CN108614796B - Method for accelerating 1394 physical layer virtual simulation - Google Patents

Method for accelerating 1394 physical layer virtual simulation Download PDF

Info

Publication number
CN108614796B
CN108614796B CN201611139650.XA CN201611139650A CN108614796B CN 108614796 B CN108614796 B CN 108614796B CN 201611139650 A CN201611139650 A CN 201611139650A CN 108614796 B CN108614796 B CN 108614796B
Authority
CN
China
Prior art keywords
parameter
time
physical layer
scaled
original
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611139650.XA
Other languages
Chinese (zh)
Other versions
CN108614796A (en
Inventor
郑新建
田泽
王治
徐文进
楼晓强
李哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Xiangteng Microelectronics Technology Co Ltd
Original Assignee
Xian Aeronautics Computing Technique Research Institute of AVIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aeronautics Computing Technique Research Institute of AVIC filed Critical Xian Aeronautics Computing Technique Research Institute of AVIC
Priority to CN201611139650.XA priority Critical patent/CN108614796B/en
Publication of CN108614796A publication Critical patent/CN108614796A/en
Application granted granted Critical
Publication of CN108614796B publication Critical patent/CN108614796B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0012High speed serial bus, e.g. IEEE P1394

Abstract

The invention belongs to the field of computer hardware control, and relates to a method for accelerating 1394 physical layer virtual simulation. The invention scales the specified time characteristic of the 1394 physical layer in proportion, can ensure that the 1394 physical layer requires sufficient time characteristic test, and can accelerate the simulation verification time. The invention comprises a 1394 physical layer circuit protocol testing platform (1) and a group of original 1394 physical layer time parameters (2); a set of scaled-down 1394 physical layer time parameters (3); a parameter selection setting (4); the 1394 physical layer circuit protocol testing platform (1) selects a group of 1394 physical layer time parameters (3) with the same reduced proportion to perform 1394 physical layer virtual verification under the control of the parameter selection setting (4), so that the virtual verification process can be accelerated; the 1394 physical layer circuit protocol testing platform (1) selects and uses a group of original 1394 physical layer time parameters (2) to realize circuit physical implementation under the control of the parameter selection setting (4).

Description

Method for accelerating 1394 physical layer virtual simulation
Technical Field
The invention belongs to the field of computer hardware control, and relates to a method for accelerating 1394 physical layer circuit virtual simulation.
Background
The physical layer time parameters specified by the IEEE1394b-2008 bus protocol are very many, and some parameter time requirements are long, wherein the handshake time RECEIVE _ OK _ HANDSHAKE, the connection detection time CONNECT _ TIMEOUT, the speed negotiation time TONE _ DURATION, the RESET detection time RESET _ DETECT, and the like are all in ms level, which is very time-consuming in circuit simulation verification, especially in post-simulation of a circuit netlist, so that the simulation progress is unacceptable.
Disclosure of Invention
The purpose of the invention is as follows: a method for accelerating 1394 physical layer virtual simulation is provided, and 1394 physical layer simulation progress is accelerated.
The technical scheme of the invention is as follows:
a method for accelerating 1394 physical layer virtual emulation, comprising: in the simulation, the following parameters were used:
the configuration TIMEOUT (CONFIG TIMEOUT) is 24us, the scaled parameter to original parameter ratio is 24/166.67,
FORCE ROOT time (FORCE _ ROOT _ TIMEOUT) to 12us, scaled parameter to original parameter ratio of 12/83.32,
the BOSS node LONG reset TIME (LONG _ BOSS _ reset _ TIME) is 12us, the scaled parameter to original parameter ratio is 12/83.32,
RESET TIME (RESET TIME) is 24us, the scaled parameter to original parameter ratio is 24/166.67,
the connection delay (TONE _ DURATION) is 40ns, the scaled parameter to original parameter ratio is 40/666670,
RECEIVE _ OK _ DURATION is 60ns, the scaled parameter to original parameter ratio is 60/1700000,
the PORT ENABLE time (PORT ENABLE) is 200ns, the scaled parameter to original parameter ratio is 200/1000000,
the maximum bus OCCUPANCY TIME (MAX _ idle _ TIME) is 20us, the scaled parameter to original parameter ratio is 20/84,
the TEST INTERVAL TIME (TEST INTERVAL TIME) is 10us, the scaled parameter to original parameter ratio is 10/41.67,
the RECEIVE-acknowledge handshake time (RECEIVE _ OK _ HANDSHAKE) was 3.2us, the scaled parameter to original parameter ratio was 3.2/16000,
RESET DETECT time (RESET DETECT) is 16us, scaled parameter to original parameter ratio is 16/80000,
the connection TIMEOUT (CONNECT _ TIMEOUT) is 48us, the scaled parameter to original parameter ratio is 48/240000,
the remaining parameters associated with the above parameters are scaled down as described above.
The invention has the advantages and effects that: the 1394 physical layer circuit protocol test platform selects and uses the 1394 physical layer time parameter defined by the invention during simulation, so that the 1394 physical layer can be ensured to require sufficient time characteristic test, and the simulation verification time can be shortened. The invention scales the time characteristics specified by the 1394 physical layer in proportion, wherein the handshake time RECEIVE _ OK _ HANDSHAKE, the connection detection time CONNECT _ TIMEOUT, the speed negotiation time TONE _ DURATION, the RESET detection time RESET _ DETECT and the like are scaled to ns or us level, which can ensure that the 1394 physical layer requires full time characteristic test and can accelerate the simulation verification time.
Drawings
FIG. 1 is a block diagram of a test platform of the present invention.
Fig. 2 is a comparison of the original parameters used in the simulation with the parameters of the present invention.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings, referring to fig. 1 and 2.
A method for accelerating 1394 physical layer virtual emulation, comprising: in the simulation, the following parameters were used:
the configuration TIMEOUT (CONFIG TIMEOUT) is 24us, the scaled parameter to original parameter ratio is 24/166.67,
FORCE ROOT time (FORCE _ ROOT _ TIMEOUT) to 12us, scaled parameter to original parameter ratio of 12/83.32,
the BOSS node LONG reset TIME (LONG _ BOSS _ reset _ TIME) is 12us, the scaled parameter to original parameter ratio is 12/83.32,
RESET TIME (RESET TIME) is 24us, the scaled parameter to original parameter ratio is 24/166.67,
the connection delay (TONE _ DURATION) is 40ns, the scaled parameter to original parameter ratio is 40/666670,
RECEIVE _ OK _ DURATION is 60ns, the scaled parameter to original parameter ratio is 60/1700000,
the PORT ENABLE time (PORT ENABLE) is 200ns, the scaled parameter to original parameter ratio is 200/1000000,
the maximum bus OCCUPANCY TIME (MAX _ idle _ TIME) is 20us, the scaled parameter to original parameter ratio is 20/84,
the TEST INTERVAL TIME (TEST INTERVAL TIME) is 10us, the scaled parameter to original parameter ratio is 10/41.67,
the RECEIVE-acknowledge handshake time (RECEIVE _ OK _ HANDSHAKE) was 3.2us, the scaled parameter to original parameter ratio was 3.2/16000,
RESET DETECT time (RESET DETECT) is 16us, scaled parameter to original parameter ratio is 16/80000,
the connection TIMEOUT (CONNECT _ TIMEOUT) is 48us, the scaled parameter to original parameter ratio is 48/240000, and the parameters related to the above parameters among the remaining parameters are scaled down as described above.

Claims (1)

1. A method for accelerating 1394 physical layer virtual emulation, comprising: in the simulation, the following parameters were used:
the configuration TIMEOUT (CONFIG _ TIMEOUT) is 24us, the scaled parameter to original parameter ratio is 24/166.67,
the ROOT node time (FORCE _ ROOT _ TIMEOUT) is forced to 12us, the scaled parameter to original parameter ratio is 12/83.32,
the BOSS node has a LONG reset TIME (LONG _ BOSS _ RESTART _ TIME) of 12us, a ratio of scaled parameters to original parameters of 12/83.32,
RESET TIME (RESET _ TIME) is 24us, the scaled parameter to original parameter ratio is 24/166.67,
the connection delay (TONE _ DURATION) is 40ns, the scaled parameter to original parameter ratio is 40/666670,
the RECEIVE _ confirm _ time (RECEIVE _ OK _ DURATION) is 60ns, the scaled parameter to original parameter ratio is 60/1700000,
the PORT ENABLE time (PORT _ ENABLE) is 200ns, the scaled parameter to original parameter ratio is 200/1000000,
the maximum bus occupation TIME (MAX _ OCCUPANCY _ TIME) is 20us, the ratio of the scaled parameter to the original parameter is 20/84,
the TEST INTERVAL (TEST _ INTERVAL _ TIME) is 10us, the ratio of the scaled parameter to the original parameter is 10/41.67,
the RECEIVE acknowledgement handshake time (RECEIVE _ OK _ HANDSHAKE) was 3.2us, the scaled parameter to original parameter ratio was 3.2/16000,
RESET DETECT time (RESET _ DETECT) is 16us, scaled parameter to original parameter ratio is 16/80000,
the connection TIMEOUT (CONNECT _ TIMEOUT) is 48us, and the scaled parameter to original parameter ratio is 48/240000.
CN201611139650.XA 2016-12-12 2016-12-12 Method for accelerating 1394 physical layer virtual simulation Active CN108614796B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611139650.XA CN108614796B (en) 2016-12-12 2016-12-12 Method for accelerating 1394 physical layer virtual simulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611139650.XA CN108614796B (en) 2016-12-12 2016-12-12 Method for accelerating 1394 physical layer virtual simulation

Publications (2)

Publication Number Publication Date
CN108614796A CN108614796A (en) 2018-10-02
CN108614796B true CN108614796B (en) 2021-06-01

Family

ID=63643679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611139650.XA Active CN108614796B (en) 2016-12-12 2016-12-12 Method for accelerating 1394 physical layer virtual simulation

Country Status (1)

Country Link
CN (1) CN108614796B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008000A (en) * 2014-05-09 2014-08-27 启秀科技(北京)有限公司 Practical operation question evaluation software simulation system
CN104750906A (en) * 2013-12-26 2015-07-01 西普联特公司 System and method of tuning clock networks
CN105634902A (en) * 2015-12-28 2016-06-01 北京经纬恒润科技有限公司 Hardware In The Loop simulation system and communication method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750906A (en) * 2013-12-26 2015-07-01 西普联特公司 System and method of tuning clock networks
CN104008000A (en) * 2014-05-09 2014-08-27 启秀科技(北京)有限公司 Practical operation question evaluation software simulation system
CN105634902A (en) * 2015-12-28 2016-06-01 北京经纬恒润科技有限公司 Hardware In The Loop simulation system and communication method therefor

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
1394总线物理层芯片虚拟验证关键技术研究;徐文进,田泽,郑新建,楼晓强;《计算机技术与发展》;20160505;第26卷(第5期);第162-164页 *
一种IEEE1394总线监控卡的设计与实现;王治,田泽 等;《计算机技术与发展》;20140107;第24卷(第3期);第218-225页 *
一种IEEE1394物理层IP的FPGA原型验证方法;王治,田泽 等;《计算机技术与发展》;20140211;第24卷(第5期);第117-124页 *
一种加快处理器仿真速度的方法;冯子军 等;《中国计算机学会 第十届计算机工程与工艺学术年会》;20080801;第326-330页 *
加快modelsim仿真速度的方法;weixin_30567225;《CSDN:http://blog.csdn.net/weixin_30567225/article/details/99100016》;20150209;第1-3页 *
基于AS5643协议的Mil_1394仿真卡设计与实现;张少锋 等;《计算机技术与发展》;20130422;第23卷(第8期);第168-171页 *
飞行控制系统中Mil_1394b仿真节点实现;田泽 等;《电脑知识与技术》;20110530;第7卷(第13期);第3120-3124页 *

Also Published As

Publication number Publication date
CN108614796A (en) 2018-10-02

Similar Documents

Publication Publication Date Title
CN109799806B (en) Simulation test method and system for valve control device
CN106021044A (en) Reusable SPI (Serial Peripheral Interface) bus protocol module verification environment platform and verification method thereof
TWI465073B (en) System and method for using multiple network addresses to establish synchronization of a device under test and test equipment controlling the test
CN104750588B (en) A kind of method for testing pressure based on serial communication
US20140343915A1 (en) Test environment configuration apparatus and method of operating network simulation apparatus using same
CN104199569A (en) Keyboard and mouse switching and using method based on USB interfaces in KVM equipment
CN107659455B (en) Method, storage medium, device and system for Mock data of iOS (internet operating system) end
CN104143024B (en) Quick time-domain simulation method for high-speed parallel link system
CN104142876A (en) Function verification method and verification environmental platform for USB (universal serial bus) equipment controller modules
CN104955074A (en) Test apparatus and test method
CN116089281A (en) Chip testing method, testing platform and device
CN108614796B (en) Method for accelerating 1394 physical layer virtual simulation
CN112600737A (en) Communication test method, medium, device and system
US8769448B1 (en) Circuit design simulation
CN102721886A (en) Aging test device of motormeter
CN104142852A (en) Method for achieving graph acceleration of android simulator on computer
JP5373334B2 (en) Test equipment network
CN112448867B (en) Signal delay testing method and device, computer readable storage medium and electronic equipment
CN105320593B (en) Multichannel frame random data authentication processing method and device
CN109413018A (en) A kind of port scanning method and device
CN104598306A (en) Process scheduling method in PHM simulation verification
CN102238048A (en) Protocol consistency testing method and system
CN106777665A (en) Improve the method and system of cooperating simulation platform verification efficiency
CN203732284U (en) Device for simulating starting and regenerative braking characteristics of hybrid electric vehicle
CN103776638A (en) Device and method for simulating starting and regenerative brake of hybrid electric vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221008

Address after: Room S303, Innovation Building, No. 25, Gaoxin 1st Road, Xi'an, Shaanxi 710075

Patentee after: XI'AN XIANGTENG MICROELECTRONICS TECHNOLOGY Co.,Ltd.

Address before: No.15, Jinye 2nd Road, Xi'an, Shaanxi 710000

Patentee before: AVIC XI''AN AERONAUTICS COMPUTING TECHNIQUE RESEARCH INSTITUTE

TR01 Transfer of patent right