CN108619510B - 一种用于光动力抗菌的eps-rb纳米颗粒的合成方法 - Google Patents

一种用于光动力抗菌的eps-rb纳米颗粒的合成方法 Download PDF

Info

Publication number
CN108619510B
CN108619510B CN201810283761.0A CN201810283761A CN108619510B CN 108619510 B CN108619510 B CN 108619510B CN 201810283761 A CN201810283761 A CN 201810283761A CN 108619510 B CN108619510 B CN 108619510B
Authority
CN
China
Prior art keywords
eps
nanoparticles
photodynamic
hcl
nhs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810283761.0A
Other languages
English (en)
Other versions
CN108619510A (zh
Inventor
林凤鸣
李程程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810283761.0A priority Critical patent/CN108619510B/zh
Publication of CN108619510A publication Critical patent/CN108619510A/zh
Application granted granted Critical
Publication of CN108619510B publication Critical patent/CN108619510B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6939Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being a polysaccharide, e.g. starch, chitosan, chitin, cellulose or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明公开了一种用于光动力抗菌的EPS‑RB纳米颗粒的合成方法,以植物乳杆菌胞外多糖EPS、玫瑰红RB、1‑(3‑二甲基氨基丙基)‑3‑乙基碳化二亚胺盐酸盐EDC‑HCl和N‑羟基琥珀酰亚胺NHS为原料,在二甲基亚砜DMSO中反应获得复合物EPS‑RB;复合物EPS‑RB在水溶液中自组装形成球形纳米颗粒,并具有优良的光动力抗菌效果。该复合物在溶液中可以自聚集形成纳米颗粒。该纳米颗粒在光照条件下产生高于游离RB的单线态氧,使其对大肠杆菌及金黄色葡萄球菌的光动力抗菌优于游离RB。EPS‑RB纳米颗粒完全杀死大肠杆菌和金黄色葡萄球菌所需浓度为分别为8μM和500nM,而游离RB则分别需要16μM和1000nM。

Description

一种用于光动力抗菌的EPS-RB纳米颗粒的合成方法
技术领域
本发明属于生物技术和纳米材料领域,具体涉及一种利用植物乳杆菌胞外多糖和光敏剂玫瑰红(Rose Bengal)化学合成用于光动力抗菌的纳米颗粒。
背景技术
光动力治疗(PDT)为抗癌(Nanoscale 2012,4,7712-7719)和抗菌(Small 2016,12,3609-3644)提供了一种有效策略。光动力治疗的原理是光敏剂在有光存在的情况下产生活性氧(ROSs),主要是单线态氧以及一些自由基,引起细胞凋亡或坏死以及破坏组织(Photodiagn.Photodyn.Ther.2004,1,279-293)。光动力抗菌可替代传统抗生素,并避免产生耐药性(Photodiagn.Photodyn.Ther.2009,6,170-188)。有报道称耐药细菌和非耐药细菌对PDT一样敏感(Angew.Chem.,Int.Ed.2015,54,15367-15370),这使得PDT成为抗耐药细菌的有效手段。此外,PDT是通过产生ROS不可逆的破坏细胞内重要的生物分子(Chem.Soc.Rev.2010,39,2835-2846),包括DNA、蛋白质和脂质,因而不会产生抗药性(Photobiol.Science.2004,3,436-450)。由于单线态氧以及其他自由基的高活性以及极短的半衰期,PDT只能直接作用于光敏剂临近的分子或结构。单线态氧的半衰期<0.04μs,在生物系统内的活动半径<0.02μm(Photochem.Photobiol.1991,53,549-553),因此,光敏剂的定位极大程度的决定了PDT的抗菌效果。人们期望光敏剂可以锚定到细胞膜或渗透到细胞内部以获得较优的光动力抗菌效果。但是大部分光敏剂是疏水的,无法靶向到细胞膜或进入细胞内部(Antimicrob.Agents Chemother.2011,55,1883-1890)。为解决该问题,光敏剂通常通过物理包裹和化学交联法与其他纳米载体如金属纳米颗粒、聚合物纳米颗粒、上转化纳米颗粒、胶束和脂质体等等联用。这些通常是基于电荷相互作用、疏水相互作用和共价交联的细胞表面工程完成的,往往存在一些缺点,例如:细胞毒性大、修饰方法复杂、生物相容性低以及抗菌效果不佳等。
PDT的另外一个缺点是对于革兰氏阴性菌的抗菌效果不如革兰氏阳性菌(Biomaterials 2013,34,3503-3510)。与革兰氏阳性菌和动物细胞相比,革兰氏阴性菌细胞壁外围还有一层外膜结构,会阻碍大部分药物进入到细胞内部(J.Appl.Microbiol.2013,114,36-43)。人们也发展了许多提高PDT对阴性菌的抗菌效力的方法。直接的方法是使用细胞膜破坏试剂,比如用甲苯或金属离子螯合剂EDTA预先处理革兰氏阴性菌,增强其外膜的通透性,以增加光敏剂作用于革兰氏阴性菌的光动力效果。另一种克服光敏剂很难进入革兰氏阴性菌细胞的办法是将光敏剂和带正电荷的物质联合使用,如亚甲基蓝、甲苯胺蓝O和阳离子共轭聚合物;或者将光敏剂与带正电荷的聚合物如多粘菌素B、聚-L-赖氨酸和聚乙烯亚胺共价接枝。通过静电相互作用,这些阳离子试剂能有效地结合到带负电荷的革兰氏阴性菌细胞外表面,增强PDT抗菌效果。尽管如此,这些策略存在细胞毒性大以及生物相容性差等缺点,亟待开发更安全的抗阴性菌PDT策略。
RB是一种疏水的、表面带负电荷的氧化蒽染料,常被用于光动力抗菌中的光敏剂。与前面提到的疏水光敏剂一样,RB抗革兰氏阴性菌效果差,限制了它的实际应用。因此,人们需要对RB进行改进,使其更适合于抗革兰氏阴性菌。
本发明通过共价交联,将光敏剂玫瑰红(RB)与多糖交联在一起,获得共价交联物EPS-RB。EPS-RB自组装形成尺寸在35.2nm左右的纳米颗粒。EPS-RB纳米颗粒溶液,具有良好的分散性,并在48h内稳定,表现出单线态氧产量增强的效果。EPS-RB纳米颗粒对革兰氏阳性菌和革兰氏阴性菌均表现出了很好的抗菌效果。该方法有望在开发光动力抗革兰氏阴性菌药物方面得到广泛应用。
发明内容
技术问题:本发明要解决的技术问题是提供具有优良生物安全性和高效光动力抗菌效果的用于光动力抗菌的EPS-RB纳米颗粒的合成方法,以解决现有一些光动力抗菌材料细胞毒性大、生物安全性差、抗菌效果不佳等问题。
技术方案:为解决上述技术问题,本发明的一种用于光动力抗菌的EPS-RB纳米颗粒的合成方法采用的技术方案如下:
通过共价交联,将光敏剂玫瑰红RB与多糖交联在一起,获得共价交联物EPS-RB,EPS-RB在溶液中自组装形成纳米颗粒,并将所合成的纳米颗粒用于光动力抗菌。
具体为:以植物乳杆菌胞外多糖EPS、玫瑰红RB、1-(3-二甲基氨基丙基)-3-乙基碳化二亚胺盐酸盐EDC-HCl和N-羟基琥珀酰亚胺NHS为原料,在二甲基亚砜DMSO中反应获得复合物EPS-RB;复合物EPS-RB在水溶液中自组装形成球形纳米颗粒,并具有优良的光动力抗菌效果。
其中:
所述植物乳杆菌为从云南泡菜分离得到,菌株号为LCC-605,已保藏于中国典型培养物保藏中心,保藏编号为CCTCC M 2016491,在NCBI上的登录号为:KX443590,保藏日期为2016年9月18号。
所述的胞外多糖从植物乳杆菌LCC-605培养液得到,胞外多糖的提取方法参考在先的专利申请,专利申请号为:201710025113.0,也可采用其它常规手段得到。
该合成方法包括以下步骤:
a.将EPS冻干粉配置成0.5-1.5mg/mL的水溶液,
b.将RB、EDC·HCl、NHS溶于DMSO中室温、50-1200rpm条件下反应1-3h,与上述配好的多糖水溶液混合后于室温、50-1200rpm条件下反应过夜。
其中:
所述RB、EDC·HCl、NHS的重量比为RB:EDC·HCl:NHS=(2-5):(5-12):(2-4.8)。
所述RB溶液终浓度为0.2-0.5mg/mL。
所述RB溶液终浓度优选为0.31mg/mL。
所述胞外多糖的终浓度为0.05-0.1mg/mL。
所述胞外多糖的终浓度优选为0.08mg/mL。
所述EPS-RB纳米颗粒所抗细菌为大肠杆菌及其它革兰氏阴性菌、金黄色葡萄球菌及其它革兰氏阳性菌,EPS-RB纳米颗粒杀死100%大肠杆菌的杀菌浓度≥8μMEPS-RB
纳米颗粒杀死100%金黄色葡萄球菌的杀菌浓度≥500nM。
有益效果:
与现有技术相比,本发明具有如下优势:
(1)EPS-RB纳米颗粒尺寸均匀,分散好,在0.9%生理盐水中产生比游离RB更多的单线态氧。
(2)EPS-RB纳米颗粒比游离RB具有更好的光动力抗菌效果。EPS-RB纳米颗粒杀死100%大肠杆菌和金黄色葡萄球菌的浓度分别为8μM和500Nm,远远低于相应的游离RB杀菌浓度(16μM和1000nM)。
(3)EPS-RB的细胞毒性低、生物相容性好。50μM EPS-RB纳米颗粒仍不具有溶血性。
附图说明
图1为实施例1中EPS-RB纳米颗粒的透射电镜示意图。
图2为实施例1中EPS-RB纳米颗粒粒径分布示意图。
图3为实施例1中EPS-RB纳米颗粒48小时内的稳定性评价示意图。
图4为实施例1中EPS-RB纳米颗粒和RB以及EPS单线态氧产生示意图。
图5为实施例1中EPS-RB纳米颗粒和RB在光照条件下抗大肠杆菌示意图。
图6为实施例1中EPS-RB纳米颗粒和RB在光照条件下抗金黄色葡萄球菌示意图。
图7为实施例1中EPS-RB纳米颗粒溶血性实验示意图。
具体实施方式
本发明的一种用于光动力抗菌的EPS-RB纳米颗粒的合成方法,以植物乳杆菌胞外多糖EPS、玫瑰红RB、1-(3-二甲基氨基丙基)-3-乙基碳化二亚胺盐酸盐EDC-HCl和N-羟基琥珀酰亚胺NHS为原料,在二甲基亚砜DMSO中反应获得复合物EPS-RB;复合物EPS-RB在水溶液中自组装形成球形纳米颗粒,并具有优良的光动力抗菌效果。
实施例1植物乳杆菌胞外多糖EPS和光敏剂玫瑰红(RB)合成EPS-RB纳米颗粒:
将胞外多糖配成1mg/mL的溶液,放置过夜;称量2-5mg RB、5-12mg EDC·HCl和2-4.8mg NHS,溶于9mL DMSO中,并于室温、90rpm反应1-3h后,与上述配好的多糖溶液混合,在室温、90rpm条件下反应过夜,之后用DMSO透析72h,换成水透析48h,冻干保存。
实施例2所合成EPS-RB纳米颗粒的形貌观察:
取上述实施例1获得的EPS-RB纳米颗粒10μL滴到400目的铜网上进行透射电镜观察。EPS-RB纳米颗粒为球形结构,分布均匀(图1)。粒径分布统计表明该纳米颗粒粒径在35.2nm左右(图2)。
实施例3EPS-RB纳米颗粒稳定性评价:
稳定性评价采用测粒径和zeta电位的办法进行。将EPS-RB纳米颗粒溶于0.9%的NaCl中配置成10uM溶液,之后采用DLS进行粒径测定,并采用ZETA电位仪测定带电情况。
实施例4EPS-RB单线态氧产生情况检测:
采用SOSG单线态氧检测试剂盒进行单线态氧检测。具体步骤如下:1μL溶解于甲醇的SOSG(100μg/33μL)与准备好的2mL的EPS-RB、RB和EPS混合,并用532的激光进行激发,功率为14mW/cm2,然后每分钟测定上述样品在530nm处的最大吸收峰。结果见图3,随着时间的延长,EPS-RB和RB产生的单线态氧逐渐增强,且EPS-RB的单线态氧产生要高于RB。该实验结果表明EPS-RB纳米颗粒溶液的单线态氧产生显著高于游离的RB,将有助于抗菌。
实施例5EPS-RB对大肠杆菌和金黄色葡萄球菌的光动力杀菌效果检测:
大肠杆菌和金黄色葡萄球菌接种于LB培养基中,于37℃、180rpm培养过夜。所得菌液用0.9%的生理盐水洗两次后,重新悬浮于0.9%的生理盐水中,使其最终OD600=0.5。取10μL细菌悬液与含有不同浓度的EPS-RB或RB的90μL生理盐水混合,使RB的终浓度为4、5、6、7、8和16μM。将上述混合液放于37℃培养箱孵育30min后,用功率密度5mW/cm2的白炽灯光照处理10min。样品进行梯度稀释。取50μL一定稀释倍数的菌悬液均匀涂于LB固体平板上,于37℃培养24h。对LB固体平板的菌落数进行计数。结果见图4和5。相比于RB,EPS-RB无论是对大肠杆菌还是金黄色葡萄球菌都表现出了更好的抗菌效果。对大肠杆菌完全杀死的浓度为8μM,对金黄色葡萄球菌为500nM,而RB则为16μM和1μM。
实施例6EPS-RB溶血性评价:
将老鼠全血于2500rpm离心5min,去掉上清,将红细胞沉淀物重新悬浮于0.9%的生理盐水中。所获得的红细胞进行一定倍数的稀释后,加入终浓度为1、5、10、20和50μM的EPS-RB(这里的终浓度是谁的)。在37℃孵育1h后,于4000rpm离心5min。用超纯水和0.9%生理盐水处理的红细胞作为阳性对照和阴性对照。溶血率按照以下公式计算:
溶血%=(样品的吸光度-阴性对照的吸光度)/(阳性对照的吸光度-阴性对照的吸光度)X 100%。结果见图6,EPS-RB在50μM以下几乎没有溶血性,表现出了良好的生物相容性。

Claims (3)

1.一种用于光动力抗菌的EPS-RB纳米颗粒的合成方法,其特征在于,以植物乳杆菌胞外多糖EPS、玫瑰红RB、1-(3-二甲基氨基丙基)-3-乙基碳化二亚胺盐酸盐EDC-HCl和N-羟基琥珀酰亚胺NHS为原料,在二甲基亚砜DMSO中反应获得复合物EPS-RB;复合物EPS-RB在水溶液中自组装形成球形纳米颗粒,并具有优良的光动力抗菌效果;
该合成方法包括以下步骤:
a.将EPS冻干粉配置成0.5-1.5mg/mL的水溶液,
b.将RB、EDC·HCl、NHS溶于DMSO中室温、50-1200rpm条件下反应1-3h,与上述配好的多糖水溶液混合后于室温、50-1200rpm条件下反应过夜;
所述植物乳杆菌为从云南泡菜分离得到,菌株号为LCC-605,已保藏于中国典型培养物保藏中心,保藏编号为CCTCC M 2016491,在NCBI上的登录号为:KX443590,保藏日期为2016年9月18号;
所述RB、EDC·HCl、NHS的重量比为RB:EDC·HCl:NHS=(2-5):(5-12):(2-4.8);
所述RB终浓度为0.2-0.5mg/mL。
2.如权利要求1所述的用于光动力抗菌的EPS-RB纳米颗粒的合成方法,其特征在于:所述胞外多糖的终浓度为0.05-0.1mg/mL。
3.如权利要求2所述的用于光动力抗菌的EPS-RB纳米颗粒的合成方法,其特征在于:所述胞外多糖的终浓度为0.08mg/mL。
CN201810283761.0A 2018-04-02 2018-04-02 一种用于光动力抗菌的eps-rb纳米颗粒的合成方法 Expired - Fee Related CN108619510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810283761.0A CN108619510B (zh) 2018-04-02 2018-04-02 一种用于光动力抗菌的eps-rb纳米颗粒的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810283761.0A CN108619510B (zh) 2018-04-02 2018-04-02 一种用于光动力抗菌的eps-rb纳米颗粒的合成方法

Publications (2)

Publication Number Publication Date
CN108619510A CN108619510A (zh) 2018-10-09
CN108619510B true CN108619510B (zh) 2020-05-05

Family

ID=63696618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810283761.0A Expired - Fee Related CN108619510B (zh) 2018-04-02 2018-04-02 一种用于光动力抗菌的eps-rb纳米颗粒的合成方法

Country Status (1)

Country Link
CN (1) CN108619510B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113425841B (zh) * 2020-07-13 2022-09-16 浙江大学 一种具有激光驱动松散键合的ICG-Ga纳米材料及其制备方法与用途
CN114732943A (zh) * 2022-04-19 2022-07-12 中国科学院合肥物质科学研究院 基于壳聚糖-活性酯凝胶的抗菌材料及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103536919B (zh) * 2013-10-24 2015-07-15 天津市肿瘤研究所 肿瘤靶向的光动力载药纳米粒子及其制备方法和用途
CN105267966A (zh) * 2015-10-30 2016-01-27 同济大学 一种还原敏感激活型光动力纳米药物剂型及其制备方法和应用
CN107058166B (zh) * 2017-01-13 2020-07-31 东南大学 一株产胞外多糖的植物乳杆菌
CN107243645B (zh) * 2017-06-06 2019-12-10 东南大学 一种利用植物乳杆菌胞外多糖合成贵金属纳米颗粒的方法

Also Published As

Publication number Publication date
CN108619510A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
Yan et al. pH switchable nanoplatform for in vivo persistent luminescence imaging and precise photothermal therapy of bacterial infection
Chen et al. Folic acid-modified mesoporous silica nanoparticles with pH-responsiveness loaded with Amp for an enhanced effect against anti-drug-resistant bacteria by overcoming efflux pump systems
Agnihotri et al. Synthesis and antimicrobial activity of aminoglycoside-conjugated silica nanoparticles against clinical and resistant bacteria
Su et al. Silver nanoparticles decorated lipase-sensitive polyurethane micelles for on-demand release of silver nanoparticles
CN114306382B (zh) 一种铜基纳米酶及其制备方法和应用
CN110787186B (zh) 一种Ga3+/PDA靶向协同抗菌纳米材料、其制备和应用
Qian et al. Metal-organic framework/poly (ε-caprolactone) hybrid electrospun nanofibrous membranes with effective photodynamic antibacterial activities
CN110393725B (zh) 具有革兰氏选择性的苯硼酸及其衍生物修饰的金纳米颗粒、其制备方法及应用
Yang et al. Construction of pH/glutathione responsive chitosan nanoparticles by a self-assembly/self-crosslinking method for photodynamic therapy
Guo et al. Synthesis and antitumoral activity of gelatin/polyoxometalate hybrid nanoparticles
Wang et al. Responsive nanoplatform for persistent luminescence “turn-on” imaging and “on-demand” synergistic therapy of bacterial infection
Yin et al. A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria
CN108619510B (zh) 一种用于光动力抗菌的eps-rb纳米颗粒的合成方法
Kiprono et al. Encapsulation of E. coli in biomimetic and Fe 3 O 4-doped hydrogel: structural and viability analyses
Zhang et al. Graphene oxide and adenosine triphosphate as a source for functionalized carbon dots with applications in pH-triggered drug delivery and cell imaging
CN111558051A (zh) 一种具有快速粘液渗透作用的复合纳米微球及其制备方法和应用
Yin et al. Crystalline ruthenium polypyridine nanoparticles: a targeted treatment of bacterial infection with multifunctional antibacterial, adhesion and surface-anchoring photosensitizer properties
Alshubaily et al. Appliance of fungal chitosan/ceftriaxone nano-composite to strengthen and sustain their antimicrobial potentiality against drug resistant bacteria
CN112773899A (zh) 一种基于生物金属有机骨架材料的药物递送载体及其制备方法和应用
Cao et al. Designing of membrane-active nano-antimicrobials based on cationic copolymer functionalized nanodiamond: Influence of hydrophilic segment on antimicrobial activity and selectivity
Wang et al. Vancomycin-Loaded Porphyrinic MOF Nanoparticles for Killing Pathogenic Bacteria
CN115607513A (zh) 铁载体仿生纳米粒子的制备方法及其在抗菌方面的应用
EP3124050B1 (en) Drug composition comprising a chitosan derivative and method for preparing the same
Salama et al. In vitro and in vivo antibacterial potential of chitosan-g-acrylonitrile silver nanocomposite against a pathogenic bacterium
Rananaware et al. Functionalized mesoporous silica for drug delivery of poorly soluble polyphenols: Synthesis, characterization, and antimicrobial action

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200505