CN108620069A - Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法及其应用 - Google Patents

Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN108620069A
CN108620069A CN201810485351.4A CN201810485351A CN108620069A CN 108620069 A CN108620069 A CN 108620069A CN 201810485351 A CN201810485351 A CN 201810485351A CN 108620069 A CN108620069 A CN 108620069A
Authority
CN
China
Prior art keywords
nanocrystalline
preparation
modified mesoporous
catalysts
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810485351.4A
Other languages
English (en)
Inventor
左树锋
曾敏峰
陈珠
李敬荣
成珍
郑洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN201810485351.4A priority Critical patent/CN108620069A/zh
Publication of CN108620069A publication Critical patent/CN108620069A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • B01J35/40
    • B01J35/615
    • B01J35/633
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种化学催化剂的制备方法,特别是一种Ce改性介孔γ‑Al2O3负载Pd‑Pt纳米晶催化剂的制备方法,该方法中通过高温液相还原一步法得到Ce改性介孔γ‑Al2O3负载Pd‑Pt纳米晶催化剂。同时,本发明中还提供了一种Ce改性介孔γ‑Al2O3负载Pd‑Pt纳米晶催化剂的应用,在于上述Ce改性介孔γ‑Al2O3负载Pd‑Pt纳米晶催化剂可用于低浓度苯的催化燃烧。本发明制备的一种Ce改性介孔γ‑Al2O3负载Pd‑Pt纳米晶催化剂的反应活性较高;另外,其制备方法简单,可重复性强,贵金属纳米晶颗粒直径小。

Description

Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法及其 应用
技术领域
本发明涉及一种化学催化剂的制备方法,特别是一种Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法及其应用,主要用于低浓度苯的催化燃烧。
背景技术
传统浸渍法制备Pd-Pt/Ce/Al2O3催化剂的步骤:
(1)Ce改性γ-Al2O3催化材料的制备:将γ-Al2O3磨成40-60目均匀颗粒,采用等体积浸渍法制备Ce,采用的前躯体为Ce(NO3)3·6H2O。浸渍过夜(放置12h)、炒干,于马弗炉中500℃焙烧2h,待用。
(2)Ce/Al2O3负载Pd-Pt催化剂的制备:采用等体积浸渍法制备Pd-Pt(Pd/Pt的摩尔比为1:1),采用的前躯体为H2PdCl4和H2PtCl4。浸渍过夜(放置12h)、加水烤干、加水合肼静置3h,于马弗炉中500℃焙烧2h。
其不足之处:
(1)当金属浸渍量大时,浸渍后金属在多孔材料孔道内外分布不均匀;
(2)传统浸渍法所制备的金属催化剂的催化活性相对较低,容易失活。
发明内容
本发明的目的是为了解决上述现有技术的不足,而提供一种Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法。该方法中通过高温液相还原一步法得到Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂。
为了实现上述目的,本发明所设计的一种Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法,其包括以下的步骤:
以质量为2.0g的10%Ce/Al2O3粉末计,取乙二醇100mL,两者加入三口烧瓶中,并用磁子搅拌0.5h;将总含量0.2%的Pd和Pt加入体系中,其中Pd/Pt的摩尔比为1:1,采用的前驱体为H2PdCl4和H2PtCl4溶液,通入高纯N2和冷凝水并继续搅拌12h,用NaOH溶液调节pH至11,在165℃搅拌3h,自然冷却至25℃,取出。用离心机洗净至无Cl离子和多余的乙二醇,在60℃烘箱中放置3h烘干,于马弗炉中500℃焙烧2h。
一种Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的应用,在于上述Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂可用于低浓度苯的催化燃烧。
本发明与现有技术相比较,其具备以下的优点:
本发明所提供的一种利用高温液相还原一步法,合成的Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂(Pd-Pt/Ce/Al2O3),其制备方法简单,可重复性强,金属纳米晶颗粒直径小,用于苯催化燃烧的剂反应活性高。合成的Pd-Pt/Ce/Al2O3为介孔材料,其比表面积达到178.2m2/g,总孔体积达到0.287cm3/g;0.2%Pd-Pt(1:1)/10%Ce/Al2O3的起燃温度为150℃,在200℃左右就能完全转化苯,且检测副产物只有H2O和CO2,并且在连续反应1000h后,催化活性没有降低,具有良好的稳定性。
附图说明
图1是Pd-Pt(1:1)/Al2O3及Pd-Pt(1:1)/10%Ce/Al2O3催化燃烧低浓度苯的催化活性图;
图2是催化材料的XRD图谱:(a)Pd/Al2O3;(b)Pt/Al2O3;(c)Pd-Pt/Al2O3;(d)Pd-Pt(1:1)/10%Ce/Al2O3
图3是γ-Al2O3、Pd-Pt/Al2O3和Pd-Pt(1:1)/10%Ce/Al2O3的吸脱附等温线示意图;
图4是Pd-Pt(1:1)/Al2O3和Pd-Pt(1:1)/10%Ce/Al2O3的高分辨电镜图;
图5是苯-TPD的谱图:(a)吸附;(b)脱附;
图6是Ce(3d)的XPS谱图:(a)Pd-Pt/Ce/Al2O3-IM;(b)Pd-Pt/Ce/Al2O3;(c)Pd-Pt/Ce/Al2O3-used。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
本实施例提供的一种Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法,其包括以下的步骤:
1)γ-Al2O3载体的制备
在烧杯中用80mL去离子水水解6.0g AlCl3·6H2O和6.0g PEG,PEG/Al3+的摩尔比为0.05。水解30min后,向得到的水解混合物中滴加稀释的氨(25wt%)溶液。通过加入氨保持混合溶胶溶液的pH值为9.0。然后将上述溶液置于恒温水浴中,并在60℃下连续处理12h,冷却至25℃后,将白色胶体溶液过滤,用乙醇和去离子水洗涤数次,直到没有Cl-1及PEG分子被留下,随后将其在100℃下干燥10h,获得勃姆石溶胶。将所得的勃姆石溶胶在550℃下煅烧6h,制备载体γ-Al2O3,记为Al2O3
2)10%Ce/Al2O3的制备
利用γ-Al2O3为载体,将γ-Al2O3磨成40-60目均匀颗粒,采用等体积浸渍法负载10%Ce,加入上述含量的硝酸铈,浸渍过夜(持续浸渍12h)、炒干、于马弗炉中500℃焙烧2h,Ce/Al2O3催化剂制备完成。
3)0.2%Pd-Pt/10%Ce/Al2O3纳米晶催化剂制备
利用液相高温还原一步法,以2.0g Ce/Al2O3粉末计,乙二醇(作为溶剂和还原剂)的用量为100mL加入三口烧瓶中,搅拌0.5h后,将负载总含量0.2%的Pd和Pt加入体系中(Pd/Pt的摩尔比为1:1),所采用的前驱体为H2PdCl4和H2PtCl4,在高纯氮气保护下继续搅拌过夜(持续浸渍12h)。使用NaOH溶液调节混合液pH至11后,在165℃下搅拌3h,取出三口烧瓶,冷却至25℃,用离心机洗净至无Cl-(用硝酸银溶液检验)和多余的乙二醇;在60℃烘箱中放置3h烘干,马弗炉500℃(升温速率:10℃/min,由25℃开始升温)下焙烧2h,得到Pd-Pt/Ce/Al2O3纳米晶催化剂。
对上述实例所制得的0.2%Pd-Pt(1:1)/10%Ce/Al2O3催化剂进行催化燃烧低浓度苯的应用实验,其过程和结果如下所述:
催化剂活性评价在(WFS-3010,天津先权)催化剂活性评价装置,空速为20000h-1,通过GC1690型气相色谱(FID)检测反应器进出口中VOCs(苯的浓度为1000ppm)的浓度,检测条件为汽化室温度120℃,柱温120℃,并在N2000色谱工作站中记录和分析数据。见图1。
催化剂评价结果:
图1是Pd-Pt(1:1)/Al2O3和Pd-Pt(1:1)/10%Ce/Al2O3催化燃烧低浓度苯的催化活性图。从图中可以看出Pd-Pt(1:1)/Al2O3催化剂的起燃温度(转化率>20%)为140℃,完全转化温度为230℃。添加一定量的Ce后,催化活性有所提高。Pd-Pt(1:1)/10%Ce/Al2O3的起燃温度为120℃,在200℃左右就能完全转化苯,且检测副产物只有H2O和CO2。并且在连续反应1000h后,催化活性没有降低,具有良好的耐久性。
X射线衍射测定结果:
检测条件:在X射线粉末衍射仪(PANalytical)上进行,Cu Kα射线(300mA,40KV),扫描速率为0.02°/s。层间距通过Bragg equation计算:2d001sinθ=nλ,λ=0.154nm。见图2。
从图2中可以看出,在Pd-Pt(1:1)/10%Ce/Al2O3催化剂中出现了CeO2的特征衍射峰,但是未出现PdO或PtO2的特征衍射峰,这是由于负载量太小或者高度分散而出现的结果。Pd-Pt(1:1)/10%Ce/Al2O3上Al2O3的峰相比于其他催化剂的Al2O3的峰强度有所减小,这是由于添加Ce后打乱了Al2O3的晶格排列。
比表面积和孔体积测定结果:
检测条件:催化剂的比表面积及孔结构在TristarⅡ3020(MicromeriticsCompany,USA)全自动吸附仪上测定。采用液氮温度(-195.8℃)下的N2吸附法测得比表面积(SBET)和平均孔径(d),样品均于250℃抽真空预处理4h。采用Barrett-Joyner-Halenda(BJH)方法测定孔体积(Vp)。见图3。
从图3中,我们可以看出,所有材料的N2吸脱附等温线均为IV型,吸附-脱附回环属于H3型,出现在相对压力P/P0在0.45以上,表明催化材料均具有介孔结构。从表1中可知γ-Al2O3载体的SBET高达270.9m2/g,Vp达到为0.355cm3/g。与γ-Al2O3载体相比,负载Pd-Pt或Pd-Pt/Ce的催化剂表现出较低的SBET、Vp和d,这是由于部分金属氧化物(CeO2、PdO、PtO2)进入了Al2O3的孔道中,堵塞了一些孔,导致催化剂结构发生变化。
表1样品的比表面积,总孔体积和平均孔径
aBET specific surface area.
b Totalpore volume estimatedatP/P0=0.99.
cMean diameter ofthepores,derived fromthe ratio ofthetotalporevolumeto the surface area.
高分辨电镜图结果:
检测条件:高分辨电镜(HR-TEM)利用JEM-21000F型透射电镜获得材料的表面形貌,工作电压为200kV。样品用环氧树脂包埋后切片,再进行测定。将样品粉末分散于无水乙醇,置超声波下振荡5min,用镀有碳膜的铜网捞取悬浮样品,待干燥后装入电镜预处理室,抽空后转入测量室,观察形貌,摄取照片。见图4。
图4是Pd-Pt(1:1)/Al2O3和Pd-Pt(1:1)/10%Ce/Al2O3的高分辨电镜图。从图4a和a’所示,PdO和PtO2颗粒均匀的分散在γ-Al2O3载体表面上,且颗粒直径大约在2-3nm。从图4b和b’可以看出,经过负载Ce后,活性组分的颗粒更均匀的分散在载体表面上,未出现明显的团聚现象,且其颗粒直径约在1-2nm,与XRD结果一致。在Pd-Pt(1:1)/10%Ce/Al2O3催化剂中,可以清楚地观察到在载体上的PdO或PtO2纳米颗粒的晶格条纹,其晶格条纹主要为(220)面,晶面间距为0.140nm,同时还存在着(200)面,晶面间距为0.198nm。
苯-TPD测定结果:
检测条件:在测量之前,将300mg催化剂在空气中于300℃预处理30min。在冷却至50℃后,将1000ppm苯注入反应体系中。达到吸附-解吸平衡后,除去苯,并将催化剂在1000ppm苯(20%O2/Ar,60mL/min)中以7.5℃/min步骤从50℃加热至500℃)。MS(QGA,Hiden,UK)在线测量苯的浓度以及任何可能的副产物和最终产物(COx和H2O)的存在。见图5。
从图5a中可以看出,催化剂对于苯吸附能力存在很大差异,如Pd-Pt(1:1)/10%Ce/Al2O3吸附苯的量最多,这是由于添加CeO2大大改善了苯对Pd-Pt纳米晶的吸附性能,因此吸附量变大。正如图5b所示,Pd-Pt(1:1)/Al2O3的苯脱附峰在110℃,Pd-Pt(1:1)/10%Ce/Al2O3的苯脱附峰在132℃左右,Pd-Pt(1:1)/10%Ce/Al2O3吸附的苯在较高温度下才能发生脱附,说明其吸附作用较强,吸脱附性能的提升改善了催化剂用于苯催化燃烧的性能。
X射线光电子衍射测定结果:
检测条件:XPS检测仪器为赛默飞公司生产的ESCALAB 250型仪器,样品在Al-Kα射线下进行检测,检测获得的数据需要进行碳校正来获得更加精确的结果。见图6。
一般而言,添加CeO2的催化剂中主要为Ce4+,但是在催化剂合成过程中,由于晶格扩张等过程,不可避免会产生一定量的Ce3+,而为了保证电荷平衡,Ce3+的存在必然导致一定量的氧空位的形成,从而进行电荷补偿,因此Ce4+/Ce3+的相互作用及转化过程增强了催化剂的氧储放和释放能力,从而有利于反应活性的提高。如图6所示,u’和v’是Ce3+的两个特征衍射峰,其他六个峰都为Ce4+的特征衍射峰。a中Ce4+/Ce3+=4.91,b中Ce4+/Ce3+=4.56,说明本发明制备的Pd-Pt/Ce/Al2O3催化剂中的Ce3+比传统的浸渍法多,c中Ce4+/Ce3+=3.23,说明使用过的催化剂发生了氧化还原反应,Ce3+最多,具有最多的氧空位,且反应活性最高,与催化剂的活性评价相符。

Claims (2)

1.一种Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法,其特征是包括以下的步骤:
Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备:
以质量为2.0g的10%Ce/Al2O3粉末计,取乙二醇100mL,两者加入三口烧瓶中,搅拌0.5h;将负载总含量0.2%的Pd和Pt加入体系中,其中Pd/Pt的摩尔比为1:1,采用的前驱体为H2PdCl4和H2PtCl4,通入高纯N2和冷凝水并继续搅拌12h,用NaOH溶液调节pH至11,在165℃搅拌3h,自然冷却,取出,离心至无Cl离子和多余的乙二醇,在60℃烘箱中放置3h烘干,于马弗炉中500℃焙烧2h。
2.一种如权利要求1所述Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的应用,其特征在于:Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂可用于低浓度苯的催化燃烧。
CN201810485351.4A 2018-05-21 2018-05-21 Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法及其应用 Pending CN108620069A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810485351.4A CN108620069A (zh) 2018-05-21 2018-05-21 Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810485351.4A CN108620069A (zh) 2018-05-21 2018-05-21 Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN108620069A true CN108620069A (zh) 2018-10-09

Family

ID=63693831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810485351.4A Pending CN108620069A (zh) 2018-05-21 2018-05-21 Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108620069A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109772431A (zh) * 2019-01-30 2019-05-21 绍兴文理学院 Y改性MCM-22负载Pd纳米晶催化剂的制备方法及应用
CN113210010A (zh) * 2021-05-24 2021-08-06 无锡威孚环保催化剂有限公司 一种分区域涂覆的voc催化剂及其制备方法
CN114405504A (zh) * 2022-01-24 2022-04-29 中国科学院生态环境研究中心 一种低负载量的贵金属催化剂及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101559377A (zh) * 2009-05-21 2009-10-21 浙江师范大学 一种消除甲醛的负载型催化剂及其制备方法和用途
CN105268452A (zh) * 2015-11-12 2016-01-27 西安石油大学 介孔负载型铜锰复合氧化物催化剂、制备及催化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101559377A (zh) * 2009-05-21 2009-10-21 浙江师范大学 一种消除甲醛的负载型催化剂及其制备方法和用途
CN105268452A (zh) * 2015-11-12 2016-01-27 西安石油大学 介孔负载型铜锰复合氧化物催化剂、制备及催化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. CHEN ET AL.,: "Synthesis of Pd/C Catalyst by Modified Polyol Process for Formic Acid Electrooxidation", 《FUEL CELLS》 *
TATIANA YUZHAKOVA ET AL.,: "PtPd-CeO2/γ-Al2O3 CATALYSTS FOR VOC TREATMENT OF EXHAUST GASES", 《ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109772431A (zh) * 2019-01-30 2019-05-21 绍兴文理学院 Y改性MCM-22负载Pd纳米晶催化剂的制备方法及应用
CN113210010A (zh) * 2021-05-24 2021-08-06 无锡威孚环保催化剂有限公司 一种分区域涂覆的voc催化剂及其制备方法
CN113210010B (zh) * 2021-05-24 2023-09-19 无锡威孚环保催化剂有限公司 一种分区域涂覆的voc催化剂及其制备方法
CN114405504A (zh) * 2022-01-24 2022-04-29 中国科学院生态环境研究中心 一种低负载量的贵金属催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
Wang et al. MOF-derived CeO2 supported Ag catalysts for toluene oxidation: The effect of synthesis method
CN108786921B (zh) 一种单原子Pd@UiO-66催化剂及其制备方法和应用
He et al. Unique catalysis of Ni-Al hydrotalcite derived catalyst in CO2 methanation: cooperative effect between Ni nanoparticles and a basic support
Qiao et al. Preparation of Ce 1− x Fe x O 2 solid solution and its catalytic performance for oxidation of CH 4 and CO
Huang et al. Effect of reduction treatment on structural properties of TiO 2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation
Wang et al. Influence of Au particle size on Au/CeO2 catalysts for CO oxidation
CN108620069A (zh) Ce改性介孔γ-Al2O3负载Pd-Pt纳米晶催化剂的制备方法及其应用
CA2781794C (en) Complex oxide, method for producing same and exhaust gas purifying catalyst
Huang et al. Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method
Zhao et al. Influence of thermal treatment on catalytic performance of Pd/(Ce, Zr) Ox–Al2O3 three-way catalysts
Lu et al. Ageing induced improvement of methane oxidation activity of Pd/YFeO 3
Meilin et al. Preparation of Au/CeO2 catalyst and its catalytic performance for HCHO oxidation
CN110433806A (zh) 一种钴-铝复合氧化物催化剂及其制备方法和应用
WO2015072573A1 (ja) フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法
Chang et al. Effect of interaction between different CeO2 plane and platinum nanoparticles on catalytic activity of Pt/CeO2 in toluene oxidation
CN113769738B (zh) 一种高稳定的氧化铈负载钯纳米团簇催化材料及其制备方法与应用
CN106607032A (zh) 甲烷干重整催化剂及其制备方法和应用以及甲烷干重整制合成气的方法
Lu et al. Ag–K/MnO 2 nanorods as highly efficient catalysts for formaldehyde oxidation at low temperature
Si et al. Boundary role of Nano-Pd catalyst supported on ceria and the approach of promoting the boundary effect
CN109529821A (zh) 一种用于热催化甲醛降解的钯基催化剂
CN108579750B (zh) 一种铜掺杂Ni/SiO2纳米复合催化剂及其制备方法
Liu et al. Metal oxide-containing SBA-15-supported gold catalysts for base-free aerobic homocoupling of phenylboronic acid in water
Fateminia et al. Au-promoted Ce-Zr catalytic filter for Pt/SnO2 sensor to selectively detect methane and ethanol in the presence of interfering indoor gases
Wang et al. Preparation, characterization and catalytic performance of ordered macroporous-mesoporous SiO2-supported MnMOx catalysts for soot combustion
Cao et al. A new insight into the effects of barium addition on Pd-only catalysts: Pd-support interface and CO+ NO reaction pathway

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181009