CN108570668A - 车载空调压缩机旋涡盘高隔热耐磨复合膜及其制备方法 - Google Patents
车载空调压缩机旋涡盘高隔热耐磨复合膜及其制备方法 Download PDFInfo
- Publication number
- CN108570668A CN108570668A CN201810492828.1A CN201810492828A CN108570668A CN 108570668 A CN108570668 A CN 108570668A CN 201810492828 A CN201810492828 A CN 201810492828A CN 108570668 A CN108570668 A CN 108570668A
- Authority
- CN
- China
- Prior art keywords
- air conditioner
- vehicle
- mounted air
- composite membrane
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
- C23C18/34—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
- C23C18/36—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
- C04B35/488—Composites
- C04B35/4885—Composites with aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62222—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
- C04B35/6306—Binders based on phosphoric acids or phosphates
- C04B35/6309—Aluminium phosphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1655—Process features
- C23C18/1662—Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1689—After-treatment
- C23C18/1692—Heat-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1803—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
- C23C18/1824—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
- C23C18/1827—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
- C23C18/1831—Use of metal, e.g. activation, sensitisation with noble metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Structural Engineering (AREA)
- Composite Materials (AREA)
- Dispersion Chemistry (AREA)
- Chemically Coating (AREA)
Abstract
本发明公开一种车载空调压缩机旋涡盘高隔热耐磨复合膜,复合膜包括纤维增强镍基镀层和陶瓷隔热层,陶瓷隔热层涂覆在车载空调压缩机工件表面,纤维增强镍基镀层镀覆在陶瓷隔热层表面。与现有技术相比,本发明的车载空调压缩机旋涡盘高隔热耐磨复合膜集强韧与润滑于一体,采用无机结合剂制备陶瓷隔热层,突破了中低温范围内使用的局限,陶瓷隔热层为表面纤维增强镍基镀层提供了良好的支撑和界面结合,降低了工件表面的导热系数,利用静电纺氧化锆纳米纤维对Ni‑P合金镀层进行增强,镀层的硬度和耐磨性都得到明显提高,改善了单一的镍基镀层和传统镍基复合镀层在高载荷下的自润滑性能和抗磨性能。
Description
技术领域
本发明涉及金属表面处理技术领域,特别涉及一种车载空调压缩机旋涡盘高隔热耐磨复合膜及其制备方法。
背景技术
压缩机作为空调系统中的核心组成部件,其内部关键零部件常处于高温、高压和高速运转状态,而新型环保冷媒在压缩机系统中的运用及压缩机朝着更高效和更高负荷方向的发展进一步加剧了压缩机关键零部件材料的摩擦磨损。汽车空调压缩机零部件通常采用轻量化设计来有效提高整机运行效率。然而,以
铝质合金为代表的轻质合金取代压缩机铁质零部件仍面临严重摩擦磨损及腐蚀等问题,其中旋叶式铝合金叶片与滑槽及叶片顶部与缸体间的摩擦磨损严重影响着压缩机的可靠性和寿命。
发明内容
为解决以上技术问题,本发明提供车载空调压缩机旋涡盘高隔热耐磨复合膜及其制备方法,以解决提高压缩机零部件运行的稳定性、可靠性,延长服役寿命和减小功耗,减少在高冲击性的热负荷和机械负荷下,摩擦热向部件内部的传导,使其具有高承载强度、低摩擦系数和优异的抗磨损抗腐蚀性能的问题。
本发明采用的技术方案如下:一种车载空调压缩机旋涡盘高隔热耐磨复合膜,关键在于:所述复合膜包括纤维增强镍基镀层和陶瓷隔热层,所述陶瓷隔热层涂覆在车载空调压缩机工件表面,所述纤维增强镍基镀层镀覆在所述陶瓷隔热层表面;
所述纤维增强镍基镀层为掺杂纳米纤维的Ni-P合金薄膜层,其中纳米纤维为氧化锆纳米纤维;
所述陶瓷隔热层由以下质量份数的原料组成:氧化锆纳米微球45-58份、无机结合剂8-15份、聚乙烯醇3-10份。
优选的,所述陶瓷隔热层的质量份数为氧化锆纳米微球55份、无机结合剂12份、聚乙烯醇7份。
优选的,所述氧化锆纳米纤维采用以下方法获得:将聚乙烯吡咯烷酮溶于无水乙醇得到质量分数为10%~20%的透明溶液A,然后在透明溶液A中依次搅拌加入二甲基亚砜和氧氯化锆粉体后,超声处理30min,得到纺丝前驱体;将所述纺丝前驱体吸入针管后,将其固定在静电纺丝设备上,在环境温度为15℃~25℃,环境湿度为35%~60%,电压为20~40KV的条件下,进行静电纺丝得到原生纤维;将所述原生纤维在500℃~800℃下进行煅烧2h,然后自然降温至室温得到所述金属氧化物纳米纤维。
优选的,所述氧化锆纳米微球采用以下方法获得:将葡萄糖溶解于去离子水中,配置成摩尔浓度为0.5-1.5mol/L的溶液,置于水热反应釜中140-180℃进行反应,反应时间为8-20h;反应完成后,将所得混合液离心分离,并使用去离子水和无水乙醇分别洗涤,在干燥箱中干燥24h,即得碳微球;将所述碳微球加入摩尔浓度为0.1mol/L的氧氯化锆溶液中后,超声处理0.5~1h后搅拌滴加氨水,调节pH值至7,得到稳定溶胶,将得到的稳定溶胶继续超声处理0.5~1h,超声处理后,将分层的溶液离心分离,得到核壳微粒,将所得核壳微粒分别用去离子水和无水乙醇洗涤,在干燥箱中干燥12h后,然后在500℃~800℃下进行煅烧1h得到氧化锆纳米微球。
优选的,所述无机结合剂采用以下方法获得:将磷酸与水混合得到质量分数为40%~45%磷酸溶液,然后将温度升高到110~120℃后,依次加入氢氧化铝和氧化镁,反应0.5~1h,得到所述无机结合剂。
优选的,所述氧化铝和磷酸的Al/P摩尔比为(0.5~1):1,所述氧化镁的加入量为氢氧化铝与磷酸质量总和的1.1~1.6%。
优选的,所述纤维增强镍基镀层的厚度为2~5μm。
优选的,所述陶瓷隔热层的厚度为15~25μm。
一种车载空调压缩机旋涡盘高隔热耐磨复合膜的制备方法,关键在于按以下步骤进行:
步骤一、压缩机工件的表面预处理:将压缩机工件表面清洗、除油;
步骤二、涂覆陶瓷隔热层:将氧化锆纳米微球、无机结合剂和聚乙烯醇混合搅拌后,调制成料浆,然后将料浆涂覆在经过步骤一预处理后的压缩机工件表面,然后将涂覆料浆的金属工件进行干燥后置入气体保护炉或真空炉中,进行烧结处理形成陶瓷隔热层;
步骤三、化学镀纤维增强镍基镀层:将步骤二处理后的金属工件置于装有氯化钯、盐酸、水的活化液中进行活化,然后将活化后的金属工件用去离子水冲洗,接着将冲洗后的金属工件置于装有硫酸镍、次磷酸钠、乳酸、丙酸、无水乙酸钠、硫脲、十二烷基硫酸钠和氧化锆纳米纤维的镀液中进行化学镀,在陶瓷隔热层表面镀覆形成纤维增强镍基镀层;
步骤四、热处理:将步骤三处理后的金属工件放入电阻炉中进行保温热处理,然后随炉冷却,得到成品。
优选的,所述步骤二中烧结处理条件为以8~15℃/min的速率升温至400~450℃,保温4~8min,再以6~10℃/min的速率从400~450℃升温至900~1000℃,接着以3~8℃/min的升温速度从900~1000℃升温至1050~1150℃,保温8~50min后,冷至室温;
所述步骤三中硫酸镍浓度为200~300g/L、硫酸钴的浓度为25~40g/L,次磷酸钠的浓度为20~35g/L、乳酸的浓度为18~28g/L、丙酸的浓度为3~10g/L、无水乙酸钠的浓度为15~22g/L、硫脲的浓度为0.5~3g/L、十二烷基硫酸钠的浓度为5~15g/L和氧化锆纳米纤维的浓度为10~40g/L,在进行化学镀过程中,调节机械搅拌速度为500~1200r/min,保持镀液的pH值为5~7,保持镀液温度为70~90℃。
对本发明提供的车载空调压缩机旋涡盘高隔热耐磨复合膜进行如下测试:
(1)结构和成分测试:
用JSM-5600LV型扫描电子显微镜(SEM)观察本发明压缩机零部件表面复合薄膜的表面微观形貌,用JSM-5600LV型扫描电子显微镜(SEM)观察本发明中氧化锆纳米纤维的微观形貌;
测试结果表明:复合薄膜表面致密光亮,无针孔、气泡,Ni-P晶粒相互紧密接触形成致密的、类似球晶堆积的沉积镀层;化学镀纤维增强镍基镀层中氧化锆纳米纤维的直径为100nm左右,且形貌均整,呈网状分布。
(2)摩擦性能测试
采用CSM摩擦磨损试验机对本发明压缩机滑片表面压缩机零部件表面复合薄膜的干摩擦系数和磨损寿命进行评价,具体实验条件为:摩擦实验均采用球-盘往复滑动方式,摩擦对偶球为Φ3mm的GCr15钢球,滑动速度为0.05m/s,载荷为10N;
测试结果表明:(i)传统的沉积有金属镍基陶瓷镀层的压缩机零部件表面干摩擦系数变化范围为0.5~0.7,并伴随着较大幅度的波动。而沉积有本发明复合薄膜的压缩机零部件表面干摩擦系数稳定保持在0.04~0.06间,显示出了良好的自润滑性能,在压缩机冷启动等贫油工况能够表现出有效的防护作用;
(ii)本发明压缩机零部件表面复合薄膜的耐磨性是单纯镍基镀层或传统掺杂纳米陶瓷粉体镍基复合镀层的3~6倍。
(3)导热性能测试
采用DRL-III导热系数测试仪对本发明压缩机零部件表面复合薄膜的导热性能进行评价;
测试结果表明:陶瓷隔热层可以有效降低压缩机工件表明的导热系数,可以有效的阻挡热冲击对工件内部造成的热损伤,保护内部基体并延长其使用寿命,氧化锆纳米微球的引入为陶瓷隔热层提供大量球形空穴,因而沉积有本发明复合薄膜的压缩机零部件表面的导热系数比涂覆单纯镍基镀层或传统掺杂纳米陶瓷粉体镍基复合镀层的压缩机零部件表面的导热系数要降低30%~55%。
有益效果:与现有技术相比,本发明结合化学镀技术与胶黏金属陶瓷涂层两种技术制备本发明的复合膜,得到性能优异的集强韧与润滑于一体的复合膜,具有强韧化、良好减摩耐磨性能,采用耐高温性良好,粘结强度高的无机结合剂制备陶瓷隔热层,突破了耐热性能有限的有机结合剂所制备的陶瓷涂层只能在中低温范围内使用的局限,不仅能降低成本而且可以使其在高温环境下仍然发挥其导热性能,从而提高复合膜的耐受和腐蚀性能;陶瓷隔热层为表面纤维增强镍基镀层提供了良好的支撑和界面结合,并且有效的降低了工件表面的导热系数,克服了通常压缩机零部件表面直接沉积镍基涂层所出现的内应力高、附着力差、承载能力弱等缺点;利用静电纺氧化锆纳米纤维对化学镀耐磨Ni-P合金镀层进行增强,镀层的硬度和耐磨性都得到明显提高,改善了单一的镍基镀层和传统掺杂纳米陶瓷粉体镍基复合镀层在高载荷下的自润滑性能和抗磨性能。因此,本发明的空调压缩零部件表面的复合薄膜集强韧、耐磨、减摩于一体,有效提高了压缩机零部件表面的耐冲击与润滑性能,延长了压缩机零部件的使用寿命,具有很好的应用价值。
具体实施方式
为使本领域技术人员更好的理解本发明的技术方案,下面结合附表和具体实施方式对本发明作详细说明。
一、一种陶瓷隔热层
实施例1:陶瓷隔热层中各原料的配制比例
将陶瓷隔热层中各原料分别按表1所述质量份数进行混合,得到3组不同混合比例的陶瓷隔热层I~III。
表1不同混合比例(质量份数)的陶瓷隔热层
实施例2:车载空调压缩机旋涡盘高隔热耐磨复合膜的制备方法
步骤一、将压缩机工件表面清洗、除油;
步骤二、将氧化锆纳米微球45份、无机结合剂8份和聚乙烯醇3份混合搅拌后,调制成料浆,然后将料浆涂覆在经过步骤一预处理后的压缩机工件表面,然后将涂覆料浆的金属工件进行干燥后置入气体保护炉或真空炉中,进行烧结处理,以8℃/min的速率升温至400℃,保温4min,再以6℃/min的速率从400℃升温至900℃,接着以3℃/min的升温速度从900℃升温至1050℃,保温8min后,冷至室温,形成陶瓷隔热层I,该陶瓷隔热层的厚度为15μm;
步骤三、将步骤二处理后的金属工件置于装有氯化钯、盐酸、水的活化液中进行活化,然后将活化后的金属工件用去离子水冲洗,接着将冲洗后的金属工件置于装有硫酸镍浓度为200g/L、硫酸钴的浓度为25g/L,次磷酸钠的浓度为20g/L、乳酸的浓度为18g/L、丙酸的浓度为3g/L、无水乙酸钠的浓度为15g/L、硫脲的浓度为0.5g/L、十二烷基硫酸钠的浓度为5g/L和氧化锆纳米纤维的浓度为10g/L的镀液中进行化学镀,在进行化学镀过程中,调节机械搅拌速度为500r/min,保持镀液的pH值为5,保持镀液温度为70℃,在陶瓷隔热层表面镀覆形成纤维增强镍基镀层,该纤维增强镍基镀层的厚度为2μm;
步骤四、将步骤三处理后的金属工件放入电阻炉中进行保温热处理,然后随炉冷却,得到成品。
性能测试结果:该实施例制得的复合膜表面致密光亮,无针孔、气泡,该压缩机工件表面复合薄膜的干摩擦系数稳定保持在0.06,油润滑摩擦系数甚至低于0.01,表明其具有良好的自润滑性能,其耐磨性是单纯镍基镀层或传统掺杂纳米陶瓷粉体镍基复合镀层的3倍。
实施例3:车载空调压缩机旋涡盘高隔热耐磨复合膜的制备方法
步骤一、将压缩机工件表面清洗、除油;
步骤二、将氧化锆纳米微球58份、无机结合剂15份和聚乙烯醇10份混合搅拌后,调制成料浆,然后将料浆涂覆在经过步骤一预处理后的压缩机工件表面,然后将涂覆料浆的金属工件进行干燥后置入气体保护炉或真空炉中,进行烧结处理,以15℃/min的速率升温至450℃,保温8min,再以10℃/min的速率从450℃升温至1000℃,接着以8℃/min的升温速度从1000℃升温至1150℃,保温50min后,冷至室温,形成陶瓷隔热层II,该陶瓷隔热层的厚度为25μm;
步骤三、将步骤二处理后的金属工件置于装有氯化钯、盐酸、水的活化液中进行活化,然后将活化后的金属工件用去离子水冲洗,接着将冲洗后的金属工件置于装有硫酸镍浓度为300g/L、硫酸钴的浓度为40g/L,次磷酸钠的浓度为35g/L、乳酸的浓度为28g/L、丙酸的浓度为10g/L、无水乙酸钠的浓度为22g/L、硫脲的浓度为3g/L、十二烷基硫酸钠的浓度为15g/L和氧化锆纳米纤维的浓度为40g/L的镀液中进行化学镀,在进行化学镀过程中,调节机械搅拌速度为1200r/min,保持镀液的pH值为7,保持镀液温度为90℃,在陶瓷隔热层表面镀覆形成纤维增强镍基镀层,该纤维增强镍基镀层的厚度为5μm;
步骤四、将步骤三处理后的金属工件放入电阻炉中进行保温热处理,然后随炉冷却,得到成品。
性能测试结果:该实施例制得的复合膜表面致密光亮,无针孔、气泡,该压缩机工件表面复合薄膜的干摩擦系数稳定保持在0.05,油润滑摩擦系数甚至低于0.01,表明其具有良好的自润滑性能,其耐磨性是单纯镍基镀层或传统掺杂纳米陶瓷粉体镍基复合镀层的4倍。
实施例4:车载空调压缩机旋涡盘高隔热耐磨复合膜的制备方法
步骤一、将压缩机工件表面清洗、除油;
步骤二、将氧化锆纳米微球55份、无机结合剂12份和聚乙烯醇7份混合搅拌后,调制成料浆,然后将料浆涂覆在经过步骤一预处理后的压缩机工件表面,然后将涂覆料浆的金属工件进行干燥后置入气体保护炉或真空炉中,进行烧结处理,以12℃/min的速率升温至420℃,保温5min,再8℃/min的速率从420℃升温至980℃,接着以5℃/min的升温速度从980℃升温至1080℃,保温20min后,冷至室温,形成陶瓷隔热层III,该陶瓷隔热层的厚度为20μm;
步骤三、将步骤二处理后的金属工件置于装有氯化钯、盐酸、水的活化液中进行活化,然后将活化后的金属工件用去离子水冲洗,接着将冲洗后的金属工件置于装有硫酸镍浓度为250g/L、硫酸钴的浓度为30g/L,次磷酸钠的浓度为25g/L、乳酸的浓度为20g/L、丙酸的浓度为5g/L、无水乙酸钠的浓度为20g/L、硫脲的浓度为0.8g/L、十二烷基硫酸钠的浓度为10g/L和氧化锆纳米纤维的浓度为20g/L的镀液中进行化学镀,在进行化学镀过程中,调节机械搅拌速度为800r/min,保持镀液的pH值为5.5,保持镀液温度为80℃,在陶瓷隔热层表面镀覆形成纤维增强镍基镀层,该纤维增强镍基镀层的厚度为5μm;
步骤四、将步骤三处理后的金属工件放入电阻炉中进行保温热处理,然后随炉冷却,得到成品。
性能测试结果:该实施例制得的复合膜表面致密光亮,无针孔、气泡,该压缩机工件表面复合薄膜的干摩擦系数稳定保持在0.04,油润滑摩擦系数甚至低于0.01,表明其具有良好的自润滑性能,其耐磨性是单纯镍基镀层或传统掺杂纳米陶瓷粉体镍基复合镀层的6倍。
最后需要说明,上述描述仅为本发明的优选实施例,本领域的技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。
Claims (10)
1.一种车载空调压缩机旋涡盘高隔热耐磨复合膜,其特征在于:所述复合膜包括纤维增强镍基镀层和陶瓷隔热层,所述陶瓷隔热层涂覆在车载空调压缩机工件表面,所述纤维增强镍基镀层镀覆在所述陶瓷隔热层表面;
所述纤维增强镍基镀层为掺杂纳米纤维的Ni-P合金薄膜层,其中纳米纤维为氧化锆纳米纤维;
所述陶瓷隔热层由以下质量份数的原料组成:氧化锆纳米微球45-58份、无机结合剂8-15份、聚乙烯醇3-10份。
2.根据权利要求1所述的车载空调压缩机旋涡盘高隔热耐磨复合膜,其特征在于所述陶瓷隔热层的质量份数为氧化锆纳米微球55份、无机结合剂12份、聚乙烯醇7份。
3.根据权利要求1或2所述的车载空调压缩机旋涡盘高隔热耐磨复合膜,其特征在于所述氧化锆纳米纤维采用以下方法获得:将聚乙烯吡咯烷酮溶于无水乙醇得到质量分数为10%~20%的透明溶液A,然后在透明溶液A中依次搅拌加入二甲基亚砜和氧氯化锆粉体后,超声处理30min,得到纺丝前驱体;将所述纺丝前驱体吸入针管后,将其固定在静电纺丝设备上,在环境温度为15℃~25℃,环境湿度为35%~60%,电压为20~40KV的条件下,进行静电纺丝得到原生纤维;将所述原生纤维在500℃~800℃下进行煅烧2h,然后自然降温至室温得到所述金属氧化物纳米纤维。
4.根据权利要求3所述的车载空调压缩机旋涡盘高隔热耐磨复合膜,其特征在于所述氧化锆纳米微球采用以下方法获得:将葡萄糖溶解于去离子水中,配置成摩尔浓度为0.5-1.5mol/L的溶液,置于水热反应釜中140-180℃进行反应,反应时间为8-20h;反应完成后,将所得混合液离心分离,并使用去离子水和无水乙醇分别洗涤,在干燥箱中干燥24h,即得碳微球;将所述碳微球加入摩尔浓度为0.1mol/L的氧氯化锆溶液中后,超声处理0.5~1h后搅拌滴加氨水,调节pH值至7,得到稳定溶胶,将得到的稳定溶胶继续超声处理0.5~1h,超声处理后,将分层的溶液离心分离,得到核壳微粒,将所得核壳微粒分别用去离子水和无水乙醇洗涤,在干燥箱中干燥12h后,然后在500℃~800℃下进行煅烧1h得到氧化锆纳米微球。
5.根据权利要求3所述的车载空调压缩机旋涡盘高隔热耐磨复合膜,其特征在于所述无机结合剂采用以下方法获得:将磷酸与水混合得到质量分数为40%~45%磷酸溶液,然后将温度升高到110~120℃后,依次加入氢氧化铝和氧化镁,反应0.5~1h,得到所述无机结合剂。
6.根据权利要求5所述的车载空调压缩机旋涡盘高隔热耐磨复合膜,其特征在于:所述氧化铝和磷酸的Al/P摩尔比为(0.5~1):1,所述氧化镁的加入量为氢氧化铝与磷酸质量总和的1.1~1.6%。
7.根据权利要求1、2、4、5或6任一项所述的车载空调压缩机旋涡盘高隔热耐磨复合膜,其特征在于:所述纤维增强镍基镀层的厚度为2~5μm。
8.根据权利要求7所述的车载空调压缩机旋涡盘高隔热耐磨复合膜,其特征在于:所述陶瓷隔热层的厚度为15~25μm。
9.根据权利要求1-8任一项所述的车载空调压缩机旋涡盘高隔热耐磨复合膜的制备方法,其特征在于按以下步骤进行:
步骤一、压缩机工件的表面预处理:将压缩机工件表面清洗、除油;
步骤二、涂覆陶瓷隔热层:将氧化锆纳米微球、无机结合剂和聚乙烯醇混合搅拌后,调制成料浆,然后将料浆涂覆在经过步骤一预处理后的压缩机工件表面,然后将涂覆料浆的金属工件进行干燥后置入气体保护炉或真空炉中,进行烧结处理形成陶瓷隔热层;
步骤三、化学镀纤维增强镍基镀层:将步骤二处理后的金属工件置于装有氯化钯、盐酸、水的活化液中进行活化,然后将活化后的金属工件用去离子水冲洗,接着将冲洗后的金属工件置于装有硫酸镍、次磷酸钠、乳酸、丙酸、无水乙酸钠、硫脲、十二烷基硫酸钠和氧化锆纳米纤维的镀液中进行化学镀,在陶瓷隔热层表面镀覆形成纤维增强镍基镀层;
步骤四、热处理:将步骤三处理后的金属工件放入电阻炉中进行保温热处理,然后随炉冷却,得到成品。
10.根据权利要求9所述的车载空调压缩机旋涡盘高隔热耐磨复合膜的制备方法,其特征在于:所述步骤二中烧结处理条件为以8~15℃/min的速率升温至400~450℃,保温4~8min,再以6~10℃/min的速率从400~450℃升温至900~1000℃,接着以3~8℃/min的升温速度从900~1000℃升温至1050~1150℃,保温8~50min后,冷至室温;
所述步骤三中硫酸镍浓度为200~300g/L、硫酸钴的浓度为25~40g/L,次磷酸钠的浓度为20~35g/L、乳酸的浓度为18~28g/L、丙酸的浓度为3~10g/L、无水乙酸钠的浓度为15~22g/L、硫脲的浓度为0.5~3g/L、十二烷基硫酸钠的浓度为5~15g/L和氧化锆纳米纤维的浓度为10~40g/L,在进行化学镀过程中,调节机械搅拌速度为500~1200r/min,保持镀液的pH值为5~7,保持镀液温度为70~90℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810492828.1A CN108570668B (zh) | 2018-05-22 | 2018-05-22 | 车载空调压缩机旋涡盘高隔热耐磨复合膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810492828.1A CN108570668B (zh) | 2018-05-22 | 2018-05-22 | 车载空调压缩机旋涡盘高隔热耐磨复合膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108570668A true CN108570668A (zh) | 2018-09-25 |
CN108570668B CN108570668B (zh) | 2020-11-20 |
Family
ID=63572091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810492828.1A Active CN108570668B (zh) | 2018-05-22 | 2018-05-22 | 车载空调压缩机旋涡盘高隔热耐磨复合膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108570668B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112569685A (zh) * | 2019-09-30 | 2021-03-30 | 成都易态科技有限公司 | 复合多孔薄膜的制备方法 |
CN112920651A (zh) * | 2021-02-01 | 2021-06-08 | 廊坊艾格玛新立材料科技有限公司 | 一种纤维复合型耐火耐腐蚀粉末涂料及制作方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101439941A (zh) * | 2008-12-26 | 2009-05-27 | 北京工业大学 | 一种制备室温固化的磷酸铝结合剂的方法 |
CN102173727A (zh) * | 2010-12-15 | 2011-09-07 | 电子科技大学 | 复合耐高温吸波涂层材料及吸波涂层的制备方法 |
CN104047834A (zh) * | 2014-07-03 | 2014-09-17 | 肇庆匹思通机械有限公司 | 一种用于空调滚动活塞压缩机的活塞环及其制备方法 |
CN104148267A (zh) * | 2014-08-21 | 2014-11-19 | 天津工业大学 | 绝热耐磨空调滚动活塞压缩机活塞环及其制备方法 |
CN104388933A (zh) * | 2014-08-21 | 2015-03-04 | 肇庆匹思通机械有限公司 | 一种绝热耐磨空调滚动活塞压缩机活塞环及其制备方法 |
-
2018
- 2018-05-22 CN CN201810492828.1A patent/CN108570668B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101439941A (zh) * | 2008-12-26 | 2009-05-27 | 北京工业大学 | 一种制备室温固化的磷酸铝结合剂的方法 |
CN102173727A (zh) * | 2010-12-15 | 2011-09-07 | 电子科技大学 | 复合耐高温吸波涂层材料及吸波涂层的制备方法 |
CN104047834A (zh) * | 2014-07-03 | 2014-09-17 | 肇庆匹思通机械有限公司 | 一种用于空调滚动活塞压缩机的活塞环及其制备方法 |
CN104148267A (zh) * | 2014-08-21 | 2014-11-19 | 天津工业大学 | 绝热耐磨空调滚动活塞压缩机活塞环及其制备方法 |
CN104388933A (zh) * | 2014-08-21 | 2015-03-04 | 肇庆匹思通机械有限公司 | 一种绝热耐磨空调滚动活塞压缩机活塞环及其制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112569685A (zh) * | 2019-09-30 | 2021-03-30 | 成都易态科技有限公司 | 复合多孔薄膜的制备方法 |
CN112569685B (zh) * | 2019-09-30 | 2023-09-05 | 成都易态科技有限公司 | 复合多孔薄膜的制备方法 |
CN112920651A (zh) * | 2021-02-01 | 2021-06-08 | 廊坊艾格玛新立材料科技有限公司 | 一种纤维复合型耐火耐腐蚀粉末涂料及制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108570668B (zh) | 2020-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108504976B (zh) | 一种金属-石墨烯复合涂层的制备方法 | |
CN104162662B (zh) | 表面改性的非晶合金涂层及其制备方法 | |
CN106591822B (zh) | 一种石墨烯强化铜基复合涂层的制备方法和应用 | |
CN108570668A (zh) | 车载空调压缩机旋涡盘高隔热耐磨复合膜及其制备方法 | |
Zhan et al. | Graphite and SiC hybrid particles reinforced copper composite and its tribological characteristic. | |
Wang et al. | Effect of the content of ball-milled expanded graphite on the bending and tribological properties of copper–graphite composites | |
Zhen et al. | Effects of sliding speed and testing temperature on the tribological behavior of a nickel-alloy based solid-lubricating composite | |
Cao et al. | Tribological and mechanical behaviors of engine bearing with CuSn10 layer and h-BN/graphite coating prepared by spraying under different temperatures | |
CN102744930B (zh) | 空调压缩机零部件表面的强韧润滑复合薄膜及其制备方法 | |
CN108930006A (zh) | 一种镀铜短切碳纤维增强铜/石墨复合材料及其制备方法 | |
Huang et al. | Fabrication and high temperature tribological properties of WC reinforced W-Cu composites | |
Zhou et al. | Structure and mechanical properties of Ni-P-nano Al2 O3 composite coatings synthesized by electroless plating | |
Mao et al. | Microstructure and wear behaviors of Cr2O3-Al2O3 composite coatings deposited by atmospheric plasma spraying | |
Huang et al. | Tribocorrosion study of electrodeposited NiW alloy/BN (h) composited coatings for piston rings | |
CN104878272A (zh) | 一种镍铝/氧化铜高温自润滑复合材料及其制备方法 | |
CN111748719B (zh) | 宽温域自润滑VN-Ag2MoO4复合材料及其制备方法 | |
CN104357839A (zh) | 一种激光熔覆碳纤维与镍基合金复合材料涂层的制备方法 | |
CN103160712A (zh) | 一种NiAl-2.5Ta-7.5Cr-1B合金作为高温自润滑材料的应用 | |
CN114703441B (zh) | 一种高低温固体润滑相自适应再生的摩擦学涂层制备方法 | |
CN111961944B (zh) | 一种宽温域自润滑VN-AgMoS2复合材料及其制备方法 | |
CN108716466A (zh) | 隔热耐磨的空调压缩机叶片 | |
CN104047834B (zh) | 一种用于空调滚动活塞压缩机的活塞环及其制备方法 | |
CN108708854A (zh) | 容量可变的空调压缩机 | |
Fang et al. | Research on properties of Fe-based powder metallurgy material strengthened by boriding | |
CN112899521B (zh) | 一种Cu-Ni-Sn基自润滑复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |