zh) 2018-10-09
CN108629093B true CN108629093B (zh) 2020-07-10

Family

ID=63694156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810360721.1A Active CN108629093B (zh) 2018-04-20 2018-04-20 一种噪声感知的动态电压频率调节过渡序列设计方法

Country Status (1)

Country Link
CN (1) CN108629093B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112613192B (zh) * 2021-01-04 2023-02-07 湘潭大学 基于探索性因子分析的电源设计能力测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847026A (zh) * 2010-05-18 2010-09-29 北京航空航天大学 混合信号集成电路片上稳压器
CN106357281A (zh) * 2016-10-27 2017-01-25 西安科技大学 基于序列正交下变频的直流补偿接收机及信号接收方法
CN106464262A (zh) * 2014-06-09 2017-02-22 高通股份有限公司 用于减小电压噪声的时钟吞除设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102137259B1 (ko) * 2013-08-08 2020-07-23 삼성전자주식회사 공통모드에 의한 차폐 구동을 통해 생체 신호를 측정하는 방법, 장치 및 회로

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847026A (zh) * 2010-05-18 2010-09-29 北京航空航天大学 混合信号集成电路片上稳压器
CN106464262A (zh) * 2014-06-09 2017-02-22 高通股份有限公司 用于减小电压噪声的时钟吞除设备
CN106357281A (zh) * 2016-10-27 2017-01-25 西安科技大学 基于序列正交下变频的直流补偿接收机及信号接收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1-bit compressed sensing based framework for built-in resonance frequency prediction using on-chip noise sensors;Tao Wang等;《2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)》;20151106;第721-728页 *

Also Published As

Publication number Publication date
CN108629093A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
US6434704B1 (en) Methods for improving the efficiency of clock gating within low power clock trees
Yin et al. An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization
CN106991051B (zh) 一种基于变异测试和关联规则的测试用例约简方法
Wang et al. On multi-event co-calibration of dynamic model parameters using soft actor-critic
Billings et al. Sparse model identification using a forward orthogonal regression algorithm aided by mutual information
Li et al. Activity-driven fine-grained clock gating and run time power gating integration
US20220067255A1 (en) Dynamic current modeling in dynamic voltage drop analysis
CN110688723B (zh) 一种时钟分布网络快速设计方法
CN108629093B (zh) 一种噪声感知的动态电压频率调节过渡序列设计方法
Sun et al. Solving interval multi-objective optimization problems using evolutionary algorithms with lower limit of possibility degree
Shen et al. SALO: an efficient spatial accelerator enabling hybrid sparse attention mechanisms for long sequences
CN109767034B (zh) 继电保护的定值优化方法、装置、计算机设备和存储介质
Kansakar et al. A design space exploration methodology for parameter optimization in multicore processors
CN109190800B (zh) 一种基于spark框架的海面温度预测方法
JP3836276B2 (ja) 集積回路のノイズ及び電力の評価方法
CN108563882B (zh) 一种噪声感知的片上时钟域控制序列设计方法
US20040177328A1 (en) Method and apparatus for power consumption analysis in global nets
CN103678738B (zh) 基于时域多步积分的互连线模型降阶方法
CN112217215B (zh) 一种基于psd-bpa的大型电力系统随机潮流计算方法
US20120253775A1 (en) Multidimensional Monte-Carlo Simulation for Yield Prediction
Chang et al. Flexible chip placement via reinforcement learning: late breaking results
Jordans et al. An efficient method for energy estimation of application specific instruction-set processors
Li et al. Software-hardware partitioning strategy using hybrid genetic and tabu search
CN110348623A (zh) 基于设计结构矩阵的复杂产品开发时间预测及优化方法
Ding et al. Improving the efficiency of Monte Carlo power estimation [VLSI]

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220805

Address after: 310051 floor 11, building 3, No. 399, Danfeng Road, Xixing street, Binjiang District, Hangzhou City, Zhejiang Province

Patentee after: Hangzhou Xingxin Technology Co.,Ltd.

Address before: 310058 Yuhang Tang Road, Xihu District, Hangzhou, Zhejiang 866

Patentee before: ZHEJIANG University

TR01 Transfer of patent right