CN108611360B - 一种产番茄红素类球红细菌工程菌株及其构建方法 - Google Patents

一种产番茄红素类球红细菌工程菌株及其构建方法 Download PDF

Info

Publication number
CN108611360B
CN108611360B CN201810457895.XA CN201810457895A CN108611360B CN 108611360 B CN108611360 B CN 108611360B CN 201810457895 A CN201810457895 A CN 201810457895A CN 108611360 B CN108611360 B CN 108611360B
Authority
CN
China
Prior art keywords
zwf
crti
gene
rhodobacter sphaeroides
crtc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810457895.XA
Other languages
English (en)
Other versions
CN108611360A (zh
Inventor
孟永宏
苏安平
陈芝
李颖
强珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201810457895.XA priority Critical patent/CN108611360B/zh
Publication of CN108611360A publication Critical patent/CN108611360A/zh
Application granted granted Critical
Publication of CN108611360B publication Critical patent/CN108611360B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01049Glucose-6-phosphate dehydrogenase (1.1.1.49)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/99Oxidoreductases acting on the CH-CH group of donors (1.3) with other acceptors (1.3.99)
    • C12Y103/99028Phytoene desaturase (neurosporene-forming) (1.3.99.28)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/99Oxidoreductases acting on the CH-CH group of donors (1.3) with other acceptors (1.3.99)
    • C12Y103/99031Phytoene desaturase (lycopene-forming) (1.3.99.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/010071-Deoxy-D-xylulose-5-phosphate synthase (2.2.1.7)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种产番茄红素类球红细菌工程菌株及其构建方法,该方法利用深红红螺菌来源的八氢番茄红素四步脱氢酶基因crtI4替换类球红细菌内源的八氢番茄红素三步脱氢酶基因crtI3,并敲除类球红细菌内源的链孢红素羟基化酶基因crtC和敲除类球红细菌中心代谢途径关键基因6‑磷酸葡萄糖脱氢酶基因zwf,最后在敲除zwf的位置整合表达类球红细菌内源的MEP途径限速酶基因1‑脱氧木酮糖‑5‑磷酸合酶基因dxs,得到产番茄红素类球红细菌工程菌株,该菌株经发酵培养,番茄红素的含量可达10.32mg/gDCW。

Description

一种产番茄红素类球红细菌工程菌株及其构建方法
技术领域
本发明属于代谢工程技术领域,具体涉及一种利用代谢工程改造类球红细菌构建产番茄红素菌株的方法。
背景技术
番茄红素是一个含有11个碳碳共轭双键和2个非共轭双键的直链多不饱和脂肪烃,其分子结构特性既赋予其鲜艳的红色又使其具备超强的抗氧化性,目前已被广泛应用于功能食品、医药保健和化妆品等领域,国际市场需求日益扩增。
天然番茄红素主要来源于植物和微生物,但植物来源的番茄红素生产成本居高不下,而化学合成的番茄红素生物活性低且安全性备受质疑。微生物发酵法由于易于大规模可持续生产、产率较高和环境友好等特性,且随着现代代谢工程技术的快速发展,利用微生物发酵生产番茄红素已成为必然趋势。
目前,唯一用于工业化生产番茄红素的菌株是三孢布拉霉(Blakesleatrispora),但是三孢布拉霉缺乏有效的分子操作技术,且其菌体分为正负菌,代谢调控复杂,在生产番茄红素时需添加环化酶抑制剂,这无疑增加了生产成本和安全性等问题。类球红细菌(Rhodobacter sphaeroides)作为一个新的平台细胞生产番茄红素具有许多天然优势:(1)类球红细菌属于光合细菌,具有光合作用基因簇,上面有7个类胡萝卜素合成基因,按照编码顺序依次为crtF、crtE、crtD、crtC、crtB、crtI和crtA,这几乎满足了番茄红素的生物合成;(2)类球红细菌具有丰富的内膜系统,这非常有利于番茄红素这个脂溶性化合物在细胞膜上的积累,同时在黑暗条件下,其细胞膜容易发生褶皱内陷,这又大大增加了番茄红素在细胞膜上的积累空间;(3)类球红细菌的遗传操作方法成熟,目前已经成功的用于辅酶Q10、脂肪酸和5-氨基乙酰丙酸等高附加值天然化合物大规模发酵生产,为进一步探索利用类球红细菌生产番茄红素打下了良好的基础;(4)类球红细菌自身可以在厌氧光照条件下合成类胡萝卜素,而利用厌氧光合发酵生产番茄红素和β-胡萝卜素必将是大大节约发酵成本的!
发明内容
本发明所要解决的技术问题在于提供一种高产番茄红素的类球红细菌工程菌株以及该菌株的构建方法。
解决上述技术问题所采用的类球红细菌工程菌株由下述方法构建得到:用深红红螺菌来源的八氢番茄红素四步脱氢酶基因crtI4无痕替换类球红细菌内源的八氢番茄红素三步脱氢酶基因crtI3,并敲除类球红细菌内源的链孢红素羟基化酶基因crtC和6-磷酸葡萄糖脱氢酶基因zwf,然后在敲除zwf的位置整合表达类球红细菌内源的1-脱氧木酮糖-5-磷酸合酶基因dxs,得到产番茄红素类球红细菌工程菌。
上述用深红红螺菌来源的八氢番茄红素四步脱氢酶基因crtI4无痕替换类球红细菌内源的八氢番茄红素三步脱氢酶基因crtI3的方法为:以深红红螺菌ATCC 11170的基因为模板,利用引物crtI4-F和crtI4-R,用保真酶Pfu PCR扩增深红红螺菌ATCC 11170的八氢番茄红素四步脱氢酶基因crtI4;以类球红细菌ATH 2.4.1的基因为模板,利用引物crtI4-up-F和crtI4-up-R,用保真酶Pfu PCR扩增类球红细菌的八氢番茄红素三步脱氢酶基因crtI3的上游同源臂,利用引物crtI4-down-F和crtI4-down-R,用保真酶Pfu PCR扩增类球红细菌的八氢番茄红素三步脱氢酶基因crtI3的下游同源臂;利用引物crtI4-up-F与crtI4-R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的crtI3基因的上游同源臂与crtI4基因,再利用引物crtI4-up-F与crtI4-down-R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的crtI3基因的下游同源臂,实现crtI3基因的上游同源臂-crtI4基因-crtI3基因的下游同源臂这三个基因片段的连接,得到△crtI3::crtI4片段;将△crtI3::crtI4片段插入到pK18mobsacB质粒的EcoRⅠ和HindⅢ双酶切位点,获得质粒pK18-△crtI3::crtI4,该质粒热激转化进入S17-1感受态,得到供体菌株S17-1Com△crtI3::crtI4,以类球红细菌为受体菌株进行双亲接合,得到菌株RL。
上述敲除类球红细菌内源的链孢红素羟基化酶基因crtC的方法为:以类球红细菌ATH 2.4.1的基因为模板,利用引物crtC-up-F和crtC-up-R,用保真酶Pfu PCR扩增类球红细菌的链孢红素羟基化酶基因crtC的上游同源臂,利用引物crtC-down-F和crtC-down-R,用保真酶Pfu PCR扩增类球红细菌的链孢红素羟基化酶基因crtC的下游同源臂;利用引物crtC-up-F与crtC-down-R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的crtC基因的上游同源臂与下游同源臂,得到△crtC片段;将△crtC片段插入到pK18mobsacB质粒的EcoRⅠ和HindⅢ双酶切位点,获得质粒pK18-△crtC,该质粒热激转化进入S17-1感受态,得到供体菌株S17-1Com△crtC,以RL为受体菌株进行双亲接合,得到基础菌株RL1。
上述敲除类球红细菌内源的6-磷酸葡萄糖脱氢酶基因zwf的方法为:以类球红细菌ATH 2.4.1的基因为模板,利用引物zwf-up-F1和zwf-up-R1,用保真酶Pfu PCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的上游同源臂,利用引物zwf-down-F1和zwf-down-R1,用保真酶Pfu PCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的下游同源臂;利用引物zwf-up-F1与zwf-down-R1,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的zwf基因的上游同源臂与下游同源臂,得到△zwf片段;将△zwf片段插入到pK18mobsacB质粒的XbaⅠ和HindⅢ双酶切位点,获得质粒pK18-△zwf,该质粒热激转化进入S17-1感受态,得到供体菌株S17-1Com△zwf,以RL1为受体菌株进行双亲接合,得到基础菌株RL2。
上述在敲除zwf的位置整合表达类球红细菌内源的1-脱氧木酮糖-5-磷酸合酶基因dxs的方法为:以类球红细菌ATH 2.4.1的基因为模板,利用引物dxs-F和dxs-R,用保真酶Pfu PCR扩增类球红细菌内源的1-脱氧木酮糖-5-磷酸合酶基因dxs,利用引物zwf-up-F2和zwf-up-R2,用保真酶Pfu PCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的上游同源臂,利用引物zwf-down-F2和zwf-down-R2,用保真酶Pfu PCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的下游同源臂;利用引物zwf-up-F2与dxs-R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的zwf基因的上游同源臂与dxs基因,再利用引物zwf-up-F2与zwf-down-R2,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的zwf基因的下游同源臂,实现zwf基因的上游同源臂-dxs基因-zwf基因的下游同源臂这三个基因片段的连接,得到△zwf::dxs片段;将△zwf::dxs片段插入到pK18mobsacB质粒的XbaⅠ和HindⅢ双酶切位点,获得质粒pK18-△zwf::dxs,该质粒热激转化进入S17-1感受态,得到供体菌株S17-1Com△zwf::dxs,以RL2为受体菌株进行双亲接合,得到产番茄红素类球红细菌工程菌。
上述各引物序列如下:
crtI4-up-F:CCGGAATTCCTCTCGTCGGCCATCTTG
crtI4-up-R:GAGTTTCATGGCGCGAACTCCTGC
crtI4-F:GTTCGCGCCATGAAACTCCACCCAGCG
crtI4-R:GGCAATCATTTAGACCAGGACCGAGGC
crtI4-down-F:CCTGGTCTAAATGATTGCCTCTGCCGATC
crtI4-down-R:CCCCAAGCTTCGCCCGAGAAACTGTCGTAG
crtC-up-F:CCGGAATTCTCATCATGAACGGACCGCC
crtC-up-R:GGGATGTCAGGAAAAGGACACGCCGTCGATATACCA
crtC-down-F:ATCGACGGCGTGTCCTTTTCCTGACATCCCGGCC
crtC-down-R:CCCCAAGCTTGCCTTCAACACGCTCTGGAC
zwf-up-F1:CTAGTCTAGATGATCGAGATGGCGGGAGG
zwf-up-R1:GGCCTCTCAGCGGATAACCATGGGCTCTCCCGC
zwf-down-F1:GGAGAGCCCATGGTTATCCGCTGAGAGGCCGCCG
zwf-down-R1:CCCCAAGCTTGGTGATGAGGACATGGATGGC
zwf-up-F2:CTAGTCTAGATGATCGAGATGGCGGGAGGC
zwf-up-R2:GTCGGTCATGGGCTCTCCCGCTGCCT
dxs-F:GAGAGCCCATGACCGACAGACCCTGCAC
dxs-R:GGCGGCCTCTTCCGATCGCCCTCCTC
zwf-down-F2:CGATCGGAAGAGGCCGCCGGGC
zwf-down-R2:CCCCAAGCTTGGTGATGAGGACATGGATGGC
本发明的有益效果如下:
1、本发明选用并克隆深红红螺菌的八氢番茄红素四步脱氢酶基因crtI4,通过接合转移的方法无痕替换类球红细菌内源的八氢番茄红素三步脱氢酶crtI3,在类球红细菌中构建了番茄红素合成通路。
2、本发明通过敲除类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf,同时整合表达类球红细菌MEP途径的1-脱氧木酮糖-5-磷酸合酶基因dxs,使类球红细菌生产番茄红素的含量达到10.32mg/g DCW,这是目前报道中利用光合细菌生产番茄红素含量最高的。
3、本发明所有遗传操作均在类球红细菌的染色体上进行基因的无痕替换或完全缺失,构建的产番茄红素工程菌株不需要抗性的维持,且菌株稳定性强。
附图说明
图1是构建类球红细菌生物合成番茄红素工程菌株整体代谢流程图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例中所用的DNA Maker(Maker Ⅲ、Maker Ⅳ)、细菌基因组DNA提取试剂盒、快速质粒小提试剂盒(离心柱型)及普通琼脂糖凝胶DNA回收试剂盒均购自天根生化科技(北京)有限公司;PCR所用的Tap、Pfu酶类购自北京汇天东方科技有限公司,高保真酶KOD-Plus购自日本TOYOBO公司;限制性内切酶类和pMD19-T载体、pK18mobsacB质粒均购自Takara公司;引物合成均由上海Invitrogen|Thermo Fisher Scientific完成;DNA测序由北京擎科新业生物技术有限公司完成。
实施例中各引物序列如下:
crtI4-up-F:CCGGAATTCCTCTCGTCGGCCATCTTG
crtI4-up-R:GAGTTTCATGGCGCGAACTCCTGC
crtI4-F:GTTCGCGCCATGAAACTCCACCCAGCG
crtI4-R:GGCAATCATTTAGACCAGGACCGAGGC
crtI4-down-F:CCTGGTCTAAATGATTGCCTCTGCCGATC
crtI4-down-R:CCCCAAGCTTCGCCCGAGAAACTGTCGTAG
crtC-up-F:CCGGAATTCTCATCATGAACGGACCGCC
crtC-up-R:GGGATGTCAGGAAAAGGACACGCCGTCGATATACCA
crtC-down-F:ATCGACGGCGTGTCCTTTTCCTGACATCCCGGCC
crtC-down-R:CCCCAAGCTTGCCTTCAACACGCTCTGGAC
zwf-up-F1:CTAGTCTAGATGATCGAGATGGCGGGAGG
zwf-up-R1:GGCCTCTCAGCGGATAACCATGGGCTCTCCCGC
zwf-down-F1:GGAGAGCCCATGGTTATCCGCTGAGAGGCCGCCG
zwf-down-R1:CCCCAAGCTTGGTGATGAGGACATGGATGGC
zwf-up-F2:CTAGTCTAGATGATCGAGATGGCGGGAGGC
zwf-up-R2:GTCGGTCATGGGCTCTCCCGCTGCCT
dxs-F:GAGAGCCCATGACCGACAGACCCTGCAC
dxs-R:GGCGGCCTCTTCCGATCGCCCTCCTC
zwf-down-F2:CGATCGGAAGAGGCCGCCGGGC
zwf-down-R2:CCCCAAGCTTGGTGATGAGGACATGGATGGC
△crtI3::crtI4-F:CGATCATGTGCGAGATGG
△crtI3::crtI4-R:TGTTGGTGAGCTGCATGG
实施例1
根据图1所示的类球红细菌中番茄红素生物合成途径,构建产番茄红素的类球红细菌工程菌株,具体构建方法如下:
1、深红红螺菌的crtI4基因替换类球红细菌自身的crtI3基因
以深红红螺菌ATCC 11170(NCBI网址为:https://www.ncbi.nlm.nih.gov/nuccore/NC_007643.1)的基因为模板,根据重叠延伸PCR引物设计原则设计引物crtI4-F和crtI4-R,利用保真酶Pfu PCR扩增深红红螺菌ATCC 11170的八氢番茄红素四步脱氢酶基因crtI4,PCR扩增体系为:2×Pfu PCR mix 10μL、crtI4-F(10μM)1μL、crtI4-R(10μM)1μL、深红红螺菌基因(20μg/μL)1μL、ddH2O7μL,反应程序为:94℃变性3min,然后94℃变性30s、62℃退火30s、72℃延伸3min共35个循环后,72℃延伸10min。用普通琼脂糖凝胶DNA回收试剂盒回收crtI4基因片段(1524bp)。
以野生型类球红细菌(Rhodobacter sphaeroides)ATH2.4.1(NCBI网址为:https://www.ncbi.nlm.nih.gov/nuccore/CP000143.2)的基因为模板,根据重叠延伸PCR引物设计原则设计引物crtI4-up-F和crtI4-up-R,利用保真酶Pfu PCR扩增类球红细菌的八氢番茄红素三步脱氢酶基因crtI3的上游同源臂,PCR扩增体系为:2×Pfu PCR mix10μL、crtI4-up-F(10μM)1μL、crtI4-up-R(10μM)1μL、类球红细菌基因(20μg/μL)1μL、ddH2O 7μL,反应程序为:94℃变性3min,然后94℃变性30s、62℃退火30s、72℃延伸1min共35个循环后,72℃延伸10min。用普通琼脂糖凝胶DNA回收试剂盒回收crtI3的上游同源臂基因片段(441bp)。
以野生型类球红细菌(Rhodobacter sphaeroides)ATH2.4.1的基因为模板,根据重叠延伸PCR引物设计原则设计引物crtI4-down-F和crtI4-down-R,利用保真酶PfuPCR扩增类球红细菌的八氢番茄红素三步脱氢酶基因crtI3的下游同源臂,PCR扩增体系为:2×PfuPCR mix 10μL、crtI4-down-F(10μM)1μL、crtI4-down-R(10μM)1μL、类球红细菌基因(20μg/μL)1μL、ddH2O 7μL,反应程序为:94℃变性3min,然后94℃变性30s、64℃退火30s、72℃延伸1min共35个循环后,72℃延伸10min。用普通琼脂糖凝胶DNA回收试剂盒回收crtI3的下游同源臂基因片段(397bp)。
利用引物crtI4-up-F与crtI4-R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的crtI3基因的上游同源臂与crtI4基因,重叠延伸PCR扩增反应体系为:10×PCRbuffer forKOD-Plus 5μL、dNTPs(2mM)5μL、MgSO4(25mM)2μL、crtI4-up-F(10μM)1.5μL、crtI4-R(10μM)1.5μL、crtI4基因片段(20μg/μL)2μL、crtI3的上游同源臂基因片段(20μg/μL)2μL、KOD-Plus(1U/μL)1μL、ddH2O 30μL,反应程序为:94℃变性2min,然后94℃变性15s、64℃退火30s、68℃延伸2min共35个循环后,68℃延伸10min。用普通琼脂糖凝胶DNA回收试剂盒回收crtI3基因的上游同源臂-crtI4基因连接片段。再利用引物crtI4-up-F与crtI4-down-R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的crtI3基因的下游同源臂,重叠延伸PCR扩增反应体系为:10×PCR buffer for KOD-Plus 5μL、dNTPs(2mM)5μL、MgSO4(25mM)2μL、crtI4-up-F(10μM)1.5μL、crtI4-down-R(10μM)1.5μL、crtI3基因的上游同源臂-crtI4基因连接片段(20μg/μL)2μL、crtI3的下游同源臂基因片段(20μg/μL)2μL、KOD-Plus(1U/μL)1μL、ddH2O 30μL,反应程序为:94℃变性2min,然后94℃变性15s、64℃退火30s、68℃延伸150s共30个循环后,68℃延伸10min。重叠延伸PCR结束后,向PCR反应体系中加入10μL Taq Mix酶,混匀后继续72℃PCR延伸30min,用普通琼脂糖凝胶DNA回收试剂盒回收crtI3基因的上游同源臂-crtI4基因-crtI3基因的下游同源臂这三个基因的连接片段,得到△crtI3::crtI4片段。
将△crtI3::crtI4片段连接到pMD19-T载体上,连接体系为:SolutionI5μL、△crtI3::crtI4片段4.5μL、pMD19-T载体0.5μL,反应条件:16℃40min。将连接产物热激转化进入DH5α感受态,转化操作方法为:用移液枪取10μL连接产物与DH5α感受态细胞轻轻混匀,冰浴静置30min,42℃金属浴热激90s,冰浴2min;然后在超净台中加入1mL无抗液体LB,37℃、200rpm复壮45min;取50μL复壮液均匀涂布于含50μg/mL Km抗性的LB固体平板上,37℃倒置培养过夜。之后用Taq酶与crtI4-up-F、crtI4-down-R这对引物菌落PCR验证转化子单菌落,选阳性转化子提质粒送测序或酶切验证,验证正确的转化子提质粒pMD19-T-△crtI3::crtI4,用EcoRⅠ和HindⅢ双酶切后经T4连接酶连接到pK18mobsacB质粒的EcoR Ⅰ和HindⅢ双酶切位点,双酶切反应体系为:10×M buffer 5μ、L EcoR Ⅰ2.5μL、HindⅢ 2.5μL、pMD19-T-△crtI3::crtI4/pK18mobsacB 40μL,反应条件为:37℃酶切2h。用普通琼脂糖凝胶DNA回收试剂盒回收目的片段,用T4连接酶连接△crtI3::crtI4到pK18mobsacB,获得质粒pK18-△crtI3::crtI4,将该质粒按上述同样的方法热激转化进入S17-1感受态,得到供体菌株S17-1Com△crtI3::crtI4,以类球红细菌为受体菌株进行双亲接合(接合方法参照博士论文《类球红细菌中辅酶Q10的代谢工程研究及应用》,浙江大学,2014.)。设计类球红细菌crtI3基因上下游同源臂以外的基因组上的引物(避免假阳性)△crtI3::crtI4-F和△crtI3::crtI4-R,利用Taq酶菌落PCR验证接合双交换单菌落,取一个阳性样品送测序进一步验证。最后分离纯化该双交换正确的重组菌株,得到菌株RL,保存菌种。
2、敲除crtC基因阻断番茄红素代谢消耗途径
按照步骤1中构建菌株RL的方法,以野生型类球红细菌ATH 2.4.1的基因为模板,利用引物crtC-up-F和crtC-up-R,用保真酶Pfu PCR扩增类球红细菌的链孢红素羟基化酶基因crtC的上游同源臂(427bp),利用引物crtC-down-F和crtC-down-R,用保真酶Pfu PCR扩增类球红细菌的链孢红素羟基化酶基因crtC的下游同源臂(428bp),PCR扩增反应程序为:94℃变性3min,然后94℃变性30s、60℃退火30s、72℃延伸1min共35个循环后,72℃延伸10min。利用引物crtC-up-F与crtC-down-R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的crtC基因的上游同源臂与下游同源臂,重叠延伸PCR扩增反应程序为:94℃变性2min,然后94℃变性15s、60℃退火30s、68℃延伸60s共35个循环后,68℃延伸10min,得到△crtC片段;将△crtC片段插入到pK18mobsacB质粒的EcoRⅠ和HindⅢ双酶切位点,获得质粒pK18-△crtC,该质粒热激转化进入S17-1感受态,得到供体菌株S17-1Com△crtC,以RL为受体菌株进行双亲接合,得到基础菌株RL1。
3、敲除中心代谢途径关键基因zwf阻断磷酸戊糖途径对碳源的竞争
按照步骤1中构建菌株RL的方法,以野生型类球红细菌ATH 2.4.1的基因为模板,利用引物zwf-up-F1和zwf-up-R1,用保真酶Pfu PCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的上游同源臂(582bp),利用引物zwf-down-F1和zwf-down-R1,用保真酶Pfu PCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的下游同源臂(639bp),PCR扩增反应程序为:94℃变性3min,然后94℃变性30s、66℃退火30s、72℃延伸1min共35个循环后,72℃延伸10min。利用引物zwf-up-F1与zwf-down-R1,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的zwf基因的上游同源臂与下游同源臂,重叠延伸PCR扩增反应程序为:94℃变性2min,然后94℃变性15s、67℃退火30s、68℃延伸40s共35个循环后,68℃延伸10min,得到△zwf片段;将△zwf片段插入到pK18mobsacB质粒的XbaⅠ和HindⅢ双酶切位点,获得质粒pK18-△zwf,该质粒热激转化进入S17-1感受态,得到供体菌株S17-1Com△zwf,以RL1为受体菌株进行双亲接合,得到基础菌株RL2。
4、整合表达MEP途径限速基因dxs提高番茄红素直接前体物质的供应
按照步骤1中构建菌株RL的方法,以野生型类球红细菌ATH 2.4.1的基因为模板,利用引物dxs-F和dxs-R,用保真酶Pfu PCR扩增类球红细菌内源的1-脱氧木酮糖-5-磷酸合酶基因dxs(1953bp),PCR扩增反应程序为:94℃变性3min,然后94℃变性30s、68℃退火30s、72℃延伸4min共30个循环后,72℃延伸10min。利用引物zwf-up-F2和zwf-up-R2,用保真酶Pfu PCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的上游同源臂(560bp),利用引物zwf-down-F2和zwf-down-R2,用保真酶Pfu PCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的下游同源臂(614bp),PCR扩增反应程序为:94℃变性3min,然后94℃变性30s、68℃退火30s、72℃延伸1min共35个循环后,72℃延伸10min。利用引物zwf-up-F2与dxs-R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的zwf基因的上游同源臂与dxs基因,再利用引物zwf-up-F2与zwf-down-R2,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的zwf基因的下游同源臂,实现zwf基因的上游同源臂-dxs基因-zwf基因的下游同源臂这三个基因片段的连接,重叠延伸PCR扩增反应程序为:94℃变性2min,然后94℃变性15s、68℃退火30s、68℃延伸100s共35个循环后,68℃延伸10min,得到△zwf::dxs片段;将△zwf::dxs片段插入到pK18mobsacB质粒的XbaⅠ和HindⅢ双酶切位点,获得质粒pK18-△zwf::dxs,该质粒热激转化进入S17-1感受态,得到供体菌株S17-1Com△zwf::dxs,以RL2为受体菌株进行双亲接合,得到红素类球红细菌工程菌。
发明人采用实施例1得到的类球红细菌工程菌进行发酵培养,发酵培养基的组成为:葡萄糖30g/L、玉米浆干粉3g/L、谷氨酸钠3g/L、NaCl 2.8g/L、(NH4)2SO4 3g/L、KH2PO43g/L、MgSO46.3g/L、CaCO3 2g/L、烟酸1mg/L、烟酸硫胺1mg/L、生物素15μg/L,按2%的接种量转接至50%装液量的发酵培养基中,34℃150rpm黑暗培养。在红素类球红细菌工程菌早期发酵阶段(0-48h),发酵液为淡黄色牛奶状,然后渐渐地变为粉色(48-72h)、红色(72-96h)直至深红色(96-168h)。类球红细菌工程菌发酵168h时,生物量达到6.4g/L,经HPLC定量分析,番茄红素含量为10.32mg/g DCW。

Claims (2)

1.一种产番茄红素类球红细菌工程菌的构建方法,其特征在于:用深红红螺菌来源的八氢番茄红素四步脱氢酶基因crtI 4 无痕替换类球红细菌内源的八氢番茄红素三步脱氢酶基因crtI 3 ,并敲除类球红细菌内源的链孢红素羟基化酶基因crtC和6-磷酸葡萄糖脱氢酶基因zwf,然后在敲除zwf的位置整合表达类球红细菌内源的1-脱氧木酮糖-5-磷酸合酶基因dxs,得到产番茄红素类球红细菌工程菌;
上述用深红红螺菌来源的八氢番茄红素四步脱氢酶基因crtI 4 无痕替换类球红细菌内源的八氢番茄红素三步脱氢酶基因crtI 3 的方法为:以深红红螺菌ATCC 11170的基因为模板,利用引物crtI 4 -F和crtI 4 -R,用保真酶PfuPCR扩增深红红螺菌ATCC 11170的八氢番茄红素四步脱氢酶基因crtI 4 ;以类球红细菌ATH 2.4.1的基因为模板,利用引物crtI 4 -up-F和crtI 4 -up-R,用保真酶PfuPCR扩增类球红细菌的八氢番茄红素三步脱氢酶基因crtI 3 的上游同源臂,利用引物crtI 4 -down-F和crtI 4 -down-R,用保真酶PfuPCR扩增类球红细菌的八氢番茄红素三步脱氢酶基因crtI 3 的下游同源臂;利用引物crtI 4 -up-F与crtI 4 -R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的crtI 3 基因的上游同源臂与crtI 4 基因,再利用引物crtI 4 -up-F与crtI 4 -down-R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的crtI 3 基因的下游同源臂,实现crtI 3 基因的上游同源臂-crtI 4 基因-crtI 3 基因的下游同源臂这三个基因片段的连接,得到△crtI 3 ::crtI 4 片段;将△crtI 3 ::crtI 4 片段插入到pK18mobsacB质粒的EcoRⅠ和HindⅢ双酶切位点,获得质粒pK18-△crtI 3 ::crtI 4 ,该质粒热激转化进入S17-1感受态,得到供体菌株S17-1 ComcrtI 3 ::crtI 4 ,以类球红细菌为受体菌株进行双亲接合,得到菌株RL;
上述敲除类球红细菌内源的链孢红素羟基化酶基因crtC的方法为:以类球红细菌ATH2.4.1的基因为模板,利用引物crtC-up-F和crtC-up-R,用保真酶PfuPCR扩增类球红细菌的链孢红素羟基化酶基因crtC的上游同源臂,利用引物crtC-down-F和crtC-down-R,用保真酶PfuPCR扩增类球红细菌的链孢红素羟基化酶基因crtC的下游同源臂;利用引物crtC-up-F与crtC-down-R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的crtC基因的上游同源臂与下游同源臂,得到△crtC片段;将△crtC片段插入到pK18mobsacB质粒的EcoRⅠ和HindⅢ双酶切位点,获得质粒pK18-△crtC,该质粒热激转化进入S17-1感受态,得到供体菌株S17-1 ComcrtC,以RL为受体菌株进行双亲接合,得到基础菌株RL1;
上述敲除类球红细菌内源的6-磷酸葡萄糖脱氢酶基因zwf的方法为:以类球红细菌ATH2.4.1的基因为模板,利用引物zwf-up-F1和zwf-up-R1,用保真酶PfuPCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的上游同源臂,利用引物zwf-down-F1和zwf-down-R1,用保真酶PfuPCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的下游同源臂;利用引物zwf-up-F1与zwf-down-R1,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的zwf基因的上游同源臂与下游同源臂,得到△zwf片段;将△zwf片段插入到pK18mobsacB质粒的XbaⅠ和HindⅢ双酶切位点,获得质粒pK18-△zwf,该质粒热激转化进入S17-1感受态,得到供体菌株S17-1Comzwf,以RL1为受体菌株进行双亲接合,得到基础菌株RL2;
上述在敲除zwf的位置整合表达类球红细菌内源的1-脱氧木酮糖-5-磷酸合酶基因dxs的方法为:以类球红细菌ATH 2.4.1的基因为模板,利用引物dxs-F和dxs-R,用保真酶PfuPCR扩增类球红细菌内源的1-脱氧木酮糖-5-磷酸合酶基因dxs,利用引物zwf-up-F2和zwf-up-R2,用保真酶PfuPCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的上游同源臂,利用引物zwf-down-F2和zwf-down-R2,用保真酶PfuPCR扩增类球红细菌的6-磷酸葡萄糖脱氢酶基因zwf的下游同源臂;利用引物zwf-up-F2与dxs-R,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的zwf基因的上游同源臂与dxs基因,再利用引物zwf-up-F2与zwf-down-R2,用高保真酶KOD-Plus通过重叠延伸PCR连接扩增的zwf基因的下游同源臂,实现zwf基因的上游同源臂-dxs基因-zwf基因的下游同源臂这三个基因片段的连接,得到△zwf::dxs片段;将△zwf::dxs片段插入到pK18mobsacB质粒的XbaⅠ和HindⅢ双酶切位点,获得质粒pK18-△zwf::dxs,该质粒热激转化进入S17-1感受态,得到供体菌株S17-1 Comzwf::dxs,以RL2为受体菌株进行双亲接合,得到产番茄红素类球红细菌工程菌;
上述各引物序列如下:
crtI 4 -up-F:CCGGAATTCCTCTCGTCGGCCATCTTG
crtI 4 -up-R:GAGTTTCATGGCGCGAACTCCTGC
crtI 4 -F:GTTCGCGCCATGAAACTCCACCCAGCG
crtI 4 -R:GGCAATCATTTAGACCAGGACCGAGGC
crtI 4 -down-F:CCTGGTCTAAATGATTGCCTCTGCCGATC
crtI 4 -down-R:CCCCAAGCTTCGCCCGAGAAACTGTCGTAG
crtC-up-F:CCGGAATTCTCATCATGAACGGACCGCC
crtC-up-R:GGGATGTCAGGAAAAGGACACGCCGTCGATATACCA
crtC-down-F:ATCGACGGCGTGTCCTTTTCCTGACATCCCGGCC
crtC-down-R:CCCCAAGCTTGCCTTCAACACGCTCTGGAC
zwf-up-F1:CTAGTCTAGATGATCGAGATGGCGGGAGG
zwf-up-R1:GGCCTCTCAGCGGATAACCATGGGCTCTCCCGC
zwf-down-F1:GGAGAGCCCATGGTTATCCGCTGAGAGGCCGCCG
zwf-down-R1:CCCCAAGCTTGGTGATGAGGACATGGATGGC
zwf-up-F2:CTAGTCTAGATGATCGAGATGGCGGGAGGC
zwf-up-R2:GTCGGTCATGGGCTCTCCCGCTGCCT
dxs-F:GAGAGCCCATGACCGACAGACCCTGCAC
dxs-R:GGCGGCCTCTTCCGATCGCCCTCCTC
zwf-down-F2:CGATCGGAAGAGGCCGCCGGGC
zwf-down-R2:CCCCAAGCTTGGTGATGAGGACATGGATGGC。
2.权利要求1的构建方法得到的产番茄红素类球红细菌工程菌株。
CN201810457895.XA 2018-05-14 2018-05-14 一种产番茄红素类球红细菌工程菌株及其构建方法 Active CN108611360B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810457895.XA CN108611360B (zh) 2018-05-14 2018-05-14 一种产番茄红素类球红细菌工程菌株及其构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810457895.XA CN108611360B (zh) 2018-05-14 2018-05-14 一种产番茄红素类球红细菌工程菌株及其构建方法

Publications (2)

Publication Number Publication Date
CN108611360A CN108611360A (zh) 2018-10-02
CN108611360B true CN108611360B (zh) 2022-04-05

Family

ID=63662976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810457895.XA Active CN108611360B (zh) 2018-05-14 2018-05-14 一种产番茄红素类球红细菌工程菌株及其构建方法

Country Status (1)

Country Link
CN (1) CN108611360B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736720B (zh) * 2021-08-10 2023-07-04 青岛农业大学 一种高产番茄红素的沼泽红假单胞菌及其构建方法和应用
CN117264865B (zh) * 2023-11-21 2024-03-12 清华大学 重组红色红球菌及其在化合物合成中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101449A2 (fr) * 2003-05-14 2004-11-25 Commissariat A L'energie Atomique Procede de degradation du tbp par une souche bacterienne photosynthetique.
WO2008124523A1 (en) * 2007-04-04 2008-10-16 The Regents Of The University Of California Butanol production by recombinant microorganisms
CN105087406A (zh) * 2015-07-22 2015-11-25 天津大学 一种重组酵母菌株及其构建方法和应用
CN105779319A (zh) * 2016-03-23 2016-07-20 天津大学 一种重组酵母菌株及其构建方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101449A2 (fr) * 2003-05-14 2004-11-25 Commissariat A L'energie Atomique Procede de degradation du tbp par une souche bacterienne photosynthetique.
WO2008124523A1 (en) * 2007-04-04 2008-10-16 The Regents Of The University Of California Butanol production by recombinant microorganisms
CN105087406A (zh) * 2015-07-22 2015-11-25 天津大学 一种重组酵母菌株及其构建方法和应用
CN105779319A (zh) * 2016-03-23 2016-07-20 天津大学 一种重组酵母菌株及其构建方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
1-Deoxy-D-Xylulose 5-Phosphate Synthase (DXS), a Crucial Enzyme for Isoprenoids Biosynthesis;Song Xiang等;《Springer: New York》;20121231;全文 *
Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway;Shuang C.Chi等;《Biochimica et Biophysica Acta》;20141027;第1847卷;全文 *
Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola;Guillermo Garcia-Asua等;《Molecular Microbiology》;20021231;第44卷(第1期);第234-246页 *
Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase;Yan Zhou等;《Biotechnol Lett》;20130924;第35卷;摘要,图1 *
Phytoene desaturase,CrtI,of the Purple Photosynthetic Bacterium,Rubrivivax gelatinosus,Produces both Neurosporene and Lycopene.;Jiro Harada等;《Plant cell physiol》;20011231;第42卷(第10期);全文 *

Also Published As

Publication number Publication date
CN108611360A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
Beer et al. Engineering algae for biohydrogen and biofuel production
Singh et al. Recent advances and challenges of the use of cyanobacteria towards the production of biofuels
Abo-Hashesh et al. Metabolic engineering in dark fermentative hydrogen production; theory and practice
Tian et al. Metabolic engineering coupled with adaptive evolution strategies for the efficient production of high-quality L-lactic acid by Lactobacillus paracasei
JP7460179B2 (ja) バイオレチノールを生産する微生物及びそれを用いたバイオレチノールの生産方法
JP5624974B2 (ja) 新しいカロテノイドケトラーゼ
JP2008509706A (ja) カロテノイドヒドロキシラーゼ酵素
CN109097385B (zh) 一种产β-胡萝卜素类球红细菌工程菌株及其构建方法
Nguyen et al. Methanotrophic microbial cell factory platform for simultaneous conversion of methane and xylose to value-added chemicals
CN108611360B (zh) 一种产番茄红素类球红细菌工程菌株及其构建方法
CN113564193B (zh) 一种微生物基因表达命运共同体及其构建方法和应用
CN104388371A (zh) 一种高产间苯三酚的基因工程菌及其构建方法与应用
CN109666596A (zh) 一种产β-胡萝卜素的重组菌及利用Crispr-Cas9技术构建的方法
CN111454854A (zh) 一株产虾青素的红冬孢酵母基因工程菌株
CN114015712A (zh) 一种熊去氧胆酸的制备方法
Bandhu et al. Overproduction of single cell oil from xylose rich sugarcane bagasse hydrolysate by an engineered oleaginous yeast Rhodotorula mucilaginosa IIPL32
Wang et al. Engineering Escherichia coli for autoinducible production of n-butanol
Yu et al. Enhanced production of C5 dicarboxylic acids by aerobic-anaerobic shift in fermentation of engineered Escherichia coli
Liu et al. Enhanced coproduction of cell-bound zeaxanthin and secreted exopolysaccharides by Sphingobium sp. via metabolic engineering and optimized fermentation
CN112608936A (zh) 调控酵母外源基因表达的启动子,调控方法及其应用
CN114561434B (zh) 裂殖壶菌发酵生产epa和dha的方法
JP6991897B2 (ja) 非光栄養性c1代謝微生物での遺伝子発現制御のための核酸およびベクター、およびそれらの形質転換体
CN101250539A (zh) 一种制备重组耐热β-葡萄糖醛酸酶的方法
CN109251940A (zh) 一种产β-羟基-β-甲基丁酸工程菌的构建方法
Wang et al. Establishing CRISPRi for Programmable Gene Repression and Genome Evolution in Cupriavidus necator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant