CN108598645A - A kind of coupled structure of ridge waveguide to rectangular waveguide - Google Patents

A kind of coupled structure of ridge waveguide to rectangular waveguide Download PDF

Info

Publication number
CN108598645A
CN108598645A CN201711239748.7A CN201711239748A CN108598645A CN 108598645 A CN108598645 A CN 108598645A CN 201711239748 A CN201711239748 A CN 201711239748A CN 108598645 A CN108598645 A CN 108598645A
Authority
CN
China
Prior art keywords
gap
waveguide
type gap
ridge waveguide
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711239748.7A
Other languages
Chinese (zh)
Other versions
CN108598645B (en
Inventor
胡卫东
赵继明
孙浩
李运志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Sun Create Electronic Co Ltd
Original Assignee
Anhui Sun Create Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Sun Create Electronic Co Ltd filed Critical Anhui Sun Create Electronic Co Ltd
Priority to CN201711239748.7A priority Critical patent/CN108598645B/en
Publication of CN108598645A publication Critical patent/CN108598645A/en
Application granted granted Critical
Publication of CN108598645B publication Critical patent/CN108598645B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices

Landscapes

  • Waveguide Aerials (AREA)

Abstract

The invention belongs to antenna technical field, a kind of ridge waveguide is in particular related to the coupled structure of rectangular waveguide, including ridge waveguide and rectangular waveguide;The cavity of the ridge waveguide is connected to by coupling channel with the cavity of rectangular waveguide, and the centre of the ridge waveguide, which is run through, transmission line;The ridge waveguide is single ridged waveguides, and the both ends of the coupling channel are connect with the one end of the top surface of ridge waveguide and rectangular waveguide respectively;The coupling channel is oblique H-shaped channel comprising "-" type gap I, "-" type gap II and connection gap;The both ends of the connection gap are connect with the point midway in "-" type gap I, "-" type gap II respectively, and "-" type gap I is mutually parallel with "-" type gap II.Coupled structure coefficient of coup flatness of the invention is good, coefficient of coup adjustable extent is big, meets the large-angle scanning and Sidelobe characteristic of frequency scanning antenna.

Description

A kind of coupled structure of ridge waveguide to rectangular waveguide
Technical field
The invention belongs to antenna technical field, in particular relate to a kind of ridge waveguide to rectangular waveguide coupled structure.
Background technology
Frequency scan antenna have high gain, Sidelobe, large-angle scanning, at low cost, advantages of simple structure and simple, in recent years by It is widely used in low altitude coverage radar, Search Radar, frequency scan antenna feeding network generally adds coupling using slow wave line Feed structure, slow wave line require to be lost the features such as low reliability is high, and general common slow wave line includes waveguide slow wave line and band-like Line slow wave line, ridge waveguide can be applied to rectangular waveguide couple feed structure in ridge waveguide slow wave line.
Ridge waveguide for rectangular waveguide, have many advantages, such as it is small with wide, Low ESR, size, in some rectangular waves The relatively difficult place of selvage guide battle array, ridge waveguide can replace the distribution of rectangular waveguide completion feeding network.Day is swept in order to meet frequency The large-angle scanning and Sidelobe characteristic of line, it is desirable that it is big, wide that slow wave line couple feed structure must have degree of coupling adjustable extent The advantages that band works, coefficient of coup flatness is good.Under the premise of certain limited spaces, slow wave line couple feed structure needs are adopted With the form of ridge waveguide to rectangular waveguide, common ridge waveguide to rectangular waveguide couple feed structure is inclined slot couple feed Structure, such structure face the problems such as coefficient of coup flatness is poor, degree of coupling range is relatively narrow, in the case of cannot be satisfied wideband operation Performance indicator requirement.
Invention content
According to problems of the prior art, the present invention provides a kind of coupled structure of ridge waveguide to rectangular waveguide, The coupled structure coefficient of coup flatness is good, coefficient of coup adjustable extent is big, meets the large-angle scanning of frequency scanning antenna and low Secondary lobe characteristic.
The present invention uses following technical scheme:
A kind of ridge waveguide is to the coupled structure of rectangular waveguide, including ridge waveguide and rectangular waveguide;The cavity of the ridge waveguide It is connected to the cavity of rectangular waveguide by coupling channel, the centre of the ridge waveguide, which is run through, transmission line.
Preferably, the ridge waveguide is single ridged waveguides, the both ends of the coupling channel respectively with the top surface of ridge waveguide and square The one end of shape waveguide connects.
It is further preferred that the coupling channel is oblique H-shaped channel comprising "-" type gap I, II and of "-" type gap Connection gap;The both ends of the connection gap are connect with the point midway in "-" type gap I, "-" type gap II respectively, a word Type gap I is mutually parallel with "-" type gap II;
Still more preferably, in the coupling channel, the length in the "-" type gap I and "-" type gap II is The length of L1, connection gap are L2;Angle between the "-" type gap I and "-" type gap II and ridge waveguide width direction For α, the angle between connection gap and ridge waveguide width direction is β;The midpoint in the "-" type gap I is point D, and two-end-point is The midpoint of point F and point H, "-" type gap II are point E, and two-end-point is point G and point I;The length L1, length L2, angle α and folder The size of angle beta is adjustable.
The beneficial effects of the present invention are:
1) in coupled structure of the invention, the cavity of ridge waveguide passes through the coupling channel of oblique H-shaped and the cavity of rectangular waveguide Connection;The coupling channel includes "-" type gap I, "-" type gap II and connection gap;The both ends of the connection gap point It is not connect with the point midway in "-" type gap I, "-" type gap II, "-" type gap I is mutually parallel with "-" type gap II. In the coupling channel, the length in the "-" type gap I and "-" type gap II is L1, and the length of connection gap is L2;Institute It is α, connection gap and ridge waveguide width to state the angle between "-" type gap I and "-" type gap II and ridge waveguide width direction Angle between direction is β;The midpoint in the "-" type gap I is point D, and two-end-point is point F and point H, "-" type gap II Midpoint is point E, and two-end-point is point G and point I.
The coupling channel tool is there are two resonant path, i.e. path FDEG and path HDEI, the gap where the FDEG of path The length at edge indicates that the low-frequency resonant length of coupling channel, the length of the slot edge where the HDEI of path indicate coupling channel High-frequency resonant length, low-frequency resonant length and the bigger expression resonant bandwidth of gap of high-frequency resonant length are wider;Coupling channel This structure, extend the gap of low-frequency resonant length and high-frequency resonant length, also just extend the range of resonant path, from And the degree of coupling design of broadband character stabilization is realized, expand the adjustable range of the coefficient of coup.
Description of the drawings
Fig. 1 is the three-dimensional structure diagram of the coupled structure of the present invention.
Fig. 2 a are the vertical view of the coupled structure of the present invention.
Fig. 2 b are that the coupled structure of the present invention removes the vertical view of rectangular waveguide.
Fig. 3 is the side view of the coupled structure of the present invention.
Fig. 4 is the mark figure one of the coupling channel of the coupled structure of the present invention.
Fig. 5 a are the mark figure two of the coupling channel of the coupled structure of the present invention.
Fig. 5 b are the mark figure three of the coupling channel of the coupled structure of the present invention.
Fig. 6 is the S11 stickograms of the coupled structure in the embodiment of the present invention.
Fig. 7 is the S12 transmission coefficient figures of the coupled structure in the embodiment of the present invention.
Fig. 8 is the S13 coefficient of coup figures of the coupled structure in the embodiment of the present invention.
Reference numeral:1- ridge waveguides, 2- rectangular waveguides, 3- coupling channels, 31- "-" types gap I, 32- "-" types gap II, 33- connection gap.
Specific implementation mode
Following will be combined with the drawings in the embodiments of the present invention, and technical solution in the embodiment of the present invention carries out clear, complete Site preparation describes, it is clear that described embodiments are only a part of the embodiments of the present invention, instead of all the embodiments.It is based on Embodiment in the present invention, it is obtained by those of ordinary skill in the art without making creative efforts every other Embodiment shall fall within the protection scope of the present invention.
Shown in a as shown in Figure 1, Figure 2, a kind of coupled structure of ridge waveguide to rectangular waveguide, including ridge waveguide 1 and rectangular waveguide 2; The cavity of the ridge waveguide 1 is connected to by coupling channel 3 with the cavity of rectangular waveguide 2, and the centre of the ridge waveguide 1, which is run through, biography Defeated line 4.
The ridge waveguide 1 is single ridged waveguides, the both ends of the coupling channel 3 respectively with the top surface of ridge waveguide 1 and rectangular wave Lead 2 one end connection.
As shown in Figure 2 b, the coupling channel 3 is oblique H-shaped channel comprising "-" type gap I 31, "-" type gap II 32 and connection gap 33;The both ends of the connection gap 33 middle point with "-" type gap I 31, "-" type gap II 32 respectively Connection is set, "-" type gap I 31 is mutually parallel with "-" type gap II 32.
As shown in figure 4, in the coupling channel 3, the length in the "-" type gap I 31 and "-" type gap II 32 is The length of L1, connection gap 33 are L2;The "-" type gap I 31 and "-" type gap II 32 and 1 width direction of ridge waveguide it Between angle be α, the angle between 1 width direction of connection gap 33 and ridge waveguide is β;The midpoint in the "-" type gap I 31 For point D, two-end-point is point F and point H, and the midpoint in "-" type gap II 32 is point E, and two-end-point is point G and point I;
The tool of the coupling channel 3 is there are two resonant path, i.e. path FDEG and path HDEI, the gap where the FDEG of path The length at edge indicates that the low-frequency resonant length of coupling channel 3, the length of the slot edge where the HDEI of path indicate that coupling is logical The high-frequency resonant length in road 3, low-frequency resonant length and the bigger expression resonant bandwidth of gap of high-frequency resonant length are wider;Pass through tune The size for saving length L1, length L2, angle α and angle β realizes large-scale degree of coupling design.
The coupled structure in the present invention is illustrated with reference to embodiment.
Embodiment 1:
The working frequency range of the coupled structure of the present embodiment is 15GHz~20GHz, and the degree of coupling is -11dB.As shown in Figure 1, figure 1 for ridge waveguide of the present invention to the stereogram of the couple feed structure of rectangular waveguide, the direction shown in A is expressed as signal Input port direction, the direction shown in B are expressed as signal straightthrough port direction, and the direction shown in C is expressed as coupled signal output Mouth direction.
As shown in Fig. 2 a, Fig. 3, ridge waveguide 1 is single ridged waveguides, its ridge wide Td=1.5mm, narrow side Th=5mm, the side of ridge Hem width degree Tw=1.5mm, ridge depth Tb=4.2mm.The narrow side Ta=4.5mm of rectangular waveguide 2, broadside Tk=12.95mm, coupling are logical The depth dd=0.8mm in road.
As shown in figure 4, point D is the central point in "-" type gap I 31, point E is the central point in "-" type gap II 32, point F The both sides of line DE are located at point G, point H and point I are located at the both sides of line DE, and path FDEG and path HDEI are in " Z " font, there are two resonant path FDEG and HDEI, wherein FD=EG=HD=EI=3.9mm, DE=for coupling channel tool Angle α=69.3 ° between 4.6mm, "-" type gap I 31 and "-" type gap II 32 and 1 width direction of ridge waveguide, connecting sewing Angle β=71.7 ° between 1 width direction of gap 33 and ridge waveguide.
Illustrate that the coupled structure of the present embodiment meets the working performance of antenna below by emulation.
As shown in fig. 6, Fig. 6 is the S11 stickograms of the coupled structure of the present embodiment.It can be obtained by Fig. 6, in work frequency Rate 15~20GHz bandwidth reflection coefficient S11 indexs are better than -20dB, meet the working performance requirement of scanning antenna.
As shown in fig. 7, Fig. 7 is the S12 transmission coefficient figures of the coupled structure of the present embodiment.It can be obtained by Fig. 7, in work frequency Transmission coefficient S12 fluctuating 0.1dB or so in bandwidth, fluctuating very little meet the work of scanning antenna in rate 15~20GHz bandwidth Performance requirement.
As shown in figure 8, Fig. 8 is the S13 coefficient of coup figures of the coupled structure of the present embodiment.It can be obtained by Fig. 8, in work frequency The degree of coupling rises and falls from -10.82dB to -11.55dB in rate 15~20GHz bandwidth, rises and falls very small, and coefficient of coup flatness is good, Meet the working performance requirement of scanning antenna.
As shown in Fig. 5 a, Fig. 5 b, point F and point G is located at the both sides of line DE, and point H and point I are located at line DE's Both sides, path FDEG and path HDEI are in " Z " font, and the length of the slot edge where the FDEG of path indicates coupling channel 3 Low-frequency resonant length, the length of the slot edge where the HDEI of path indicates that the high-frequency resonant length of coupling channel 3, low frequency are humorous The gap size of length of shaking and high-frequency resonant length corresponds to the adjustable range size of the coefficient of coup;Therefore, in the present embodiment Coupled structure can be by the size of adjustment length L1, length L2, angle α and angle β, to increase low-frequency resonant length and harmonic high frequency The gap for length of shaking increases the adjustable range of the coefficient of coup.
In conclusion the coefficient of coup flatness of the coupled structure of the present invention is good, coefficient of coup adjustable extent is big, meet The large-angle scanning and Sidelobe characteristic of frequency scanning antenna.

Claims (4)

1. a kind of ridge waveguide is to the coupled structure of rectangular waveguide, it is characterised in that:Including ridge waveguide (1) and rectangular waveguide (2);Institute The cavity for stating ridge waveguide (1) is connected to by coupling channel (3) with the cavity of rectangular waveguide (2).
2. a kind of ridge waveguide according to claim 1 is to the coupled structure of rectangular waveguide, it is characterised in that:The ridge waveguide (1) it is single ridged waveguides, the both ends of the coupling channel (3) one end with the top surface of ridge waveguide (1) and rectangular waveguide (2) respectively Connection.
3. a kind of ridge waveguide according to claim 2 is to the coupled structure of rectangular waveguide, it is characterised in that:The coupling is logical Road (3) is oblique H-shaped channel comprising "-" type gap I (31), "-" type gap II (32) and connection gap (33);The company The both ends of seam gap (33) are connect with the point midway in "-" type gap I (31), "-" type gap II (32) respectively, "-" type seam Gap I (31) is mutually parallel with "-" type gap II (32).
4. a kind of ridge waveguide according to claim 3 is to the coupled structure of rectangular waveguide, it is characterised in that:The coupling is logical In road (3), the length in the "-" type gap I (31) and "-" type gap II (32) is L1, and the length of connection gap (33) is L2;Angle between the "-" type gap I (31) and "-" type gap II (32) and ridge waveguide (1) width direction is α, connection Angle between gap (33) and ridge waveguide (1) width direction is β;The midpoint of the "-" type gap I (31) is point D, both ends Point is point F and point H, and the midpoint in "-" type gap II (32) is point E, and two-end-point is point G and point I;The length L1, length L2, The size of angle α and angle β are adjustable.
CN201711239748.7A 2017-11-30 2017-11-30 Coupling structure from ridge waveguide to rectangular waveguide Active CN108598645B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711239748.7A CN108598645B (en) 2017-11-30 2017-11-30 Coupling structure from ridge waveguide to rectangular waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711239748.7A CN108598645B (en) 2017-11-30 2017-11-30 Coupling structure from ridge waveguide to rectangular waveguide

Publications (2)

Publication Number Publication Date
CN108598645A true CN108598645A (en) 2018-09-28
CN108598645B CN108598645B (en) 2020-09-01

Family

ID=63633216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711239748.7A Active CN108598645B (en) 2017-11-30 2017-11-30 Coupling structure from ridge waveguide to rectangular waveguide

Country Status (1)

Country Link
CN (1) CN108598645B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744390A (en) * 2022-04-26 2022-07-12 北京华镁钛科技有限公司 Differential waveguide power divider

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081241A (en) * 1997-05-26 2000-06-27 Telefonaktiebolaget Lm Ericsson Microwave antenna transmission device having a stripline to waveguide transition via a slot coupling
JP2008109197A (en) * 2006-10-23 2008-05-08 Japan Radio Co Ltd Ridge waveguide center feed slot array antenna
CN201327867Y (en) * 2008-12-03 2009-10-14 中国航天科技集团公司第五研究院第五〇四研究所 Broadband orthomode coupler
CN105140610A (en) * 2015-09-08 2015-12-09 安徽四创电子股份有限公司 Equivalent 180 degree ridge waveguide corner used for ridge waveguide slot antenna
US9379446B1 (en) * 2013-05-01 2016-06-28 Raytheon Company Methods and apparatus for dual polarized super-element phased array radiator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081241A (en) * 1997-05-26 2000-06-27 Telefonaktiebolaget Lm Ericsson Microwave antenna transmission device having a stripline to waveguide transition via a slot coupling
JP2008109197A (en) * 2006-10-23 2008-05-08 Japan Radio Co Ltd Ridge waveguide center feed slot array antenna
CN201327867Y (en) * 2008-12-03 2009-10-14 中国航天科技集团公司第五研究院第五〇四研究所 Broadband orthomode coupler
US9379446B1 (en) * 2013-05-01 2016-06-28 Raytheon Company Methods and apparatus for dual polarized super-element phased array radiator
CN105140610A (en) * 2015-09-08 2015-12-09 安徽四创电子股份有限公司 Equivalent 180 degree ridge waveguide corner used for ridge waveguide slot antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744390A (en) * 2022-04-26 2022-07-12 北京华镁钛科技有限公司 Differential waveguide power divider
CN114744390B (en) * 2022-04-26 2024-01-26 北京华镁钛科技有限公司 Differential waveguide power divider

Also Published As

Publication number Publication date
CN108598645B (en) 2020-09-01

Similar Documents

Publication Publication Date Title
CN103490156B (en) With the millimeter wave convertible reflective array antenna that plane feed is integrated
US7443347B2 (en) Antenna with coupling feeding
CN107634335A (en) Millimeter wave array antenna based on sandwich construction
CN105006635B (en) The opening ridge ripple waveguide array antennas of integrated interior correction channel
CN102324624B (en) Ultra wideband waveguide slot array unit
CN109935972B (en) Broadband antenna based on plasmon
CN204696241U (en) Ultra-wideband antenna
CN110071368B (en) Circularly polarized leaky-wave antenna based on substrate integrated mirror image dielectric waveguide
CN109980341A (en) Antenna and intelligent terminal
CN201904433U (en) Circular polarization array antenna capable of realizing wide-angle scanning at Ka (K-above) frequency range
CN113506989A (en) 5G millimeter wave dielectric resonator antenna and array thereof
CN108598645A (en) A kind of coupled structure of ridge waveguide to rectangular waveguide
US20240113448A1 (en) Quad 5g nr mimo antenna array with slanted formation
CN110247167A (en) Millimeter-wave planar Quasi-Yagi antenna unit, array antenna and phased array antenna
CN101599784A (en) Butler matrix beam-forming device
CN104332712A (en) End-feedback broadband wide beam ridge horn
CN105119057B (en) A kind of multiband microstrip antenna
CN107394417A (en) Ridge waveguide series feed network
CN101950840A (en) Air strip line bridge
CN209516017U (en) A kind of miniaturization tunnel wall antenna
CN207303352U (en) A kind of SIW gaps crossfeed array antenna system
CN109524793A (en) Compact double-circle polarization device
CN108400433A (en) A kind of millimeter wave antenna based on periodically tortuous feeder line structure
CN210137004U (en) Millimeter wave planar quasi-yagi antenna element, array antenna, and phased array antenna
CN108054519A (en) A kind of wideband directional millimeter wave antenna

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant