CN108604803A - 集成电池安全互锁器 - Google Patents

集成电池安全互锁器 Download PDF

Info

Publication number
CN108604803A
CN108604803A CN201680080620.8A CN201680080620A CN108604803A CN 108604803 A CN108604803 A CN 108604803A CN 201680080620 A CN201680080620 A CN 201680080620A CN 108604803 A CN108604803 A CN 108604803A
Authority
CN
China
Prior art keywords
current
terminal
signal
battery
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680080620.8A
Other languages
English (en)
Other versions
CN108604803B (zh
Inventor
查尔斯·S·托什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Technology Co
Original Assignee
Johnson Controls Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Technology Co filed Critical Johnson Controls Technology Co
Publication of CN108604803A publication Critical patent/CN108604803A/zh
Application granted granted Critical
Publication of CN108604803B publication Critical patent/CN108604803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本披露包括一种电池系统,所述电池系统可以包括电耦合至电子部件的第一端子和第二端子。所述系统还可以包括电耦合至所述第一端子的电流源。所述系统还可以包括控制系统,所述控制系统可以根据某一模式将异步电流从所述电流源引导至所述第一端子,并且接收来自电流检测器的电流信号状态。所述电流信号状态与经由所述第二端子接收的第二电流相关联。当所述电流信号状态不对应于所述模式时,所述控制系统可以将所述电子部件与所述第一端子或所述第二端子解除连接。

Description

集成电池安全互锁器
相关申请的交叉引用
本申请要求于2016年2月4日提交的题为“利用异步电流源的安全互锁器(SAFETYINTERLOCK UTILIZING AN ASYNCHRONOUS CURRENT SOURCE)”的美国临时申请序列号62/291,096的优先权和权益,所述美国临时申请通过引用结合在此。
背景技术
本披露总体上涉及电池和电池模块领域。更具体地,本披露涉及一种用于防止对电池模块进行修改的集成电池安全互锁器。
本章节旨在向读者介绍可能涉及本披露各个方面的各领域方面,所述各领域方面将在以下进行描述。本讨论被认为有助于向读者提供背景信息以促进对本披露各个方面的更好理解。因此,应当理解的是,这些陈述将从这个角度被解读,而不是作为对现有技术的承认。
使用一个或多个电池系统来提供车辆动力的全部或一部分的车辆可被称为xEV,其中,术语“xEV”在本文中被定义为包括全部以下车辆或其任何变体或组合,所述车辆将电力用于其车辆动力的全部或一部分。例如,xVE包括将电力用于全部动力的电动车辆(EV)。如本领域的技术人员将理解的,混合动力车辆(HEV)(也被认为是xEV)组合了内燃机推进系统和电池供电电力推进系统,诸如,48伏特或130伏特系统。术语HEV可以包括混合动力车辆的任何变体。例如,全混合动力系统(FHEV)可以使用一个或多个电动机、只使用内燃机、或使用两者来向车辆提供动力或其他电力。相比而言,轻度混合动力系统(MHEV)在车辆空载时禁用内燃机并且利用电池系统来继续为空调单元、无线电设备、或其他电子器件供电,以及在期望推进时重启发动机。轻度混合动力系统还可以在例如加速期间应用某等级的动力辅助来对内燃机进行补充。轻度混合动力通常是96V至130V并且通过皮带或曲柄集成起动机发电机来恢复制动能量。
进一步地,微混合动力车辆(mHEV)也使用与轻度混合动力类似的“停止-起动(Stop-Start)”系统,但是mHEV的微混合动力系统可以或可以不向内燃机供应动力辅助并且以低于60V的电压操作。出于本讨论的目的,应当注意的是,mHEV通常在技术上不将直接提供至曲轴或变速器的电力用于车辆动力的任何部分,但mHEV仍然可被视为xEV,因为其在车辆空载且内燃机禁用时不使用电力来补充车辆的动力需求并且通过集成起动机发电机来恢复制动能量。另外,插电式电动车辆(PEV)是可以从外部电源(诸如,墙壁插座)充电的任何车辆,并且储存在可再充电电池组中的能量驱动或有助于驱动车轮。PEV是EV的子类,所述EV包括全电动或电池电动车辆(BEV)、插电式混合动力车辆(PHEV)、以及混合动力车辆与常规内燃机车辆的电动车辆转换。
与仅使用内燃机和传统电气系统的较传统燃气车辆相比,上述xEV可以提供许多优点,所述传统电气系统通常是由铅酸电池供电的12V系统。例如,与传统内燃机车辆相比,xEV可以产生更少的不想要的排放物并且可以展现出更高的燃油效率,并且,在一些情况下,这种xEV可以完全消除对汽油的使用,某些类型的EV或PEV的情况就是这样。
鉴于电池模块用于为这些车辆提供电力,电池模块对于这些车辆的操作是不可或缺的。如此,这对于防止电池模块被修改可能是有用的。相应地,这对于采用监测电池模块和耦合到电池模块的部件的各种特性的电路系统可能是有用的。
发明内容
以下陈述了本文中披露的某些实施例的概述。应当理解的是,这些方面仅被呈现用于向读者提供对这些特定实施例的简要概述,并且这些方面不旨在限制本披露的范围。实际上,本披露可以涵盖以下可能没有陈述的各个方面。
在第一实施例中,一种汽车电池系统可以包括电耦合至电子部件的第一端子和第二端子。所述系统还可以包括电耦合至所述第一端子的电流源。所述系统还可以包括控制系统,所述控制系统可以根据某一模式将异步电流从所述电流源引导至所述第一端子,并且接收来自电流检测器的电流信号状态。所述电流信号状态与经由所述第二端子接收的第二电流相关联。当所述电流信号状态不对应于所述模式时,所述控制系统可以将所述电子部件与所述第一端子或所述第二端子解除连接。
在另一个实施例中,非暂态计算机可读介质可以包括计算机可执行指令,所述计算机可执行指令使处理器执行以下操作:使电流源根据某一模式将异步电流输出至电池模块的第一端子;并且接收来自电耦合至所述电池模块的第二端子的电流检测器的电流信号状态。所述电流信号状态可以与经由所述第二端子接收的第二电流相关联。然后,所述处理器可以在所述电流信号状态不对应于所述模式时将禁用信号发送至输入/输出(I/O)部件,其中,所述禁用信号被配置用于使所述I/O部件将电耦合至所述第一端子或所述第二端子的电子部件与所述第一端子或所述第二端子解除连接。
在另一个实施例中,系统可以包括铅酸电池和电耦合至所述铅酸电池的锂离子电池。所述系统还可以包括耦合通信地耦合至铅酸电池和锂离子电池的电池控制单元。电池控制单元可以包括被配置用于电耦合至电子部件的第一端子和第二端子、电耦合至所述第一端子的电流源、以及处理器。所述处理器可以将激活模式发送至所述电流源,所述电流源可以根据所述激活模式向所述第一端子输出第一电流。所述第一端子可以串联耦合至所述电子部件。然后,所述处理器可以将电流信号发送至所述电流源,使得所述电流信号包括电流模式,所述电流模式指示由所述电流源输出的所述第一电流的至少两个不同的电流值。然后,所述处理器可以接收来自电耦合至所述第二端子的电流检测器的信号状态,使得所述信号状态包括波形,所述波形指示经由所述第二端子接收的第二电流的一个或多个电流值。然后,所述处理器可以在所述信号状态与所述激活模式和所述电流信号不匹配时将禁用信号发送至输入/输出(I/O)部件,使得所述禁用信号可以使所述I/O部件将所述电子部件与所述第一端子或所述第二端子解除连接。
附图说明
在阅读以下详细描述并且在参照附图之后,可以更好地理解本披露的各个方面,在附图中:
图1是根据本文所呈现的实施例的车辆(例如,xEV)的透视图,所述车辆具有为所述车辆贡献全部或部分电力的电池系统;
图2是根据本文所呈现的实施例的图1中采用混合动力车辆(HEV)形式的车辆的剖面示意图;
图3是根据本文所呈现的实施例的具有第一电池、第二电池、和电池控制单元的电池系统的示意图;
图4是根据本文所呈现的实施例的图3的电池系统的电池单元控制单元的示意图;
图5是根据本文所呈现的实施例的描述用于监测图3的电池系统的特性的方法的流程图;
图6包括根据本文所呈现的实施例的描绘在正常状况下操作时图4的电池控制单元内的各部件的状态的示例波形;并且
图7包括根据本文所呈现的实施例的描绘当存在误差时图4的电池控制单元内的各部件的状态的示例波形。
具体实施方式
以下将描述一个或多个具体实施例。为了提供对这些实施例的简洁描述,并没有在说明书中描述实际实施方式的全部特征。应当理解的是,在任何这种实际实施方式的开发中(如在任何工程或设计方案中),必须作出大量实施方式特定的决定以实现开发者的特定目标(诸如符合系统相关的和商业相关的约束),所述目标从一个实施方式到另一个实施方式可能有所变化。此外,应当理解的是,这种开发工作可能复杂且耗时,但是对于受益于本披露的普通技术人员来说,这仍是常规的设计、生产和制造工作。
本披露涉及电池和电池模块。更具体地,本披露涉及使用异步电流源来对电池模块进行互锁,从而防止对电池模块未授权的修改或访问。
通常,车辆可以包括为车辆提供动力的电池系统。如此,电池系统可以包括一定数量的电池模块,比如,锂离子电池模块、铅酸电池模块等等。在一个实施例中,锂离子电池模块可以包括电路系统,所述电路系统监测锂离子电池模块的一定数量的锂离子电池单元中的每一个的SOH和SOC,以及与锂离子电池模块有关的一定数量的其他特性。除了监测锂离子电池模块的特性之外,所述电路系统还可以监测铅酸电池模块的各个方面,铅酸电池模块可以在一个端子处与锂离子电池模块串联耦合。
为了有效监测电池模块的完整性,电池模块内的电池控制单元可以异步地对电流源进行激活和去激活,所述电流源经由电池模块的一个端子输出电流,并且经由电池模块的另一个端子接收相同的电流。在一个实施例中,所述电池控制单元可以监测经由其他端子接收的电流,并且将所接收的电流信号与某一模式进行比较,在所述模式中,电流源已经被激活和去激活。如果电池控制单元检测到所接收的电流信号与电流源的激活模式之间的差异,则电池控制单元可以禁用耦合至电池控制单元的部件。结果,电池控制单元可以检测到修改或改变电池模块的尝试,并且将电池模块与其他部件解除连接,以防止电池模块操作的改变。
在一个实施例中,电池控制单元可以充当互锁器,以改善高压(HV)应用(例如,≥60V)中人员的服务质量。如此,正由互锁器保护的电路可以通过电池模块的外部连接来路由,并且电池控制单元可以监测这些连接的完整性。例如,如果服务技术员在车辆/系统被通电时去除高压总线或其他连接器,则电池控制单元可以自动将HV电池与经由接触器的外部总线连接解除连接。关于监测电池模块的附加细节以下将参照图1至图7进行讨论。
除了监测电池模块之外,如以上所讨论的,电池控制单元还可以用于控制供在车辆系统中使用的各种类型电池的操作。例如,车辆系统可以包括电池xEV车辆系统,其可以提供相对于传统燃气车辆技术的优点。进一步地,电池xEV技术已经导致相较于更加传统的燃气车辆的燃料经济性的改进和/或不想要的排放物的降低。例如,再生制动车辆捕获或者储存当车辆正在制动或正在滑行时生成的电能。然后,所捕获的电能可以用于为车辆的电气系统供应电力。作为另一个示例,根据现有实施例的电池模块可以与固定电力系统(例如,非汽车系统)合并或者为固定电力系统提供电力。
基于相对于传统燃气车辆的优点,通常生产传统燃气车辆的制造商可能期望在其车辆线内利用改进的车辆技术(例如,再生制动技术)。经常,这些制造商可以利用其传统车辆平台中的一个作为起始点。相应地,因为传统燃气车辆被设计成用于利用12伏特电池系统,因此可以使用12伏特锂离子电池系统来补充12伏特铅酸电池。更具体地,12伏特锂离子电池可被用于更高效地捕获在再生制动期间生成的电能,并且随后供应电能以便为车辆的电气系统供电。
然而,随着车辆技术的进步,高电压电气设备也可被包括在车辆的电气系统中。例如,锂离子电池可以为轻度混合动力车辆中的电动机供应电能。经常,这些高电压电气设备利用大于12伏特的电压,例如高达48伏特。因此,在一些实施例中,可以使用DC-DC转换器来对12伏特锂离子电池的输出电压进行升压,以便为高电压设备供应电力。另外地或可替代地,48伏特锂离子电池可以用于补充12伏特铅酸电池。更具体地,48伏特锂离子电池可被用于更高效地捕获在再生制动期间生成的电能,并且随后供应电能以便为高电压设备供电。
因此,关于利用12伏特锂离子电池还是48伏特锂离子电池的设计选择可以直接取决于包括在特定车辆中的电气设备。然而,尽管电压特性可能不同,但是12伏特锂离子电池和48伏特锂离子电池的工作原理大体是相似的。更具体地,如以上所描述的,两者都可被用于在再生制动期间捕获电能并且随后供应电能以便为车辆中的电气设备供电。
因此,为了简化以下讨论,将针对具有12伏特锂离子电池和12伏特铅酸电池的电池系统来描述本技术。然而,本领域普通技术人员应该能够将本技术应用到其他电池系统,诸如具有48伏特锂离子电池和12伏特铅酸电池,或者任何其他合适的电池组合的电池系统。
考虑到以上内容,本披露描述了用于监测电池模块的特性的系统和技术。通过介绍,图1是车辆10的实施例的透视图,所述车辆可以利用再生制动系统。尽管关于具有再生制动系统的车辆呈现了以下讨论,但是本文描述的技术可以适用于包括xEV的其他车辆和燃气车辆。
如以上讨论的,将期望电池系统12与传统车辆设计在很大程度上相兼容。因此,电池系统12可被放置在车辆10中本来将容纳传统电池系统的位置处。例如,如所展示的,车辆10可以包括电池系统12,所述电池系统以与典型内燃机车辆的铅酸电池类似的方式被定位(例如,在车辆10的引擎盖之下)。此外,如以下将更详细描述的,电池系统12可被定位用于促进管理电池系统12的温度。例如,在一些实施例中,将电池系统12定位在车辆10的引擎盖之下可以使通风管道能够引导电池系统12上方的气流并且冷却电池系统12。
图2中描述了电池系统12的更详细视图。如所描绘的,电池系统12包括电池模块14,所述电池模块耦合至点火系统16、交流发电机18、车辆控制台20并且可选地耦合至电动机22。通常,电池模块14可以捕获/储存在车辆10中生成的电能,并将电能输出至车辆10中的电力电气设备。
更具体地,电池模块14可以捕获/储存所生成的电能,并且输出电能,以对这些部件中的每一个以及其他供电。换言之,电池系统12可以为车辆的电气系统的部件供应电力,所述部件可以包括散热器冷却风扇、气候控制系统、电动助力转向系统、主动悬架系统、自动停车系统、电动油泵、电动超级涡轮增压器、电动水泵、加热式挡风玻璃除霜器、摇窗机构电动机、阅读灯、车轮压力监测系统、天窗电机控制件、电动座椅、警报系统、信息娱乐系统、导航特征、车道偏离警告系统、电动驻车制动器、外部灯、及其任意组合。说明性地,在图2中所描绘的电池模块14为车辆控制台20和点火系统16供应电力,以起动(例如,曲柄起动)内燃机24。在一些实施例中,点火系统16可以包括传统起动器和/或带式起动器发电机(BSG)。
另外地,电池模块14可以捕获由交流发电机18和/或电动机22生成的电能。在一些实施例中,交流发电机18可以在内燃机24运行时生成电能。更具体地,交流发电机18可以将通过内燃机24的转动产生的机械能转换成电能。另外地或可替代地,当车辆10包括电动机22时,电动机22可以通过将通过车辆10的移动(例如,车轮的转动)产生的机械能转换成电能从而生成电能。换言之,电池模块14可以捕获在再生制动期间生成的电能。
为了促进捕获和供应电能,电池模块14可以经由总线26耦合至车辆的电力系统。例如,总线26可以使电池模块14能够接收由交流发电机18和/或电动机22生成的电能。另外,总线26可以使电池模块14能够将电能输出至点火系统16和/或车辆控制台20。因此,当使用12伏特电池系统12时,总线26可以承载通常在8伏特至18伏特之间的电力。
另外,电池模块14可以包括多个电池模块。例如,在所描绘的实施例中,电池模块14包括铅酸电池28和锂离子电池30,其各自包括一个或多个电池单元。在其他实施例中,电池模块14可以包括任何数量的电池模块。另外,尽管铅酸电池28和锂离子电池30被描绘成彼此相邻,但是它们可被定位在车辆周围的不同区域中。例如,锂离子电池30可被定位在车辆10的内部之中或附近,而铅酸电池28可被定位在车辆10的引擎盖之下。
通过采用铅酸电池28和锂离子电池30,可以改进电池系统12的性能,因为锂离子电池化学成分通常比铅酸电池化学成分具有更高的库伦效率和/或更高的电力充电接受率(例如,更高的最大充电电流或充电电压)。如此,可以提高电池系统12的捕获、储存和/或分配效率。
为了促进将电力从电池系统12供应至车辆电气系统(例如,HVAC系统和车辆控制台20)中的各部件,电池模块14包括第一端子32和第二端子34。在一些实施例中,第二端子34可以提供接地连接,并且第一端子32可以提供范围在7伏特至18伏特之间的正向电压。图3中描绘了电池模块14的实施例的更详细视图。如先前所指出的,电池模块14的尺寸可以与典型的铅酸电池的尺寸相当,以限制对车辆10设计的修改从而适应电池系统12。例如,电池模块14可以具有与H6电池类似的尺寸,所述尺寸可以约为13.9英寸×6.8英寸×7.5英寸。如所描绘的,电池模块14可被包括在单个连续外壳内。在其他实施例中,电池模块14可以包括多个耦合在一起的外壳(例如,第一外壳包括铅酸电池28,并且第二外壳包括锂离子电池30)。在又其他实施例中,如上面所提到的,电池模块14可以包括位于车辆10的引擎盖之下的铅酸电池28,和可以位于车辆10内部的锂离子电池30。
如所描绘的,电池模块14包括第一端子32、第二端子34、铅酸电池28、锂离子电池30、和电池控制单元36。如本文所使用的,电池控制单元36通常涉及控制电池系统12操作的控制部件,诸如电池模块14内的继电器或或者交流发电机18中的开关。电池模块14的操作可以受电池控制单元36控制。例如,电池控制单元36被配置用于调节由每个电池28或30捕获/供应的电能的量(例如,用于降低或升高电池系统12的速率)、执行电池之间的负载平衡、控制电池的充电和放电(例如,经由继电器或DC/DC转换器)、确定每个电池和/或整个电池模块14的充电状态、激活主动冷却机制、激活短路保护系统等等。
因此,电池控制单元36可以包括一个或多个存储器38和一个或多个处理器40,所述处理器被编程用于执行用来执行这种任务的控制算法。更具体地,所述一个或多个处理器40可以包括一个或多个专用集成电路(ASIC)、一个或多个现场可编程门阵列(FPGA)、一个或多个通用处理器、或其任何组合。另外,所述一个或多个存储器38可以包括易失性存储器(诸如随机存取存储器(RAM))、和/或非易失性存储器(诸如只读存储器(ROM)、光学驱动器、硬盘驱动器、或固态驱动器)。在一些实施例中,电池控制单元36可以包括车辆控制单元(VCU)的部分和/或单独的电池控制模块。另外,如所描绘的,电池控制单元36可被包括成与电池模块14分开,诸如独立模块。在其他实施例中,如图3所描绘的,电池控制单元36可被包括在电池模块14中。
另外,如图2中所描绘的,铅酸电池28和锂离子电池30跨第一端子32和第二端子34并联连接,以便使得能够对所述电池进行充电和放电。如以上所描述的,电池端子32和34可以输出储存在电池模块14中的电力,以便为车辆的电气系统提供电力。进一步地,电池端子32和34还可以向电池模块14输入电力,以使得铅酸电池28和锂离子电池30能够例如在交流发电机18通过再生制动生成电力时进行充电。
为了提供关于电池模块14的更多细节,图3展示了电池模块14的部件的示意图。如所描绘的,铅酸电池28和锂离子电池30在电池模块14内是分开的,这使得每个电池能够基于期望的特性(诸如,输出电压)来被配置。例如,铅酸电池28和锂离子电池30的输出电压可以取决于每个电池内单独电池单元的配置(例如,串联或并联)和所选的电池化学成分。进一步地,电池单元的配置和所选的电池化学成分可以产生特定于多个电池化学成分和电池单元布置的某些优点。例如,所述优点可以包括充电电压增大的范围,或者所述优点可以包括电池模块14内的变化的电力和充电容量。
另外,如以上所讨论的和图3中所示出的,铅酸电池28和锂离子电池30可以以并联的方式耦合至第一端子32和第二端子34。换言之,铅酸电池28的正极端子44可以电耦合至电池模块14的第一端子32,并且负极端子46可以电耦合至电池模块14的第二端子34。以类似的方式,锂离子电池30的正极端子48可以电耦合至电池模块14的第一端子32,并且锂离子电池30的负极端子50可以电耦合至电池模块14的第二端子34。以此方式,两个电池28、30可以互相并联电耦合至总线26,以便为车辆10的电气系统的各部件提供电力。
尽管铅酸电池28和锂离子电池30在图3中被展示为互相并联耦合,但应当注意的是,当前披露的实施例可以结合到任何合适的电池系统。例如,当前披露的实施例可以在高压系统中实施,所述高压系统不将铅酸电池28与锂离子电池30并联连接。反而,当前披露的实施例可以耦合至单个电池、一系列电池等等。
考虑到以上内容,图4是电池控制单元36和可用于监测电池控制单元36的各种特性的各部件的示意图。如图4中所示,电池控制单元36可以包括处理器40、电流源52、电流检测器54、输入/输出禁用部件56、硬件故障保护滤波器58、硬件故障保护电路60、端子62和端子64。如以上所讨论的,处理器40可以包括能够执行计算机可执行指令的任何合适的处理器。
在一些实施例中,处理器40可以将信号发送至电流源52,指示激活和去激活电流源52的模式。如此,电流源52可以包括输出一定电流(例如,10mA、20mA)的任何合适的电路。除了为电流源52提供激活模式之外,处理器40可以将电流信号提供至电流源52。电流信号可以指定某一模式,在所述模式中,不同的电流值将由电流源52输出。例如,电流信号可以指示电流源52在10mA电流与20mA电流之间进行切换和交替。尽管此示例对应于在两个电流值之间进行切换,但应注意的是,电流信号可以提供在电流源52可以能够输出的任意适当数量的电流值之间切换的模式。
在从处理器40处接收到激活模式和电流信号后,电流源52可以将对应于激活模式的电流和电流信号输出至端子62。端子62可以是电池紧急断电开关、高压连接器、或可耦合至电路或电路部件(例如,电子部件)的其他接口,电池控制单元36可以监测所述电路或电路部件,以防止被修改或被访问。举例来说,耦合至端子62和正在由电池控制单元36监测的电路部件可以包括电池模块的紧急断电开关、电池模块的高电压(HV)直流(DC)联接连接器、电动机控制系统HV DC联接连接器等等。
经由端子62的电流输出可以通过中间电路或电路部件来串联地路由至端子64,所述端子还可以包括紧急断电开关、高压连接器、或其他接口。经由端子64接收的电流可被提供至电流检测器54。电流检测器54可以是包括可切换窗口电流检测器的电路部件,所述可切换窗口电流检测器可以监测经由端子64接收的电流。在一个实施例中,电流检测器54可以包括窗口检测器切换功能,其与提供至以上讨论的电流源52的电流信号同步。如此,电流检测器54可以监测由电流源52输出的电流相对于由处理器40提供的电流信号的切换。
除了电流信号之外,电流检测器54可以从处理器40接收提供至电流源52的激活模式。如此,电流检测器54可以判定经由端子64接收的电流是否与模式中指定的有效和无效状态匹配。下面将参照图5至图7来讨论关于判定所接收的电流是否对应于电流信号和激活模式的附加细节。
在一些实施例中,电流检测器54可以将激活模式和电流信号与所接收的电流进行比较,并且将Δ信号或差分信号发送至处理器40。Δ信号可以指示激活模式和电流信号相对于所接收的电流之间的差异。如此,Δ信号可以用于判定激活模式和电流信号相对于所接收的电流之间是否存在差异。在其他实施例中,电流检测器54可以为处理器40提供信号或经由端子64接收的电流的表示。在这种情况下,处理器40可以将激活模式和电流信号与所接收的电流进行比较,并且确定Δ信号。例如,如果激活模式与电流信号匹配,则Δ信号可以是零,直到激活模式与电流信号不匹配。此时,Δ信号可以从低变为高(例如,I),以指示激活模式与电流信号之间存在差异。
在任一种情况中,电流检测器54的输出可被提供至硬件故障保护滤波器58。硬件故障保护滤波器58可以接收来自电流检测器54的Δ信号,并且判定Δ信号是否指示在大于某一值(例如,50ms)的时间段内存在误差。如果硬件故障保护滤波器58确定在长于指定的时间量内存在误差,则硬件故障保护滤波器58可以将误差指示发送至硬件故障保护电路60。然而,如果硬件故障保护滤波器58确定在长于指定的时间量内不存在误差,则硬件故障保护滤波器58可以不执行任何动作。例如,如果阈值是50ms,则硬件故障保护滤波器58可以不执行任何动作,除非Δ信号指示激活模式与电流信号之间的差异存在长于50ms。
当硬件故障保护电路60接收到误差指示时,硬件故障保护电路60可以将命令发送至输入/输出(I/O)禁用部件,以禁用耦合至电池控制单元36等的I/O部件。在一个实施例中,I/O禁用部件56可以包括电气开关,所述电气开关中断一个或多个I/O部件与电池控制单元36之间的电气连接或连接路径。尽管电流检测器54、I/O禁用部件56、硬件故障保护滤波器58和硬件故障保护电路60在本文中被描述为单独部件,但应注意的是,在一些实施例中,这些部件中的两个或更多个可以一起合并在单个电路内。
返回参考处理器40,在一个实施例中,处理器40可以将电流检测器54的输出与发送至电流源52的激活模式和电流信号进行比较,以判定电流检测器54的输出是否与激活模式和电流信号对应或匹配。如果输出与电流检测器54的预期输出相匹配,则处理器40可以继续检测从电流检测器54所接收的输出。然而,如果输出与电流检测器54的预期输出不匹配,则处理器40可以将命令发送至I/O禁用部件56,以禁用耦合至如以上所讨论的电池控制单元36的I/O部件。例如,如果所监测的部件由某一用户修改或访问,则可以改变通过部件串联传导至电流检测器54的电流。如此,由电流检测器54检测到的电流可能与提供至电流源52的激活模式和电流信号不匹配或不对应。在这种情况下,在确定由电流检测器54检测到的电流可能与提供至电流源52的激活模式和电流信号不匹配或不对应时,处理器40可以将命令发送I/O禁用部件56,以禁用耦合至如以上所讨论的电池控制单元36的I/O部件。
以与硬件故障保护滤波器58相同的方式,处理器40还可以判定电流源52的输出是否指示在大于某一值(例如,50ms)的时间段内存在误差,并且当在长于所述时间段内存在误差时将命令发送I/O禁用部件56,以禁用耦合至电池控制单元36的I/O部件。
考虑到以上内容,图5展示了处理器40可用于监测耦合至如上所述的电池控制单元36的部件的特性的方法80的流程图。尽管方法80的以下描述被描述为由处理器40来执行,但应注意的是,方法80可以由任何合适的(多个)处理器来执行。此外,尽管方法80是以特定顺序描述的,但应注意的是,方法80可以以多种合适的顺序来执行。
现在参照图5,在框82处,处理器40可以将命令发送至电流源52,以根据源激活模式信号来激活。可以是命令一部分的源激活模式可以是异步信号,所述异步信号指示应该在何时激活和去激活电流源52。换言之,源激活模式可以对应于电流源52何时输出电流以及其何时不输出电流。在一个实施例中,异步信号可以由处理器40使用随机函数等来随机生成。图6展示了波形100的集合,其包括指示电流源52何时将输出电流以及其何时将不输出电流的示例源激活模式波形102。
除了源激活模式之外,在框84处,处理器40可以将电流信号104发送至电流源52。如以上所讨论的,电流信号可以指定电流源52应该输出的电流值。像源激活模式一样,电流信号可以是异步模式。图6包括指示电流源52何时将输出10mA以及其何时将输出20mA的示例电流信号104。
在框86处,处理器40可以接收来自电流检测器54的电流信号状态。电流信号状态可以指示由电流检测器54检测到的电流。图6展示了可由电流检测器54基于激活模式波形102和电流信号波形104而检测到的示例电流信号状态106波形。如电流信号状态106所示出的,当激活模式波形102在t1处开启时,电流信号状态106指示1.24V已经由电流检测器54检测到。在一个实施例中,电流检测器54可以包括与端子64串联的124欧姆的电阻器。如此,电阻器两端的电压可以指示经由电流检测器54接收的电流。即,由电流检测器54检测到的1.24V对应于10mA电流。在时间t2处,电流信号104变化以使电流源52输出20mA。如此,电流信号状态106可以指示电阻器两端的电压为2.48V,其对应于20mA。
然而,在时间t3处,源激活模式102可以移动以使电流源52去激活或者停止输出电流。如此,在时间t3处,电流信号状态106可以指示电流检测器54内的电阻器两端存在0V或不存在电流。即,即使电流信号104指示电流源52应该在时间t3处输出20mA,因为在时间t3处激活模式关闭,所以电流源52可以不输出电流,并且因此电流检测器54可以不检测电流。
返回参照图5,在框88处,处理器40可以判定电流信号状态106是否对应于预期的电流信号状态。在一个实施例中,处理器40可以对激活模式102和电流信号104进行分析,以确定电流信号状态106的预期波形。
在另一个实施例中,处理器40可以根据激活模式来判定电流是否由电流检测器52检测到。例如,处理器40可以接收来自电流检测器54的电流检测状态信号108。电流检测状态信号108可以指示跨电流检测器54的电阻器是否存在电流。如此,在方法80的框88处,处理器40可以判定电流检测状态信号108是否与源激活模式102匹配。
在框88处,如果处理器40确定电流信号状态与预期状态匹配,则处理器40可以返回至框82。然而,如果处理器40确定电流信号状态与预期状态不匹配,则处理器可以行进至框90。在框90处,处理器40可以判定超过阈值量或时间段(例如,50ms)内在电流检测状态信号108中是否存在误差。即,处理器40可以判定电流信号状态106或电流检测状态信号108是否与预期电流信号状态不匹配超过所述阈值时间量。如果误差存在少于阈值时间量,则处理器40可以返回至框82。
如果误差存在超过阈值时间量,则处理器40可以行进至框92处,并且将禁用信号发送至I/O禁用部件56。如此,I/O禁用部件56可以打开电路或断开经由端子62和64耦合至电池控制单元36的设备,如以上所讨论的。
返回参照框88,图7展示了与预期状态波形不匹配的样本电流信号状态122。即,根据源激活模式102和电流信号104,电流检测器54应该检在时间t5处检测到20mA的电流。然而,如电流信号状态122中所示的,在时间t5处,电流信号状态122仍指示存在10mA的电流。结果,Δ信号124可以指示在时间t5处存在误差。
如以上所讨论的,在框88处,在处理器40检测到Δ信号124中的误差之后,处理器40可以行进至框90,并且判定误差是否存在超过阈值时间量。如图7中误差确认信号126中所示的,在时间t5处Δ信号124中存在的误差不存在超过阈值时间量。然而,在时间t7处,Δ信号124可以存在超过阈值时间量(例如,50ms)。结果,当Δ信号存在长于阈值时间量时,误差确认信号126可以在时间t8处变得有效。返回参照框90和图7,在时间t8处,处理器40可以行进至框92处,并且将禁用信号发送至I/O禁用部件。
返回参照框88,在某些实施例中,当处理器40检测到Δ信号124中的误差时,处理器40可以直接行进至框92。在另一个实施例中,处理器40可以生成警报、发送通知、或当其检测到Δ信号124中的误差时向用户提供某些其他通知。在这种情况下,硬件故障保护滤波器58可以接收来自电流检测器54的Δ信号,并且判定Δ信号是否指示存在误差,和/或判定Δ信号是否指示在大于某一值(例如,50ms)的时间段内存在误差。如果两种情况都存在,则硬件故障保护滤波器58可以将误差指示发送至硬件故障保护电路60,所述硬件故障保护电路可以将命令发送至输入/输出(I/O)禁用部件,以禁用耦合至电池控制单元36等的I/O部件。以这种方式,硬件故障保护滤波器58可以禁用耦合至电池控制单元36的I/O部件,而不管处理器40的操作如何。如此,硬件部件可以充当附加安全保护,以确保当电池控制单元36或电池模块可能受到破坏时I/O部件被禁用。
通过采用硬件故障保护滤波器58和硬件故障保护电路60来独立于处理器40的操作而禁用I/O部件,当前披露的实施例可以进一步保护电池模块免受对处理器40的操作的损害的操纵。即,本文所描述的硬件部件可以提供冗余的或独立的选件,以便保护I/O部件。
所披露的实施例中的一个或多个可以单独或结合地提供一种或多种技术效果,包括防止对电池控制单元36、电池模块14等的修改。具体而言,通过串联地通过受保护部件提供异步电流信号,本文所述的系统和方法可能被警告关于何时访问或改变部件,并且然后可以禁用相应的部件。结果,可以保留部件和电池模块14本身的完整性。本说明书中的技术效果和技术问题是示例性而非限制性的。应当注意的是,在本说明书中描述的实施例可以具有其他技术效果并且可以解决其他技术问题。
尽管仅已经展示和描述了某些特征和实施例,本领域技术人员可以想到许多修改和变化(例如,各种元件的大小、尺寸、结构、形状和比例、参数(例如,温度、压力等)的值、安装安排、材料的使用、颜色、取向等的变化)而不实质上背离所披露的主题的新颖性教导和优点。可以根据替代实施例对任何过程或方法步骤的顺序或序列进行改变或重新排序。因此,应该理解的是,所附权利要求书旨在将所有这类修改和变化涵盖为落入本发明的真正精神内。此外,为了提供对示例性实施例的简洁描述,并没有描述实际实施方式的全部特征。应该理解的是,在任何这种实际实施方式的开发中(如在任何工程或设计方案中),必须作出大量实施方式特定的决定。这种开发工作可能是复杂且耗时的,但是对于从本披露中受益的普通技术人员来说,这仍是常规的设计、生产和制造工作,而无需过多实验。

Claims (23)

1.一种电池系统,包括:
第一端子和第二端子,被配置用于电耦合至电子部件;
电流源,电耦合至所述第一端子;
控制系统,被配置用于:
根据某一模式将异步电流从所述电流源引导至所述第一端子;
接收来自电流检测器的电流信号状态,其中,所述电流信号状态与经由所述第二端子接收的第二电流相关联;并且
当所述电流信号状态不对应于所述模式时,将所述电子部件与所述第一端子或所述第二端子解除连接。
2.如权利要求1所述的电池系统,其中,所述模式被配置用于指示何时激活和去激活所述电流源。
3.如权利要求1所述的电池系统,其中,所述异步电流基于电流信号在至少两个电流值之间交替,所述电流信号包括第二模式,在所述第二模式中,所述异步电流在所述至少两个电流值之间交替。
4.如权利要求3所述的电池系统,其中,所述至少两个电流值包括10mA和20mA。
5.如权利要求1所述的电池系统,其中,所述控制系统被配置用于当所述电流信号状态不对应于所述模式时将禁用信号发送至输入/输出(I/O)部件,其中,所述I/O部件被配置用于基于所述禁用信号而中断所述电子部件与所述第一端子或所述第二端子之间的连接路径。
6.如权利要求5所述的电池系统,其中,所述控制系统被配置用于当所述电流信号状态不对应于所述模式超过某一时间段时发送所述禁用信号。
7.如权利要求6所述的电池系统,其中,所述时间段包括50ms。
8.如权利要求5所述的电池系统,其中,所述I/O禁用部件包括开关,所述开关被配置用于将所述部件与所述第一端子或所述第二端子解除连接。
9.如权利要求1所述的电池系统,包括硬件滤波器,所述硬件滤波器被配置用于:
接收来自所述电流检测器的△信号,其中,所述△信号指示所述电流信号状态是否对应于所述模式;并且
当所述电流信号状态不对应于所述模式时,将所述电子部件与所述第一端子或所述第二端子解除连接。
10.如权利要求9所述的电池系统,其中,所述硬件滤波器被配置用于当所述电流信号状态不对应于所述模式超过某一时间段时,将所述电子部件与所述第一端子或所述第二端子解除连接。
11.如权利要求9所述的电池系统,包括硬件故障保护电路,所述硬件故障保护电路被配置用于当所述△信号指示所述电流信号状态不对应于所述模式时接收来自所述硬件滤波器的断开信号,其中,所述断开信号被配置用于使所述电子部件与所述第一端子或所述第二端子解除连接。
12.如权利要求9所述的电池系统,包括所述硬件故障保护电路,所述硬件故障保护电路被配置用于当所述△信号指示所述电流信号状态不对应于所述模式长于某一时间段时接收来自所述硬件滤波器的断开信号,其中,所述断开信号被配置用于使所述电子部件与所述第一端子或所述第二端子解除连接。
13.如权利要求1所述的电池系统,包括所述电流检测器,其中,所述电流检测器包括电阻器,并且其中,所述电阻器两端的电压降与所述电流信号状态相关联。
14.一种包括计算机可执行指令的非暂态计算机可读介质,所述计算机可执行指令被配置用于使处理器执行以下操作:
使电流源根据某一模式将异步电流输出至电池模块的第一端子;
接收来自电耦合至所述电池模块的第二端子的电流检测器的电流信号状态,其中,所述电流信号状态与经由所述第二端子接收的第二电流相关联;并且
当所述电流信号状态不对应于所述模式时将禁用信号发送至输入/输出(I/O)部件,其中,所述禁用信号被配置用于使所述I/O部件将电耦合至所述第一端子或所述第二端子的电子部件与所述第一端子或所述第二端子解除连接。
15.如权利要求14所述的非暂态计算机可读介质,其中,所述模式被配置用于指示何时激活和去激活所述电流源。
16.如权利要求14所述的非暂态计算机可读介质,其中,所述处理器被配置用于将电流信号发送至所述电流源,其中,所述电流信号包括第二模式,在所述第二模式中,所述异步电流在两个电流值之间交替。
17.如权利要求14所述的非暂态计算机可读介质,其中,所述电流信号状态包括电压波形,所述电压波形与所述第二电流的一个或多个电流值相关联。
18.如权利要求17所述的非暂态计算机可读介质,其中,所述电压波形对应于所述电流检测器内的电阻器两端的电压。
19.如权利要求18所述的电池模块,其中,所述计算机可执行指令被配置用于当所述电流信号状态不对应于所述模式超过某一时间段时使所述处理器将所述禁用信号至所述I/O部件。
20.一种系统,包括:
电池;
电池控制单元,通信地耦合至所述电池,其中,所述电池控制单元包括:
第一端子和第二端子,被配置用于电耦合至电子部件;
电流源,电耦合至所述第一端子;
故障保护电路,耦合至所述第二端子;以及
处理器,被配置用于:
将激活模式发送至所述电流源,所述电流源被配置用于根据所述激活模式将第一电流输出至所述第一端子,其中,所述第一端子被配置用于串联耦合至所述电子部件;
将电流信号发送至所述电流源,其中,所述电流信号包括电流模式,所述电流模式指示由所述电流源输出的所述第一电流的至少两个不同的电流值,
其中,所述故障保护电路被配置用于:
接收来自电流检测器的信号状态,所述电流检测器被配置用于电耦合至所述第二端子,其中,所述信号状态包括波形,所述波形指示经由所述第二端子接收的第二电流的一个或多个电流值;并且
当所述信号状态与所述激活模式和所述电流信号不匹配时将禁用信号发送至输入/输出(I/O)部件,其中,所述禁用信号被配置用于使所述I/O部件将所述电子部件与所述第一端子或所述第二端子解除连接。
21.如权利要求20所述的系统,其中,所述故障保护电路被配置用于当所述信号状态与所述激活模式和所述电流信号不匹配超过某一时间段时发送所述禁用信号。
22.如权利要求20所述的系统,其中,所述处理器被配置用于根据随机函数来生成所述激活模式。
23.如权利要求20所述的系统,其中,所述故障保护电路被配置用于接收来自所述电流检测器的△信号,其中,所述△信号指示所述信号状态是否与所述激活模式和所述电流信号不匹配。
CN201680080620.8A 2016-02-04 2016-08-02 集成电池安全互锁器 Active CN108604803B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662291096P 2016-02-04 2016-02-04
US62/291,096 2016-02-04
US15/141,438 2016-04-28
US15/141,438 US10014700B2 (en) 2016-02-04 2016-04-28 Integrated battery safety interlock
PCT/US2016/045101 WO2017135997A1 (en) 2016-02-04 2016-08-02 Integrated battery safety interlock

Publications (2)

Publication Number Publication Date
CN108604803A true CN108604803A (zh) 2018-09-28
CN108604803B CN108604803B (zh) 2022-02-22

Family

ID=59498056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680080620.8A Active CN108604803B (zh) 2016-02-04 2016-08-02 集成电池安全互锁器

Country Status (4)

Country Link
US (1) US10014700B2 (zh)
EP (1) EP3411934B1 (zh)
CN (1) CN108604803B (zh)
WO (1) WO2017135997A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112277646A (zh) * 2019-07-23 2021-01-29 北京新能源汽车股份有限公司 一种动力电池高压接插件故障检测方法、装置及汽车

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102544778B1 (ko) * 2016-06-16 2023-06-19 삼성전자주식회사 누설 전류를 검출하기 위한 방법 및 이를 지원하는 전자 장치
US11411409B2 (en) * 2017-04-28 2022-08-09 Gs Yuasa International Ltd. Management apparatus, energy storage apparatus, and energy storage system
US11072258B2 (en) * 2017-12-11 2021-07-27 Ford Global Technologies, Llc Method for predicting battery life
JP2020162254A (ja) * 2019-03-26 2020-10-01 日本電産株式会社 インバータ装置
CN113352893B (zh) * 2021-03-09 2022-05-03 奇瑞商用车(安徽)有限公司 一种电动汽车高压互锁故障排查系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036182A1 (en) * 1996-03-27 1997-10-02 Battery & Electrochemical Research Institute, S.A. Energy device analysis and evaluation
EP1634088A4 (en) * 2003-05-21 2007-12-26 World Energy Labs 2 Inc METHOD AND DEVICE FOR MEASURING AND ANALYZING ELECTRIC OR ELECTROCHEMICAL SYSTEMS
CN101252315A (zh) * 2007-02-20 2008-08-27 通用汽车环球科技运作公司 用于确定电部件中的电流的方法和系统
CN203193996U (zh) * 2009-12-07 2013-09-11 欧司朗股份有限公司 用于驱动至少一个放电灯的电路装置
CN104377684A (zh) * 2013-08-13 2015-02-25 上海汽车集团股份有限公司 高压部件的互锁检测电路、互锁检测系统及其检测方法
CN105277892A (zh) * 2014-07-17 2016-01-27 福特全球技术公司 通过脉冲注入辨识电池系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749397B1 (fr) 1996-06-04 1998-08-14 Telecommunications Sa Procede et dispositif de mesure de l'etat de charge d'un accumulateur
JP5331493B2 (ja) 2009-01-13 2013-10-30 日立ビークルエナジー株式会社 電池制御装置
CN101570181A (zh) 2009-06-03 2009-11-04 奇瑞汽车股份有限公司 混合动力汽车电池故障管理系统及其管理方法
US9026393B2 (en) 2009-07-07 2015-05-05 Ford Global Technologies, Llc High voltage interlock strategy
US9150108B2 (en) 2012-04-16 2015-10-06 Ford Global Technologies, Llc High-frequency signal injection based high voltage interlock
US8571738B1 (en) 2012-06-13 2013-10-29 Jtt Electronics Ltd Automotive vehicle battery power system monitoring systems, apparatus and methods
US9067546B2 (en) 2012-06-22 2015-06-30 Remy Technologies, L.L.C. High voltage protection interlock system for serviceability
DE102012018338A1 (de) 2012-09-17 2014-03-20 Volkswagen Aktiengesellschaft Vorrichtung, Fahrzeug, Verfahren und Computerprogramm zur Deaktivierung von Hochvoltkomponenten eines Fahrzeugs
US9550422B2 (en) 2014-01-16 2017-01-24 Ford Global Technologies, Llc Vehicle high voltage interlock startup
US11112463B2 (en) 2014-04-11 2021-09-07 Cps Technology Holdings Llc Integrated battery sensor for multiple battery modules
CN105150856B (zh) 2015-09-11 2017-12-01 安徽江淮汽车集团股份有限公司 一种高压系统故障诊断装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036182A1 (en) * 1996-03-27 1997-10-02 Battery & Electrochemical Research Institute, S.A. Energy device analysis and evaluation
EP1634088A4 (en) * 2003-05-21 2007-12-26 World Energy Labs 2 Inc METHOD AND DEVICE FOR MEASURING AND ANALYZING ELECTRIC OR ELECTROCHEMICAL SYSTEMS
CN101252315A (zh) * 2007-02-20 2008-08-27 通用汽车环球科技运作公司 用于确定电部件中的电流的方法和系统
CN203193996U (zh) * 2009-12-07 2013-09-11 欧司朗股份有限公司 用于驱动至少一个放电灯的电路装置
CN104377684A (zh) * 2013-08-13 2015-02-25 上海汽车集团股份有限公司 高压部件的互锁检测电路、互锁检测系统及其检测方法
CN105277892A (zh) * 2014-07-17 2016-01-27 福特全球技术公司 通过脉冲注入辨识电池系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112277646A (zh) * 2019-07-23 2021-01-29 北京新能源汽车股份有限公司 一种动力电池高压接插件故障检测方法、装置及汽车

Also Published As

Publication number Publication date
EP3411934B1 (en) 2022-10-19
WO2017135997A1 (en) 2017-08-10
US10014700B2 (en) 2018-07-03
EP3411934A1 (en) 2018-12-12
CN108604803B (zh) 2022-02-22
US20170229884A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
CN108604803A (zh) 集成电池安全互锁器
CN105811561B (zh) 蓄电系统
EP2803128B1 (en) Pre-charging vehicle bus using parallel battery packs
CN107005066B (zh) 电池模块短路保护
US8466586B2 (en) High-voltage terminal assembly with integral high-voltage interlock
JP5671249B2 (ja) 電気自動車
KR101046356B1 (ko) 전원장치 및 전원장치의 제어방법
CN104159795B (zh) 用于将电池组释能的系统和方法
EP2392487B1 (en) Apparatus and method for controlling a relay of a hybrid electric vehicle
CN102463897B (zh) 用于车辆的控制装置
CN106104288B (zh) 用于多电池模块的一体式电池传感器
CN107107772A (zh) 电池系统的双稳态继电器控制
CA2860940C (en) System and method for high voltage cable detection in hybrid vehicles
CN106740567A (zh) 车辆用电池的过放电防止装置及其方法
CN102868188A (zh) 充电系统、电动车辆以及充电器
EP3696008B1 (en) Vehicle power supply system, and vehicle
JP2016510706A (ja) ハイブリッド電気自動車の動作方法及び配置
CN111806236A (zh) 用于充电接触器焊接检查的系统和方法
US10391956B2 (en) Voltage disconnection of a high-voltage vehicle
KR101910918B1 (ko) 차량 및 그 충전 제어방법
JP2019533421A (ja) 移動充電車の起動ロッキングシステム
CN109070756A (zh) 包括保险装置的高压电池系统
CN108656953A (zh) 车辆用控制装置
JP2019050668A (ja) 故障検出装置
JP6109043B2 (ja) 車両の給電制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191226

Address after: New York State, USA

Applicant after: JOHNSON CONTROLS TECHNOLOGY Co.

Address before: michigan

Applicant before: JOHNSON CONTROLS TECHNOLOGY Co.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant