CN108607945A - 3d焊材打印模具多层覆层结构及覆层厚度确定方法 - Google Patents

3d焊材打印模具多层覆层结构及覆层厚度确定方法 Download PDF

Info

Publication number
CN108607945A
CN108607945A CN201810470728.9A CN201810470728A CN108607945A CN 108607945 A CN108607945 A CN 108607945A CN 201810470728 A CN201810470728 A CN 201810470728A CN 108607945 A CN108607945 A CN 108607945A
Authority
CN
China
Prior art keywords
coating
forging
thickness
layers
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810470728.9A
Other languages
English (en)
Other versions
CN108607945B (zh
Inventor
张运军
陈天赋
杨杰
晏洋
李生仕
余国林
周明
张鹏
吴冬波
张君妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Tri Ring Forging Co Ltd
Original Assignee
Hubei Tri Ring Forging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Tri Ring Forging Co Ltd filed Critical Hubei Tri Ring Forging Co Ltd
Priority to CN201810470728.9A priority Critical patent/CN108607945B/zh
Publication of CN108607945A publication Critical patent/CN108607945A/zh
Application granted granted Critical
Publication of CN108607945B publication Critical patent/CN108607945B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

本发明涉及模具加工技术领域,尤其涉及一种3D焊材打印模具多层覆层结构及覆层厚度确定方法,其在锻模型腔内设置有通过焊接紧密接合的三层覆层,三层覆层从外至内依次为表层、中层、底层,表层的外表面与锻造型腔相同,三层覆层的内表面为锻造型腔的仿形曲面,三层覆层的硬度和弹性模量从外之内依次降低,通过上述技术方案,覆层(尤其是表层)的硬度更高,从而提高了模腔表面的耐疲劳度;其次,多层覆层的结构使得依靠中层和底层提高模具吸收锻造冲击力的能力,从而提高模具的使用寿命,减小其多次使用后的变形量,设计方法考虑了不同锻造过程对覆层的影响,可以容易地确定每层覆层的厚度,从而得到覆层的具体结构,该结构具有更长的使用寿命。

Description

3D焊材打印模具多层覆层结构及覆层厚度确定方法
技术领域
本发明涉及模具加工技术领域,特别是涉及一种3D焊材打印模具多层覆层结构及覆层厚度确定方法。
背景技术
锻造是机械产品生产的常用技术之一,锻造使用的模具是产品成型的关键,由于锻造时重复对模具的强力锻打,一定时间后,模具型腔会出现不同程度的几何尺寸扩大,甚至在某些部位产生裂纹,需要对其进行修复。为了提高锻模的使用寿命,现有技术中在制作模具和修复模具时,采用增材焊接的方式在模腔内使用特种金属或进行表面处理,从而增加其耐疲劳性。
现有技术中模腔内一般只使用一种材料,主要为了增加耐疲劳度,但是如何吸收锻造时巨大的冲击力,使得锻模在反复多次使用后不易发生变形,从而保证锻造精度,是现有技术不能解决的。
发明内容
本发明的目的在于针对现有技术的不足,而提供一种3D焊材打印模具多层覆层结构及覆层厚度确定方法,其通过多层与模腔仿形的覆层结构,吸收锻造冲击力,提高模具的使用寿命。
本发明解决其技术问题所采用的技术方案是:一种3D焊材打印模具多层覆层结构,锻模型腔内设置有紧密接合的三层覆层,三层覆层从外至内依次为表层、中层、底层,表层的外表面与锻造型腔相同,三层覆层的内表面为锻造型腔的仿形曲面,三层覆层的硬度和弹性模量从外之内依次降低。
优选的,所述三层覆层为金属覆层,三种不同的金属分别为通过焊接形成的三个不同厚度的覆层。
优选的,表层采用高硬度焊材,硬度HRC47-52,中层采用中等硬度焊材,硬度HRC42-47,底层采用低硬度焊材,硬度HRC37-42。
优选的,表层的厚度为三层覆层总厚度的20%,中层的厚度为三层覆层总厚度的30%,底层的厚度为三层覆层总厚度的50%。
本发明还提供3D焊材打印模具多层覆层结构的覆层厚度确定方法,该方法为:建立空间坐标系,进行有限元分析模拟锻造过程,得到锻造过程中模锻力F(t)随时间变化的曲线,锻造过程中,t1时刻金属开始变形到t2时刻金属基本充满型腔为第一阶段,t2时刻至t3时刻金属完全充满型腔为第二阶段,t3时刻至t4锻造结束为第三阶段,模腔表面曲面为Σ1:z1=f1(x,y),Σ1上任一点M(x,y,z);
第一阶段中,毛坯表面曲面为Σ2:z2(t)=f2(x(t),y(t)),在t0时刻,Σ1、Σ1重合部分为封闭的曲线,其方程式为:f1(x,y)- f2(x(t0),y(t0))=0,该曲线在XOY平面上投影面积为S(t0),M(x,y,z)点受到的Z轴方向的应力为P(x(t0),y(t0),z(t0))= F(t0)/S(t0),对Σ1上任一点M(x,y,z),可以得到该位置在第一阶段开始被挤压的时刻t0 、P(x(t0),y(t0),z(t0));
第二阶段中,t4时刻的模锻力为F(t4),Σ1在XOY平面上投影面积为S(t4),M(x,y,z)点受到的Z轴方向的应力为P(x(t4),y(t4),z(t4))= F(t4)/S(t4);
覆层厚度的计算公式为:
D= a*P(x(t0),y(t0),z(t0))*(t2-t0)+b* P(x(t4),y(t4),z(t4))*( t4- t3)+c
通过该公式依次计算每一覆层的厚度,即得到覆层结构。
本发明的有益效果是:一种3D焊材打印模具多层覆层结构及覆层厚度确定方法,本发明通过上述技术方案,由于模腔内设置的与模腔仿形的覆层结构,覆层(尤其是表层)的硬度更高,从而提高了模腔表面的耐疲劳度;其次,多层覆层的结构使得依靠中层和底层提高模具吸收锻造冲击力的能力,从而提高模具的使用寿命,减小其多次使用后的变形量,该设计方案考虑不同锻造过程对覆层的影响,可以容易地确定每层覆层的厚度,从而得到覆层的具体结构,该结构具有更长的使用寿命。
附图说明
图1是本发明的3D焊材打印模具多层覆层结构的示意图。
图2是闭式锻造过程中锻造力的变化曲线图。
附图标记说明:
1——表层 2——中层
3——底层 4——模具
5——毛坯。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的说明,并不是把本发明的实施范围限制于此。
一种3D焊材打印模具多层覆层结构及覆层厚度确定方法。
实施例一。
如图1所示,本实施例的一种3D焊材打印模具多层覆层结构,锻模型腔内设置有紧密接合的三层覆层,三层覆层从外至内依次为表层、中层、底层,表层的外表面与锻造型腔相同,三层覆层的内表面为锻造型腔的仿形曲面,三层覆层的硬度和弹性模量从外之内依次降低。本发明的模腔内设置的与模腔仿形的覆层结构,从而从覆层到模具形成一个硬度梯度,覆层(尤其是表层)的硬度更高,从而提高了模腔表面的耐疲劳度;其次,多层覆层的结构使得依靠中层和底层提高模具吸收锻造冲击力的能力,从而提高模具的使用寿命,减小其多次使用后的变形量。
进一步的,所述三层覆层为金属覆层,三种不同的金属分别为通过焊接形成的三个不同厚度的覆层,且该覆层焊接时直径焊接形成曲面,而不是按照水平方向逐层堆焊。
进一步的,表层采用高硬度焊材,硬度HRC47-52,中层采用中等硬度焊材,硬度HRC42-47,底层采用低硬度焊材,硬度HRC37-42。
实施例二。
本实施例与实施例一相比,提供一种简化设计的3D焊材打印模具多层覆层结构,即三层覆层的结构采用简单的数学比例,表层的厚度为三层覆层总厚度的20%,中层的厚度为三层覆层总厚度的30%,底层的厚度为三层覆层总厚度的50%,该方案是一种简化处理,可以得到比现有技术较好的一种实施方式,但不是最佳的实施方式。
实施例三。
本实施例提供一种3D焊材打印模具多层覆层结构的覆层厚度确定方法,该方法为:建立空间坐标系,进行有限元分析模拟锻造过程,得到锻造过程中模锻力F(t)随时间变化的曲线,如图2所示,图中包括制坯阶段和终锻阶段,两个阶段使用的模具不同,本发明的设计方法针对终锻阶段(有预锻阶段的也可以用于预锻阶段)。
锻造过程中,t1时刻金属开始变形到t2时刻金属基本充满型腔为第一阶段,t2时刻至t3时刻金属完全充满型腔为第二阶段,t3时刻至t4锻造结束为第三阶段,模腔表面曲面为Σ1:z1=f1(x,y),Σ1上任一点M(x,y,z);
第一阶段中,毛坯表面曲面为Σ2:z2(t)=f2(x(t),y(t)),在t0时刻,Σ1、Σ1重合部分为封闭的曲线,其方程式为:f1(x,y)- f2(x(t0),y(t0))=0,该曲线在XOY平面上投影面积为S(t0),M(x,y,z)点受到的Z轴方向的应力为P(x(t0),y(t0),z(t0))= F(t0)/S(t0),对Σ1上任一点M(x,y,z),可以得到该位置在第一阶段开始被挤压的时刻t0 、P(x(t0),y(t0),z(t0));
第二阶段中,t4时刻的模锻力为F(t4),Σ1在XOY平面上投影面积为S(t4),M(x,y,z)点受到的Z轴方向的应力为P(x(t4),y(t4),z(t4))= F(t4)/S(t4);
覆层厚度的计算公式为:
D= a*P(x(t0),y(t0),z(t0))*(t2-t0)+b* P(x(t4),y(t4),z(t4))*( t4- t3)+c
在闭式锻造过程中,可以分为上述三个阶段,第一阶段基本成形,金属开始变形到技术充满模腔;第二阶段由第一阶段结束到金属完全充满模腔;第三阶段坯料已基本成为不变形的刚体,在极大的模压力下,端部的金属产生流向形成飞边。上述公式中的三部分分别对应三个阶段对应覆层的作用力影响。
通过该公式依次计算每一覆层的厚度,即得到整个覆层的结构。
通过该设计方法,可以考虑不同锻造过程对覆层的影响,从而容易地确定每层覆层的厚度,从而得到覆层的具体结构,该结构具有更长的使用寿命。
该设计方法不需要反复多次试验,对于同一种覆层金属,可以选用一种规则的型腔,在一定锻造力下进行有限元分析和试验,选择模腔内受力相同的多个点,使用不同的覆层厚度,使用一定次数后检测覆层的变形情况,取变形最小的厚度按上述公式进行拟合曲线得到上述公式中的参数a、b、c,然后代入上述公式中,使用有限元分析,可以得到需要锻造的工件在锻造时各个点处的覆层厚度,避免了对每一个新的工件都需要重复进行试验,节省了大量的试验成本和时间。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (5)

1.3D焊材打印模具多层覆层结构,其特征在于:锻模型腔内设置有通过焊接紧密接合的三层覆层,三层覆层从外至内依次为表层、中层、底层,表层的外表面与锻造型腔相同,三层覆层的内表面为锻造型腔的仿形曲面,三层覆层的硬度和弹性模量从外之内依次降低。
2.根据权利要求1所述的3D焊材打印模具多层覆层结构,其特征在于:所述三层覆层为金属覆层,三种不同的金属分别为通过焊接形成的三个不同厚度的覆层。
3.根据权利要求1所述的3D焊材打印模具多层覆层结构,其特征在于:表层采用高硬度焊材,硬度HRC47-52,中层采用中等硬度焊材,硬度HRC42-47,底层采用低硬度焊材,硬度HRC37-42。
4.根据权利要求1所述的3D焊材打印模具多层覆层结构,其特征在于:表层的厚度为三层覆层总厚度的20%,中层的厚度为三层覆层总厚度的30%,底层的厚度为三层覆层总厚度的50%。
5.根据权利要求1-4任意一项所述的3D焊材打印模具多层覆层结构的覆层厚度确定方法,其特征在于:建立空间坐标系,进行有限元分析模拟锻造过程,得到锻造过程中模锻力F(t)随时间变化的曲线,锻造过程中,t1时刻金属开始变形到t2时刻金属基本充满型腔为第一阶段,t2时刻至t3时刻金属完全充满型腔为第二阶段,t3时刻至t4锻造结束为第三阶段,模腔表面曲面为Σ1:z1=f1(x,y),Σ1上任一点M(x,y,z);
第一阶段中,毛坯表面曲面为Σ2:z2(t)=f2(x(t),y(t)),在t0时刻,Σ1、Σ1重合部分为封闭的曲线,其方程式为:f1(x,y)- f2(x(t0),y(t0))=0,该曲线在XOY平面上投影面积为S(t0),M(x,y,z)点受到的Z轴方向的应力为P(x(t0),y(t0),z(t0))= F(t0)/S(t0),对Σ1上任一点M(x,y,z),可以得到该位置在第一阶段开始被挤压的时刻t0 、P(x(t0),y(t0),z(t0));
第二阶段中,t4时刻的模锻力为F(t4),Σ1在XOY平面上投影面积为S(t4),M(x,y,z)点受到的Z轴方向的应力为P(x(t4),y(t4),z(t4))= F(t4)/S(t4);
覆层厚度的计算公式为:
D= a*P(x(t0),y(t0),z(t0))*(t2-t0)+b* P(x(t4),y(t4),z(t4))*( t4- t3)+c
通过该公式依次计算每一覆层的厚度,即得到覆层结构。
CN201810470728.9A 2018-05-17 2018-05-17 3d焊材打印模具多层覆层结构及覆层厚度确定方法 Active CN108607945B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810470728.9A CN108607945B (zh) 2018-05-17 2018-05-17 3d焊材打印模具多层覆层结构及覆层厚度确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810470728.9A CN108607945B (zh) 2018-05-17 2018-05-17 3d焊材打印模具多层覆层结构及覆层厚度确定方法

Publications (2)

Publication Number Publication Date
CN108607945A true CN108607945A (zh) 2018-10-02
CN108607945B CN108607945B (zh) 2023-05-09

Family

ID=63663538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810470728.9A Active CN108607945B (zh) 2018-05-17 2018-05-17 3d焊材打印模具多层覆层结构及覆层厚度确定方法

Country Status (1)

Country Link
CN (1) CN108607945B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059263A (ja) * 2000-08-09 2002-02-26 Nippon Steel Corp 肉盛補修溶接方法
CN101249510A (zh) * 2008-03-27 2008-08-27 安徽工业大学 一种修复的轧辊及修复轧辊的方法
CN104741499A (zh) * 2015-04-13 2015-07-01 重庆大学 一种夹心层锻模及锻模夹心层堆焊的制备方法
CN106925708A (zh) * 2017-04-18 2017-07-07 武汉理工大学 自润滑异质材料复合结构热锻模及其制备方法
CN106964950A (zh) * 2017-04-28 2017-07-21 马鞍山市中冶机械有限责任公司 一种开式型腔锻模工作面的加工工艺
US20170239751A1 (en) * 2014-11-12 2017-08-24 Jiangsu University Laser thermal combination remanufacturing method for damaged metal part
CN108595894A (zh) * 2018-05-17 2018-09-28 湖北三环锻造有限公司 一种锻模模腔表面曲面仿形多层覆层结构及其设计方法
CN208421828U (zh) * 2018-05-17 2019-01-22 湖北三环锻造有限公司 一种锻模模腔表面曲面仿形多层覆层结构
CN208866330U (zh) * 2018-05-17 2019-05-17 湖北三环锻造有限公司 3d焊材打印模具多层覆层结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059263A (ja) * 2000-08-09 2002-02-26 Nippon Steel Corp 肉盛補修溶接方法
CN101249510A (zh) * 2008-03-27 2008-08-27 安徽工业大学 一种修复的轧辊及修复轧辊的方法
US20170239751A1 (en) * 2014-11-12 2017-08-24 Jiangsu University Laser thermal combination remanufacturing method for damaged metal part
CN104741499A (zh) * 2015-04-13 2015-07-01 重庆大学 一种夹心层锻模及锻模夹心层堆焊的制备方法
CN106925708A (zh) * 2017-04-18 2017-07-07 武汉理工大学 自润滑异质材料复合结构热锻模及其制备方法
CN106964950A (zh) * 2017-04-28 2017-07-21 马鞍山市中冶机械有限责任公司 一种开式型腔锻模工作面的加工工艺
CN108595894A (zh) * 2018-05-17 2018-09-28 湖北三环锻造有限公司 一种锻模模腔表面曲面仿形多层覆层结构及其设计方法
CN208421828U (zh) * 2018-05-17 2019-01-22 湖北三环锻造有限公司 一种锻模模腔表面曲面仿形多层覆层结构
CN208866330U (zh) * 2018-05-17 2019-05-17 湖北三环锻造有限公司 3d焊材打印模具多层覆层结构

Also Published As

Publication number Publication date
CN108607945B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
CN208421828U (zh) 一种锻模模腔表面曲面仿形多层覆层结构
Ai et al. A review on material fracture mechanism in incremental sheet forming
CN104057611A (zh) 一种基于扫描线倾角优化的3d打印填充路径生成方法
Wang et al. Springback compensation of automotive panel based on three-dimensional scanning and reverse engineering
Lu et al. A hybrid flexible sheet forming approach towards uniform thickness distribution
CN107180131B (zh) 用于确定多点激光冲击强化薄壁件变形曲率半径的方法
CN103514325A (zh) 轮辐三旋轮错距强力旋压工艺的有限元数值模拟方法
CN208866330U (zh) 3d焊材打印模具多层覆层结构
CN108595894A (zh) 一种锻模模腔表面曲面仿形多层覆层结构及其设计方法
CN108607945A (zh) 3d焊材打印模具多层覆层结构及覆层厚度确定方法
Wen et al. Multi-directional incremental sheet forming—a novel methodology for flexibly producing thin-walled parts
Sun et al. Study on the mechanism and the suppression method of wrinkling in side wall using hydroforming of the fairing
CN111055084B (zh) 一种多种合金材料组合的环状异型件的制作方法
Liu et al. Effects of preform on thickness distribution of hydroformed Y-shaped tube
CN104014692B (zh) 一种基于有限元分析解决带法兰边的钣件起皱工艺
CN111199115A (zh) 用于确定多点激光冲击强化薄壁件变形曲率半径的方法
CN112733393A (zh) 一种金属异质板料无铆钉铆接接头性能优化方法
Huang Flaring and nosing process for composite annoy tube in circular cone tool application
Zheng et al. Finite‐element analysis of a combined fine‐blanking and extrusion process
Huang An elasto-plastic finite element analysis of the sheet metal stretch flanging process
CN107052212A (zh) 多腔类构件多向加载成形加载路径的确定方法
CN117066751B (zh) 焊接壁板喷丸成形方法
CN110633497B (zh) 一种变量补偿因子冲压件回弹补偿方法
CN109033512A (zh) 一种精冲模具最优刃口形状的判定方法
Kong et al. Progressive multistep press forming of a truss core panel for floor structure of electric vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant