CN108588826A - 基于离子插层辅助的锑烯、铋烯的液相剥离方法 - Google Patents
基于离子插层辅助的锑烯、铋烯的液相剥离方法 Download PDFInfo
- Publication number
- CN108588826A CN108588826A CN201810464163.3A CN201810464163A CN108588826A CN 108588826 A CN108588826 A CN 108588826A CN 201810464163 A CN201810464163 A CN 201810464163A CN 108588826 A CN108588826 A CN 108588826A
- Authority
- CN
- China
- Prior art keywords
- alkene
- bismuth
- antimony
- liquid phase
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0551—Flake form nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/068—Flake-like particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/07—Metallic powder characterised by particles having a nanoscale microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/64—Flat crystals, e.g. plates, strips or discs
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B3/00—Unidirectional demixing of eutectoid materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
Abstract
本发明公开了基于离子插层辅助的锑烯、铋烯的液相剥离方法,包括如下步骤:步骤一、锑、铋层状块体前驱物的研磨;步骤二、在惰性环境下,取粒状或粉状前驱物于有机锂盐溶液中,而后加入无水正己烷,在25~80℃下搅拌10~48h;步骤三、在上述溶液中缓慢加入水,使锂盐充分水解,同时伴随着大量气泡产生;步骤四、待不再有气泡产生时,将溶液转移至分液漏斗,用正己烷进行清洗、分层处理,反复3~5次。本发明实现了锑烯与铋烯的大量制备,产率可达到40%~80%。
Description
技术领域
本发明涉及一种材料的制备方法,具体涉及一种基于离子插层辅助的锑烯、铋烯的液相剥离方法。
背景技术
二维材料是一类具有原子层厚度的片。自2004年,石墨烯被成功地剥离以来,二维材料因其独特的结构展现出独特的物理、化学、电学与光学特性,在众多领域具有广阔的应用前景。同时也激励着人们探索更多具有优异性能的新型二维材料。近年来,单元素类石墨烯材料(如硅烯、锗烯等第四主族元素,磷烯、锑烯第五主族元素)以其优异的物理化学性质而愈来愈受到关注。
基于层状前驱体的自上而下的合成方法,因其具有良好的操控性与较高的效率等优点被广泛地应用于2D材料的合成中。具体地,自上而下的合成方法又可以分为液相剥离、电解剥离、插层剥离等。
目前,已有报道用液相剥离与电解剥离的方法来获得锑烯,然而,由于这两种方法的产率低,在一定程度上限制了锑烯的应用与发展。
同时,关于第五主族的铋烯的大规模液相制备尚未有报道。
发明内容
本发明的目的在于提供一种产率高的基于液相插层剥离的锑烯、铋烯的制备方法,用于实现锑烯与铋烯的大量制备。
本发明是这样实现的:
基于离子插层辅助的锑烯、铋烯的液相剥离方法,包括如下步骤:
步骤一、层状块体前驱物的研磨:将锑或铋的块状单质晶体前驱物放入研钵中进行研磨5~8min,待块状物变成粒状或粉末即可;
本发明对于颗粒大小没有要求,颗粒越小,插层过程所需要时间越短。
步骤二、插层过程:
在惰性环境下,取100~5000mg粒状或粉状前驱物于1~30ml有机锂盐溶液中,而后加入5~100ml干燥的无水正己烷,在25~80℃下搅拌10~48h;
步骤三、在上述溶液中缓慢加入50~500ml水,使锂盐充分水解,同时伴随着大量气泡产生;
步骤四、待不再有气泡产生时,将溶液转移至分液漏斗,用正己烷进行清洗、分层处理,反复3~5次。
更进一步的方案是:
所述惰性环境,是干燥的氮气或者氩气气氛。
更进一步的方案是:
所述的有机锂盐,是正丁基锂溶液,溶液浓度为1.0~2.0M,溶剂为环己烷、戊烷或正己烷。
本发明制备的原理是:一些离子半径较小的阳离子(如:Li+,Na+,K+,Cu2+)可以进入层状块体晶体的层间,从而形成离子插层复合物。由于离子的插层,层状块体材料的层与层间的距离膨胀,同时弱化了层间的范德华力。离子插层复合物可以在温和的超声过程中很容易地剥离成单层或者几层的纳米片。
而在大多数情况下,将离子插层复合物转入到水中。由于Li能够与水进行反应产生氢气,更有利于在超声过程中将相邻的两层给分开,进一步提高了剥离效率。
自然界中存在的层状的晶体Sb与Bi是β相,是菱方结构,包括一个由许多联锁的褶皱的六原环组成的双层晶胞结构。
因此,本发明实现了锑烯与铋烯的大量制备,产率可达到40%~80%。
具体实施方式
下面结合具体实施例对本发明作进一步的说明。
实施例一
基于离子插层辅助的锑烯的液相剥离方法,包括如下步骤:
步骤一、层状块体前驱物的研磨:将锑的块状单质晶体前驱物放入研钵中进行研磨5~8min,待块状物变成粒状或粉末即可;
步骤二、插层过程:
在干燥的氮气气氛下,取1000mg粒状或粉状前驱物于30ml正丁基锂溶液中,而后加入50ml干燥的无水正己烷,在80℃下搅拌10h;其中正丁基锂溶液浓度为2.0M,溶剂为环己烷。
步骤三、在上述溶液中缓慢加入100ml水,使锂盐充分水解,同时伴随着大量气泡产生;
步骤四、待不再有气泡产生时,将溶液转移至分液漏斗,用正己烷进行清洗、分层处理,反复5次。
实施例二
基于离子插层辅助的铋烯的液相剥离方法,包括如下步骤:
步骤一、层状块体前驱物的研磨:将铋的块状单质晶体前驱物放入研钵中进行研磨5~8min,待块状物变成粒状或粉末即可;
本发明对于颗粒大小没有要求,颗粒越小,插层过程所需要时间越短。
步骤二、插层过程:
在干燥的氩气气氛下,取100mg粒状或粉状前驱物于1ml正丁基锂溶液中,而后加入5ml干燥的无水正己烷,在25℃下搅拌48h;正丁基锂溶液浓度为1.0~2.0M,溶剂为正己烷。
步骤三、在上述溶液中缓慢加入50ml水,使锂盐充分水解,同时伴随着大量气泡产生;
步骤四、待不再有气泡产生时,将溶液转移至分液漏斗,用正己烷进行清洗、分层处理,反复3次。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。
Claims (3)
1.基于离子插层辅助的锑烯、铋烯的液相剥离方法,其特征在于包括如下步骤:
步骤一、锑、铋层状块体前驱物的研磨:将锑、铋的块状单质晶体前驱物放入研钵中进行研磨5~8min,待块状物变成粒状或粉末即可;
步骤二、在惰性环境下,取100~5000mg粒状或粉状前驱物于1~30ml有机锂盐溶液中,而后加入5~100ml无水正己烷,在25~80℃下搅拌10~48h;
步骤三、在上述溶液中缓慢加入50~500ml水,使锂盐充分水解,同时伴随着大量气泡产生;
步骤四、待不再有气泡产生时,将溶液转移至分液漏斗,用正己烷进行清洗、分层处理,反复3~5次。
2.根据权利要求1所述基于离子插层辅助的锑烯、铋烯的液相剥离方法,其特征在于:
所述惰性环境,是干燥的氮气或者氩气气氛。
3.根据权利要求1所述基于离子插层辅助的锑烯、铋烯的液相剥离方法,其特征在于:
所述的有机锂盐溶液,是正丁基锂溶液,溶液浓度为1.0~2.0M,溶剂为环己烷、戊烷或正己烷。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810464163.3A CN108588826A (zh) | 2018-05-15 | 2018-05-15 | 基于离子插层辅助的锑烯、铋烯的液相剥离方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810464163.3A CN108588826A (zh) | 2018-05-15 | 2018-05-15 | 基于离子插层辅助的锑烯、铋烯的液相剥离方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108588826A true CN108588826A (zh) | 2018-09-28 |
Family
ID=63631131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810464163.3A Pending CN108588826A (zh) | 2018-05-15 | 2018-05-15 | 基于离子插层辅助的锑烯、铋烯的液相剥离方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108588826A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114433852A (zh) * | 2022-03-14 | 2022-05-06 | 清华大学 | 一种电化学剥离制备锑烯纳米片的方法 |
WO2023224579A1 (en) * | 2022-05-20 | 2023-11-23 | Koc Universitesi | Bismuthene as a versatile photocatalyst operating under variable conditions for the photoredox c–h bond functionalization |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105297133A (zh) * | 2015-10-28 | 2016-02-03 | 南京理工大学 | 一种单晶少层锑烯的制备方法 |
CN106241878A (zh) * | 2016-08-22 | 2016-12-21 | 河南师范大学 | 一种1t相单层二硫化钼纳米片的制备方法 |
CN107089682A (zh) * | 2017-06-20 | 2017-08-25 | 太原理工大学 | 一种液相法制备锑烯的方法 |
CN107243642A (zh) * | 2017-06-20 | 2017-10-13 | 太原理工大学 | 利用离子液辅助制备锑烯的方法 |
CN107790737A (zh) * | 2017-11-28 | 2018-03-13 | 南京理工大学 | 锂插层法制备锑烯 |
-
2018
- 2018-05-15 CN CN201810464163.3A patent/CN108588826A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105297133A (zh) * | 2015-10-28 | 2016-02-03 | 南京理工大学 | 一种单晶少层锑烯的制备方法 |
CN106241878A (zh) * | 2016-08-22 | 2016-12-21 | 河南师范大学 | 一种1t相单层二硫化钼纳米片的制备方法 |
CN107089682A (zh) * | 2017-06-20 | 2017-08-25 | 太原理工大学 | 一种液相法制备锑烯的方法 |
CN107243642A (zh) * | 2017-06-20 | 2017-10-13 | 太原理工大学 | 利用离子液辅助制备锑烯的方法 |
CN107790737A (zh) * | 2017-11-28 | 2018-03-13 | 南京理工大学 | 锂插层法制备锑烯 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114433852A (zh) * | 2022-03-14 | 2022-05-06 | 清华大学 | 一种电化学剥离制备锑烯纳米片的方法 |
WO2023224579A1 (en) * | 2022-05-20 | 2023-11-23 | Koc Universitesi | Bismuthene as a versatile photocatalyst operating under variable conditions for the photoredox c–h bond functionalization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | A comprehensive review of Li-ion battery materials and their recycling techniques | |
Ming et al. | MXenes for rechargeable batteries beyond the lithium‐ion | |
Shi et al. | Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries | |
Yang et al. | Emerging 2D materials produced via electrochemistry | |
Zhang et al. | Intercalation and exfoliation chemistries of transition metal dichalcogenides | |
Guo et al. | Layer structured materials for advanced energy storage and conversion | |
Wang et al. | Planar hypercoordinate motifs in two-dimensional materials | |
Tang et al. | Vanadium-based cathode materials for rechargeable multivalent batteries: challenges and opportunities | |
Ryu et al. | Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite | |
Yang et al. | Ultrafast delamination of graphite into high‐quality graphene using alternating currents | |
Li et al. | Selective preparation of 1T-and 2H-phase MoS2 nanosheets with abundant monolayer structure and their applications in energy storage devices | |
Lv et al. | A first-principles study of NbSe2 monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries | |
He et al. | A green process for phosphorus recovery from spent LiFePO4 batteries by transformation of delithiated LiFePO4 crystal into NaFeS2 | |
Zhang et al. | Kinetics-controlled separation intensification for cesium and rubidium isolation from salt lake brine | |
CN101857221A (zh) | 高效率制备石墨烯复合物或氧化石墨烯复合物的方法 | |
Tang et al. | Recovery of Ti and Li from spent lithium titanate cathodes by a hydrometallurgical process | |
CN103708442B (zh) | 一种用离子液体制备高分散性石墨烯的方法 | |
WO2012065361A1 (zh) | 一种盐湖卤水镁锂分离及富集锂的方法和装置 | |
CN104445169A (zh) | 一种水相剪切剥离制备石墨烯的方法 | |
CN103466608A (zh) | 一种石墨烯的球磨制备法 | |
Debbichi et al. | First-Principles Study of Monolayer penta-Co S 2 as a Promising Anode Material for Li/Na-ion Batteries | |
Xie et al. | Electrochemically controlled reversible lithium capture and release enabled by LiMn2O4 nanorods | |
Lu et al. | Controllable synthesis of 2D materials by electrochemical exfoliation for energy storage and conversion application | |
CN108588826A (zh) | 基于离子插层辅助的锑烯、铋烯的液相剥离方法 | |
Chang et al. | Graphene-enhanced battery components in rechargeable lithium-ion and lithium metal batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180928 |