CN108616141A - 微电网中lcl并网逆变器功率非线性的控制方法 - Google Patents

微电网中lcl并网逆变器功率非线性的控制方法 Download PDF

Info

Publication number
CN108616141A
CN108616141A CN201810206558.3A CN201810206558A CN108616141A CN 108616141 A CN108616141 A CN 108616141A CN 201810206558 A CN201810206558 A CN 201810206558A CN 108616141 A CN108616141 A CN 108616141A
Authority
CN
China
Prior art keywords
power
coordinate system
gird
inverter
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810206558.3A
Other languages
English (en)
Other versions
CN108616141B (zh
Inventor
黄鑫
汪可友
李国杰
韩蓓
冯琳
江秀臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201810206558.3A priority Critical patent/CN108616141B/zh
Publication of CN108616141A publication Critical patent/CN108616141A/zh
Priority to US16/216,448 priority patent/US10505469B2/en
Application granted granted Critical
Publication of CN108616141B publication Critical patent/CN108616141B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/20Contact mechanisms of dynamic converters
    • H02M1/26Contact mechanisms of dynamic converters incorporating cam-operated contacts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks

Abstract

一种适用于微电网中LCL型并网逆变器与外接电网之间功率传输的非线性控制方法,本发明通过生成各种工况下满足特定有功、无功功率指令的参考电流,通过引入基于李雅普诺夫函数的非线性控制方法对逆变器控制,实现对所生成参考信号的快速、准确跟踪。该方法可有效实现有功功率、无功功率的解耦控制,系统动态响应迅速且鲁棒性较强,同时,该方法控制结构简单,易于实现,省去了同步控制环节和额外的电压、电流调节器,实现了各种工况下微电网中LCL型并网逆变器与电网之间快速、准确的功率交换和平稳的功率传输,为提高微电网内部的能量管理效率提供了保障。

Description

微电网中LCL并网逆变器功率非线性的控制方法
技术领域
本发明涉及电力电子变流器,更具体地,涉及一种微电网内LCL并网逆变器功率非线性的控制方法。
背景技术
微电网作为智能电网的关键技术之一,可有效解决分布式电源因位置分散、形式多样、特点各异而对主网和用户造成的冲击,实现对分布式电源的有效整合和高效利用,近年来受到了广泛关注。微电网的运行方式灵活,既能与大电网相连而并网运行,也可以脱离大电网独立运行。
由于微电网内含有大量可再生能源,多数可再生能源要通过逆变器并入微电网中,因此,采用先进的技术对逆变器进行控制尤为重要。当微电网处于并网运行状态下,每台逆变器需要根据微电网的中央控制器下发的功率指令准确地发出/吸收有功、无功功率,从而满足微电网与大电网之间特定的功率交换,同时提高微电网内部的能量管理效率。
然而,中、低压等级的微电网往往处于配电网末端,与配电网相连的公共连接处的电压质量并不理想,往往存在丰富的背景谐波,严重影响了并网逆变器传输功率的质量,同时,电网电压幅值骤升/骤降、频率的波动及线路阻抗的改变均会造成逆变器传输功率产生脉动,与预设功率指令产生偏差,造成能量的传输效率下降,严重时会影响系统的稳定性和逆变器并网。
目前对并网逆变器传输功率的控制主要是通过控制逆变器的输出电流实现的。传统的控制方法主要是双环控制,外环控制器产生参考信号,内环多为电流环,关系到逆变器的稳态精度、谐波含量、动态响应及抗干扰能力等。根据坐标系选取的不同对应不同的控制策略,如在同步旋转坐标系下需将交流量转换成直流量,通过采用比例积分控制器(PI)消除稳态误差,但是在电网电压非理想状态下,经同步旋转坐标系转换得到的将不再是直流量,传统的PI控制将无法满足零稳态误差跟踪。并且同步旋转坐标系下的控制需要用到锁相环节,锁相环性能的优劣将直接影响系统的动态响应速度和逆变器的控制效果。若在两相静止坐标系下进行控制,可省去变换所需的同步环节,减少了控制系统的复杂程度,比例积分调节器(PR)可在基波频率处呈现高增益特性,可对特定频率的正弦量近似实现误差跟踪。但是当正弦量中含有其他谐波分量时,需增加特定频率处的谐振控制器予以消除,增加了控制器的复杂性。而在三相自然坐标系下的控制中,三相系统被分为三个单相系统进行控制,因此对每一相的控制相对独立,虽可用于三相不平衡系统,但控制器的结构相对复杂。
与此同时,随着对非线性控制理论的深入研究,一些非线性控制表现的特性如:快速的动态响应、全局稳定性和较强的鲁棒性等,一定程度上弥补了线性控制的不足,近年来越来越受到学者们的关注,也在逆变器的控制中得到了一定应用,但仍有许多问题尚待解决。
发明内容
为应对上述传统方法的不足,提供一种LCL并网逆变器功率非线性的控制方法,以提升并网逆变器应对并网点处恶劣电能质量环境的能力,使每台逆变器在存在干扰条件下都能按照下达的功率指令平稳、准确地发出有功、无功功率,进而提高逆变器运行的可靠性和微电网运行效率。本发明提供一种设计合理并且具有良好动、稳态特性的LCL型并网逆变器功率非线性的控制方法。
为达到上述目的,本发明的技术解决方案如下:
一种微电网中LCL并网逆变器的控制方法,包括以下步骤:
步骤1、采集LCL型并网逆变器滤波电容电压vc和网侧电感电流io,经过坐标变换,建立其在两相静止坐标系下的数学模型;
步骤2、采集交流母线电压vg和本地负载电流iload,经过坐标变换,根据瞬时无功功率理论,生成两相静止坐标系下的网侧电感电流参考信号,并通过观测器对参考信号进行求导,得到参考信号的一阶导数和二阶导数值,作为非线性控制器的输入信号值;
步骤3、设定控制变量io的原始跟踪误差和滤波跟踪误差,建立并网逆变器的非线性控制模型;
步骤4、根据LCL型并网逆变器数学模型和并网逆变器非线性控制模型得到调制波信号,通过坐标变换,得到三相静止坐标系下的调制波信号,通过引入基于李雅普诺夫函数的非线性控制方法对并网逆变器进行控制。
所述并网逆变器在两相静止坐标系下的数学模型为:
所述基于瞬时无功功率理论生成两相静止坐标系下电流参考信号的方法如下
所述原始跟踪误差和滤波跟踪误差分别设定为
eαβ=ioαβ-ioαβ_ref
所述并网逆变器非线性控制模型为
其中,ioαβ表示两相静止坐标系下网侧电感电流分量;xαβ表示状态变量,d为干扰量,包括系统扰动和模型不确定性带来的误差;iloadαβ表示两相静止坐标系下的负载电流分量;vgαβ表示两相静止坐标系下电网电压分量;Pset、Qset分别为给定的有功功率、无功功率指令;ioαβ_ref表示参考电流信号分量;eαβ、Eαβ分别为设定的原始误差和滤波跟踪误差;uαβ表示两相静止坐标系下的非线性控制律,其中,k、λ、ks、ρ分别为自定义大于零常数。
所述状态变量xαβ可表示为
所述干扰量为:
其中,是对网侧滤波电感与线路电感之和Lo的估计值;Δvgαβ为电网电压引起的扰动;ΔRo、ΔLo为线路参数不确定带来的实际应用值和理论值之间的偏差;Δvcαβ为因电网电压扰动对电容电压造成的影响。
所述的生成的调制波信号为:
其中,vsαβ表示两相静止坐标系下的调制波信号分量;viαβ表示两相静止坐标系下的逆变器输入电压信号分量;Kd为比例系数且大于零;Li、C、Lo分别为逆变器侧滤波电感Li、滤波电容C以及网侧滤波电感加线路参数Lo的估计值;vcαβ表示两相静止坐标系下电容电压分量。
对所述非线性控制模型内自定义参数的合理取值,通过李雅普诺夫函数直接法证明系统的稳定性并实现跟踪误差趋向于0。
选择李雅普诺夫函数:V=1/2E2+1/2ρr2,其导数的取值与自定义参数k、λ、ks、ρ有关,通过设计自定义参数使V的导数由于V作为E、r的函数且有V>0,其导数确保V单调递减,直至E、r趋向于0,因此,证明了系统的全局稳定性,实现了跟踪误差趋向于0。
所述的干扰量d包含了对线路阻抗参数不确定性ΔRo、ΔLo的建模,保证了所设计控制器在系统参数不确定或线路阻抗发生变化时功率控制精度;包含了对电网扰动Δvg和电网扰动对电容电压影响Δvc的建模,保证了所设计控制器在非理想电网电压条件下的控制性能。
本发明的优点和积极效果在于:
1、本发明考虑了LCL并网逆变器在并网点电压质量不佳(存在较多谐波)、电压幅值波动、频率跳变等多种因素的干扰,利用李雅普诺夫函数的直接法证明了其稳定性,保证了逆变器发出/吸收有功、无功功率能够准确跟踪预设值,抑制由于电网电压不平衡带来的功率波动,提高了逆变器抗干扰的能力。
本发明在两相静止坐标系下实现,省去了锁相环节,使系统拥有更良好的动态性能。当有功、无功功率指令发生突变时,能够迅速响应,实现功率的快速跟踪,同时也保证了系统的暂态稳定性。
3、当负载为非线性负载时,能够保证入网电流的质量,实现有功、无功功率的准确传输。式(4)-(5)为参考电压计算公式,当负载为非线性负载时,负载电流波形非正弦,为保证入网电流为标准正弦波,得到的逆变器输出电流参考值一定为非正弦,即ioαβ_ref=iloadαβ-igαβ,所设计控制器能够对任意波形进行准确跟踪,因此能够保证入网电流的电流质量。
4、本发明考虑LCL并网逆变器系统参数不确定性,当线路阻抗发生改变时,系统具有较强的鲁棒性,不影响功率传输的精度。
附图说明
图1是本发明含LCL并网逆变器的微电网系统示意图。
图2是本发明控制方法的原理图。
图3是本发明并网点电压受到干扰下的电压波形和系统有功、无功功率波形。
图3(a)是并网点电压含谐波时的电压波形和系统有功、无功功率波形;
图3(b)是并网点电压幅值升/降时的电压波形和系统有功、无功功率波形;
图3(c)是并网点频率跳变时电压波形和系统有功、无功功率波形;
图4是功率指令发生突变时,系统的有功、无功功率波形。
图5是非线性负载下,系统的有功、无功功率及电流波形。
具体实施方式
以下结合附图对本发明实施例作进一步详细叙述。
一种微电网中LCL并网逆变器的非线性功率的控制方法,是在如图1所示的微电网系统中的LCL型并网逆变器上实现的。该系统主要包括外接电网1、并网点开关2、三相交流母线3、三相负载4、分布式发电单元5、其他分布式发电单元6这六个部分。
所述的分布式发电单元5包括直流电压源7、电压源三相全桥逆变器8、LCL型滤波电路9、线路阻抗10。所述直流电源7用理想直流电压源,电压表示为Vdc;所述电压源三相全桥逆变器8包括六个开关管S1~S6;所述LCL型滤波电路9包括逆变器侧滤波电感Li11、滤波电容C12、网侧滤波电感Lg 13;线路阻抗10包括线路电阻Ro 14和线路电感Ll 15,为方便建模,将网侧滤波电感Lg和线路等效电感Ll合并为Lo 16,电压源三相全桥逆变器8的空载电压为vi;滤波电容12上的电压为vc;并网点处电压为vg,逆变侧电感电流为ii;网侧电感电流为io;负载电流为iload;流入电网电流为ig
本发明的控制方法包括以下步骤:
步骤1、采集LCL并网逆变器滤波电容电压vc和网侧电感电流io,经过坐标变换,建立其在两相静止坐标系下的数学模型。
首先根据图1、图2所示,系统在两相静止坐标系下的数学模型可表示为:
考虑模型参数的不确定性和系统可能经受的扰动,式(17)可写成:
ΔLo、ΔRo表示系统参数估计的偏差;Δvgαβ表示电网电压扰动,Δvcαβ表示系统参数和电网电压带来的电容电压波动。
将扰动量表示为
定义状态变量:控制律表示为:其中分别为对Lo、C的估计值。因此,得到并网逆变器简化后的数学模型为
其中,d为干扰项,表示为可假设d未知但有界。
步骤2、采集交流母线电压vg和本地负载电流iload,经过坐标变换,根据瞬时无功功率理论,生成两相静止坐标系下的网侧电感电流参考信号,并通过观测器对参考信号进行求导,得到参考信号的一阶导数和二阶导数值,作为非线性控制器的输入信号值。
采集得到的vg、iload信号,经过坐标变换得到vgαβ、iloadαβ,通过基于瞬时无功功率的计算公式(21)得到网侧滤波电感的电流参考值ioαβ_ref
之后,通过观测器得到参考信号的一阶导数和二阶导数的精确估计值:
其中,分别为和ioαβ_ref的估计值,ko为观测器的增益,根据获得实时更新。
定义观测器的输出误差为:
通过设置足够大的观测器的增益ko,可使观测器输出误差调节到系统允许范围内。用同样的方法在一阶导数的基础上得到电流参考信号的二阶导数值。
步骤3、设定控制变量io的原始跟踪误差和滤波跟踪误差,建立并网逆变器的非线性控制模型;
定义原始误差信号和滤波跟踪误差信号分别为:
eαβ=ioαβ-ioαβ_ref
通过步骤2所述观测器,得到网侧滤波电感电流的一阶导数通过公式(24)得到滤波跟踪误差Eαβ作为非线性控制器的输入信号,非线性控制律为
其中,k、λ、ks、ρ分别为自定义大于零常数。
步骤4、根据LCL型并网逆变器数学模型和并网逆变器非线性控制模型得到调制波信号,通过坐标变换,得到三相静止坐标系下的调制波信号,通过引入基于李雅普诺夫函数的非线性控制方法对并网逆变器进行控制。
根据式(17)得到两相静止坐标系下的调制波信号为:
其中,为逆变器侧滤波电感的估计值;Kd为大于零的比例系数。
将所述的调制波信号输入正弦波矢量调制模块,得到S1~S6六路脉冲信号,输入并控制所述的电压源型三相全桥逆变电路。
综上所述,可以得到LCL型并网逆变器的功率非线性控制系,如图2所示。
现利用Matlab/Simulink搭建了1台LCL并网逆变器系统仿真模型,并模拟逆变器受并网点处扰动电压(含有谐波、幅值改变、频率跳变)影响、功率预设值发生改变以及非线性负载接入的3种实际工况,对所提控制算法进行检验。
工况一:并网点处电网电压受到扰动,主要存在三种情况:
1、含有背景谐波;
2、电压幅值发生改变;
3、频率产生波动。
设定功率值为向电网输入有功功率20kW,发出无功功率10kVar。分别验证以上三种网侧扰动对逆变器输入电网功率产生的影响。仿真结果如图3所示。vga、vgb、vgc分别代表并网点处abc三相电压,Pg、Qg分别代表逆变器与电网交换的有功功率和无功功率。系统仿真时长为0.2s,为方便对比,0~0.1s并网点电压为理想电压波形,0.1s~0.2s并网点电压受到干扰,为非理想电压波形。
首先将设定在0.1s后,并网点电压含有15V的三次谐波分量和15V的5次谐波分量,同时三次谐波分量相位滞后基波分量相位25度,五次谐波分量相位超前基波分量相位35度。从图3(a)中可以看出,0.1s后,逆变器输入电网的有功功率和无功功率能准确跟踪预设功率指令,并且当并网点电压存在畸变时仍保持功率传输的平稳,未产生二倍频脉动,电压情况恶化瞬间也未产生较大波动。
然后设定在0.1s后,并网点电压幅值产生波动,同样可以观测处,输入电网的有功、无功功率始终维持在预设值附近,并且时刻保持平稳。
最后,设定在0.1s后,并网点电压频率发生跳变,由50Hz下降至49.5Hz,可以看出传输功率未受频率变化的影响。
工况二:预设功率指令随时间变化,在0~0.1s中,设定系统输入电网的有功功率、无功功率均为零;0.1s~0.2s中,系统向电网输送有功功率10kW,从电网吸收无功功率20kVar;0.2s~0.3s,系统向电网输送有功功率20kW,从电网吸收无功功率10kVar;0.3s~0.4s,系统从电网吸收有功功率10kW,向电网发出无功功率10kVar。
从仿真结果可以看出,系统做到了对有功功率、无功功率的解耦控制,能够快速、准确地跟踪功率指令。
工况三:系统在0~0.1s向线性负载供电,0.1s~0.2s向非线性负载供电。且功率指令为向电网发出20kW的有功功率和10kVar的无功功率。
从仿真结果可以看出,在负载突变时刻,功率存在较小的冲击,并快速收敛至指令值,并在负载为非线性的情况下保证了向电网传输功率的平稳和准确。
由此可见,LCL型并网逆变器在并网点电压存在扰动、带非线性负载等情况下,采用所提控制方法可使其具有良好的功率传输能力,系统的动态响应迅速。

Claims (1)

1.一种微电网中LCL型并网逆变器的控制方法,其特征在于包括以下步骤:
1)采集LCL并网逆变器滤波电容电压vc和网侧电感电流io,经过坐标变换,建立所述的并网逆变器在两相静止坐标系下的数学模型为:
其中,ioαβ为两相静止坐标系下网侧电感电流分量;uαβ表示两相静止坐标系下的非线性控制律;
xαβ为状态变量:
d为干扰量,包括系统扰动和模型不确定性带来的误差;所述的干扰量为d:
式中,为对网侧滤波电感及线路电感之和Lo的估计值;Δvgαβ为电网电压引起的扰动;Ro为线路电阻值,ΔRo、ΔLo为线路参数不确定带来的实际应用值和理论值之间的偏差;Δvcαβ为因电网电压扰动对电容电压造成的影响,iloadαβ表示两相静止坐标系下的负载电流分量;vgαβ表示两相静止坐标系下电网电压分量;
2)采集交流母线电压vg和本地负载电流iload,经过坐标变换,根据瞬时无功功率理论,生成两相静止坐标系下的网侧电感电流参考信号ioαβ_ref为:
式中,入网电流igαβ可通过式(5)计算:
式中,Pset、Qset分别为给定的有功功率、无功功率指令;
3)设定控制变量io的原始跟踪误差eαβ和滤波跟踪误差Eαβ分别为:
式中,ioαβ_ref表示参考电流信号分量,k为自定义大于零的常数,为原始跟踪误差eαβ的一阶导数;进一步定义跟踪误差为:
通过观测器对参考电流信号ioαβ_ref(t)进行求导,得到参考电流信号的一阶导数和二阶导数值作为非线性控制器的输入信号值,建立并网逆变器的非线性控制模型如下:
式中,iloadαβ表示两相静止坐标系下的负载电流分量;其中,k、λ、ks、ρ分别为自定义大于零的常数;
4)根据LCL并网逆变器数学模型和并网逆变器非线性控制模型得到调制波信号,通过坐标变换,生成三相静止坐标系下的调制波信号为:
其中,viαβ表示两相静止坐标系下的逆变器输入电压信号分量;Kd为比例系数且大于零,即逆变器侧直流电压值;分别表示对逆变器侧滤波电感Li、滤波电容C和网侧滤波电感加线路参数Lo的估计值;vcαβ表示两相静止坐标系下电容电压分量;
5)利用所述的三相静止坐标系下的调制波信号通过引入基于李雅普诺夫函数的非线性控制方法对并网逆变器进行控制。
CN201810206558.3A 2018-03-13 2018-03-13 微电网中lcl并网逆变器功率非线性的控制方法 Active CN108616141B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810206558.3A CN108616141B (zh) 2018-03-13 2018-03-13 微电网中lcl并网逆变器功率非线性的控制方法
US16/216,448 US10505469B2 (en) 2018-03-13 2018-12-11 Nonlinear control method for micro-grid inverter with anti-disturbance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810206558.3A CN108616141B (zh) 2018-03-13 2018-03-13 微电网中lcl并网逆变器功率非线性的控制方法

Publications (2)

Publication Number Publication Date
CN108616141A true CN108616141A (zh) 2018-10-02
CN108616141B CN108616141B (zh) 2021-07-06

Family

ID=63658637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810206558.3A Active CN108616141B (zh) 2018-03-13 2018-03-13 微电网中lcl并网逆变器功率非线性的控制方法

Country Status (2)

Country Link
US (1) US10505469B2 (zh)
CN (1) CN108616141B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617437A (zh) * 2018-12-14 2019-04-12 天津大学 一种三相并网变流器电流环预测谐振控制器的设计方法
CN109842120A (zh) * 2019-03-15 2019-06-04 三峡大学 一种微网群分布式电压不平衡补偿方法
CN111628525A (zh) * 2020-05-29 2020-09-04 辽宁工业大学 基于切换系统的微电网双模式稳定控制方法
CN112003318A (zh) * 2020-06-05 2020-11-27 天津理工大学 一种风电并网逆变器直流母线电压控制方法
CN112701733A (zh) * 2020-12-09 2021-04-23 华南理工大学 基于lcl滤波器的微电网及其功率分配控制方法
CN112701702A (zh) * 2020-12-09 2021-04-23 华南理工大学 一种储能系统的鲁棒分布式双目标控制方法
CN116632947A (zh) * 2023-07-21 2023-08-22 华能江苏综合能源服务有限公司 一种并网逆变器瞬态稳定区域改善控制方法及系统

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078642B (zh) * 2016-05-13 2020-04-03 华为技术有限公司 谐振dc-dc转换器
US10985668B2 (en) * 2017-06-21 2021-04-20 Abb Power Grids Switzerland Ag Model based current control of a three-to-single-phase power converter
US11012001B2 (en) 2018-03-28 2021-05-18 James A. Allen, JR. Transformer-less, tapped point AC voltage splitter for full bridge DC AC inverters
US20190305692A1 (en) * 2018-03-28 2019-10-03 James Augustus Allen, JR. Transformer-less Tapped Point AC Voltage Splitter for Full Bridge DC AC Inverters
CN110829440B (zh) * 2019-11-21 2021-01-08 国网山东省电力公司聊城供电公司 一种三相中低压一体化配电网电压控制方法及系统
CN110896226B (zh) * 2019-11-29 2023-03-14 国网江苏省电力有限公司常州供电分公司 一种改进的柔性直流输电系统的直接功率控制方法
CN111682543A (zh) * 2020-05-25 2020-09-18 天津大学 基于加权平均电流的无差拍控制的有源滤波器及控制方法
CN111740429A (zh) * 2020-06-22 2020-10-02 上海电力大学 电网电压不平衡条件下mmc-upqc的无源性滑模控制方法
CN111786446B (zh) * 2020-07-15 2023-02-24 郑州森源新能源科技有限公司 动力电池充电装置的自抗扰控制方法与电池充电系统
CN112464135B (zh) * 2020-11-12 2023-11-10 广西电网有限责任公司南宁供电局 一种基于双重电气特性判据的微波炉负荷特征提取方法
CN112467778A (zh) * 2020-11-18 2021-03-09 西安热工研究院有限公司 一种提高多端柔性直流输电控制系统鲁棒性的方法
CN112964932B (zh) * 2021-02-03 2022-01-04 大连理工大学 一种非线性自抗扰飞机电网相位角度跟踪器
CN112952916B (zh) * 2021-03-08 2022-11-04 珠海澳大科技研究院 混合微电网中并网变流器的功率分配方法
CN112909913B (zh) * 2021-03-19 2023-01-06 深圳市欣旺达能源科技有限公司 直流微电网非线性控制方法、装置、存储介质及系统
CN113644641B (zh) * 2021-05-25 2023-09-26 上海电力大学 一种多直流电力弹簧电压平稳控制方法
CN113452066B (zh) * 2021-05-28 2022-12-02 北方工业大学 柔性互联装置控制策略的优化方法
CN113224797B (zh) * 2021-06-02 2023-02-21 上海电机学院 一种逆变器的电压电流双闭环控制系统pi参数配置方法
CN113346770B (zh) * 2021-06-22 2022-01-07 哈尔滨工业大学 一种三电平npc变换器的滑模控制方法
CN113488980B (zh) * 2021-07-07 2023-12-19 南京邮电大学 拒绝服务攻击下直流微电网的攻击容忍控制方法
CN113595140B (zh) * 2021-07-30 2024-03-12 西安热工研究院有限公司 一种储能换流装置mpc权重价值函数建立方法
CN113471985B (zh) * 2021-09-02 2021-11-16 国能日新科技股份有限公司 计及svg控制精度小需量距离寻优无功补偿方法及装置
CN113721453A (zh) * 2021-09-03 2021-11-30 哈尔滨理工大学 基于非线性pid控制的低压大功率整流模块的控制系统及方法
CN113852290B (zh) * 2021-10-19 2023-08-08 山东华天电气有限公司 一种实时的电压稳态误差恢复控制方法及系统
CN113937816B (zh) * 2021-10-29 2023-11-07 南通大学 综合供电电源自适应高效鲁棒稳定控制装置
CN113972690A (zh) * 2021-11-03 2022-01-25 厦门理工学院 一种基于参数在线辨识的单相lcl型逆变器预测控制方法
CN113937818A (zh) * 2021-11-11 2022-01-14 国网江苏省电力有限公司宿迁供电分公司 一种光伏发电系统母线稳压控制方法
CN114156890B (zh) * 2021-12-09 2024-03-29 西安理工大学 一种双电感电流变化的lcl型并网逆变器电流控制方法
CN114296345B (zh) * 2021-12-14 2024-04-16 国网湖北省电力有限公司电力科学研究院 一种电能多端口低压交流混合H2/Hinf优化控制方法
CN114336751B (zh) * 2022-01-04 2023-12-05 中国船舶重工集团公司第七0四研究所 Lcl型单相并网逆变器状态反馈控制方法
CN114614724B (zh) * 2022-03-25 2023-02-28 哈尔滨工业大学 一种同步磁阻电机的磁链观测器无传感器控制方法
CN114865703B (zh) * 2022-06-08 2024-03-08 合肥工业大学 一种直驱风机逆变器高穿特性参数辨识方法
CN115549140B (zh) * 2022-10-18 2024-04-02 国网湖北省电力有限公司电力科学研究院 一种构网型储能系统支撑能力检测装置及其运行方法
CN116094018B (zh) * 2022-11-10 2024-03-19 山东大学 电网不平衡下充电机前端变流器有限时间控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116815A1 (ja) * 2009-03-30 2010-10-14 株式会社日立製作所 交流モータの制御装置及び交流モータ駆動システム
CN106300426A (zh) * 2016-09-19 2017-01-04 上海电力学院 基于mmc的并网逆变系统的自适应无源性pi控制方法
CN106300435A (zh) * 2016-08-29 2017-01-04 上海交通大学 孤立微网单相多逆变器并联系统及其分布式控制方法
CN107196329A (zh) * 2017-05-12 2017-09-22 上海电力学院 一种电气化铁路电能治理调节装置的并网锁相方法
CN107611971A (zh) * 2017-09-05 2018-01-19 哈尔滨工业大学 针对电网电压谐波畸变工况的网侧逆变器谐振全阶滑模控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1635448B1 (en) * 2004-09-09 2006-12-20 ABB Oy Speed sensorless control of an induction machine using a PWM inverter with output LC filter
EP2672621B1 (en) * 2012-06-07 2019-01-23 ABB Research Ltd. Method for zero-sequence damping and voltage balancing in a three-level converter with split dc-link capacitors and virtually grounded LCL filter
US9287812B2 (en) * 2013-06-29 2016-03-15 Rockwell Automation Technologies, Inc. Method and apparatus for stability control of open loop motor drive operation
US10333390B2 (en) * 2015-05-08 2019-06-25 The Board Of Trustees Of The University Of Alabama Systems and methods for providing vector control of a grid connected converter with a resonant circuit grid filter
US9887642B2 (en) * 2016-05-03 2018-02-06 Hossein Safamehr Method and apparatus for estimated inductance and current feedback control of a grid-connected inverter with nonlinear inductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116815A1 (ja) * 2009-03-30 2010-10-14 株式会社日立製作所 交流モータの制御装置及び交流モータ駆動システム
CN106300435A (zh) * 2016-08-29 2017-01-04 上海交通大学 孤立微网单相多逆变器并联系统及其分布式控制方法
CN106300426A (zh) * 2016-09-19 2017-01-04 上海电力学院 基于mmc的并网逆变系统的自适应无源性pi控制方法
CN107196329A (zh) * 2017-05-12 2017-09-22 上海电力学院 一种电气化铁路电能治理调节装置的并网锁相方法
CN107611971A (zh) * 2017-09-05 2018-01-19 哈尔滨工业大学 针对电网电压谐波畸变工况的网侧逆变器谐振全阶滑模控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贾林壮等: "基于MMC技术的光伏并网逆变器原理及仿真研究", 《电力系统保护与控制》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617437A (zh) * 2018-12-14 2019-04-12 天津大学 一种三相并网变流器电流环预测谐振控制器的设计方法
CN109617437B (zh) * 2018-12-14 2020-09-11 天津大学 一种三相并网变流器电流环预测谐振控制器的设计方法
CN109842120A (zh) * 2019-03-15 2019-06-04 三峡大学 一种微网群分布式电压不平衡补偿方法
CN111628525A (zh) * 2020-05-29 2020-09-04 辽宁工业大学 基于切换系统的微电网双模式稳定控制方法
CN112003318A (zh) * 2020-06-05 2020-11-27 天津理工大学 一种风电并网逆变器直流母线电压控制方法
CN112701733A (zh) * 2020-12-09 2021-04-23 华南理工大学 基于lcl滤波器的微电网及其功率分配控制方法
CN112701702A (zh) * 2020-12-09 2021-04-23 华南理工大学 一种储能系统的鲁棒分布式双目标控制方法
CN112701702B (zh) * 2020-12-09 2023-03-21 华南理工大学 一种储能系统的鲁棒分布式双目标控制方法
CN116632947A (zh) * 2023-07-21 2023-08-22 华能江苏综合能源服务有限公司 一种并网逆变器瞬态稳定区域改善控制方法及系统
CN116632947B (zh) * 2023-07-21 2023-12-05 华能江苏综合能源服务有限公司 一种并网逆变器瞬态稳定区域改善控制方法及系统

Also Published As

Publication number Publication date
US20190288611A1 (en) 2019-09-19
CN108616141B (zh) 2021-07-06
US10505469B2 (en) 2019-12-10

Similar Documents

Publication Publication Date Title
CN108616141A (zh) 微电网中lcl并网逆变器功率非线性的控制方法
CN112953172B (zh) 一种锁相环耦合下模块化多电平换流器序阻抗建模的方法
Aredes et al. Three-phase four-wire shunt active filter control strategies
CN110707958B (zh) 一种基于调制波区间划分的中点电压控制方法
Guerrero et al. Decentralized control for parallel operation of distributed generation inverters in microgrids using resistive output impedance
CN106532749B (zh) 一种微电网不平衡功率和谐波电压补偿系统及其应用
CN105743091B (zh) 一种有源电力滤波器的双环解耦控制方法
CN110137971B (zh) 一种三相交流电力弹簧的电压平稳控制方法
CN111239491A (zh) 采用实物控制器扰动注入的广义阻抗实时实验测量方法
CN104410083A (zh) 一种svg直流侧电容中点电位平衡装置及其控制方法
CN110429603B (zh) 六开关七电平有源电力滤波器及补偿方法
CN113839388A (zh) 一种基于混合负载的有源电力滤波器电流双环控制方法
Jiang et al. Power quality compensation strategy of MMC-UPQC based on passive sliding mode control
Zhou et al. Control strategies for microgrid power quality enhancement with back-to-back converters connected to a distribution network
CN109951093B (zh) 一种基于混杂参数的中点电压控制系统及方法
CN109149579B (zh) 基于网侧电流采样的hapf谐波补偿和谐振抑制的控制方法
CN108711870B (zh) 基于能量单向流动可控整流器的静止无功补偿器控制策略
CN204290329U (zh) 一种svg直流侧电容中点电位平衡装置
Chebabhi et al. Self tuning filter and fuzzy logic control of shunt active power filter for eliminates the current harmonics constraints under unbalanced source voltages and loads conditions
CN109378847B (zh) 一种微电网储能pcs控制系统和方法
Sathvik et al. Theoritical modelling of dstatcom for minimizing harmonic distortion
Qiao et al. A parallel control strategy for the cascaded multi-level inverters in the distributed generation system
Jian et al. Optimal control for AC and DC power quality of VSC-HVDC
Kumar et al. Harmonics Reduction Using Active Power Filter with Hysteresis Current Control
Ghanizadeh et al. A new control method for voltage harmonics compensation in islanded microgrid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant