CN108564254A - 基于大数据的配电设备状态可视化平台 - Google Patents
基于大数据的配电设备状态可视化平台 Download PDFInfo
- Publication number
- CN108564254A CN108564254A CN201810215277.4A CN201810215277A CN108564254A CN 108564254 A CN108564254 A CN 108564254A CN 201810215277 A CN201810215277 A CN 201810215277A CN 108564254 A CN108564254 A CN 108564254A
- Authority
- CN
- China
- Prior art keywords
- data
- state
- equipment
- power distribution
- evaluation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012800 visualization Methods 0.000 title claims abstract description 35
- 238000011156 evaluation Methods 0.000 claims abstract description 63
- 238000004458 analytical method Methods 0.000 claims abstract description 35
- 238000012545 processing Methods 0.000 claims abstract description 22
- 238000011161 development Methods 0.000 claims abstract description 17
- 238000007418 data mining Methods 0.000 claims abstract description 14
- 238000007405 data analysis Methods 0.000 claims abstract description 12
- 238000003860 storage Methods 0.000 claims abstract description 12
- 230000008447 perception Effects 0.000 claims abstract description 3
- 238000009826 distribution Methods 0.000 claims description 103
- 238000000034 method Methods 0.000 claims description 55
- 238000007726 management method Methods 0.000 claims description 34
- 230000006870 function Effects 0.000 claims description 31
- 238000012544 monitoring process Methods 0.000 claims description 29
- 230000002159 abnormal effect Effects 0.000 claims description 28
- 230000005540 biological transmission Effects 0.000 claims description 25
- 230000008859 change Effects 0.000 claims description 17
- 230000018109 developmental process Effects 0.000 claims description 16
- 238000013210 evaluation model Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 238000012360 testing method Methods 0.000 claims description 13
- 238000004422 calculation algorithm Methods 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 11
- 238000004140 cleaning Methods 0.000 claims description 10
- 230000010354 integration Effects 0.000 claims description 9
- 230000003993 interaction Effects 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000002452 interceptive effect Effects 0.000 claims description 5
- 238000005314 correlation function Methods 0.000 claims description 4
- 230000011218 segmentation Effects 0.000 claims description 4
- 235000003930 Aegle marmelos Nutrition 0.000 claims description 3
- 244000058084 Aegle marmelos Species 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 238000005315 distribution function Methods 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 3
- 230000009916 joint effect Effects 0.000 claims description 3
- 238000012821 model calculation Methods 0.000 claims description 3
- 230000002829 reductive effect Effects 0.000 claims description 3
- 238000012163 sequencing technique Methods 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 238000004806 packaging method and process Methods 0.000 claims description 2
- 230000004927 fusion Effects 0.000 abstract description 5
- 230000002265 prevention Effects 0.000 abstract 1
- 230000036632 reaction speed Effects 0.000 abstract 1
- 230000007547 defect Effects 0.000 description 17
- 238000012423 maintenance Methods 0.000 description 15
- 238000005065 mining Methods 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 14
- 238000003745 diagnosis Methods 0.000 description 12
- 230000036961 partial effect Effects 0.000 description 10
- 238000007689 inspection Methods 0.000 description 9
- 230000032683 aging Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000012854 evaluation process Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000010219 correlation analysis Methods 0.000 description 2
- 238000013523 data management Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000011208 chromatographic data Methods 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000005184 irreversible process Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06313—Resource planning in a project environment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Theoretical Computer Science (AREA)
- General Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Marketing (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Public Health (AREA)
- Game Theory and Decision Science (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提出一种基于大数据的配电设备状态可视化平台,包括:数据处理模块,用于获取多平台数据,并对多平台数据进行处理,并展示处理后的数据;数据分析模块,用于进行大数据集成、存储、检索以及数据挖掘分析;评估模块,用于生成基于大数据的配电设备评估模型,并根据配电设备评估模型对配电设备进行评价,并根据评价结果生成相应的处理策略。本发明能够满足集约化发展、精益化管理的业务需求,提高设备多源信息交互融合能力,实现对配电设备的全景实时感知、多维智能监测和控制,提前防范设备运行风险,提高对突发事件的反应速度,使设备的全寿命周期管理透明化、高效化。
Description
技术领域
本发明涉及设备管理技术领域,特别涉及一种基于大数据的配电设备状态可视化平台。
背景技术
目前,各大电网公司主要依托生产管理系统(power production managementsystem,PMS)对电网设备进行信息化管理。PMS能够提供设备管理所需的大部分信息,包括设备台账、缺陷、状态评价、检修试验、在线监测等数据。但是,从加强对设备状态的全方位管控的角度来看,目前PMS提供的有效信息还十分有限,对状态变化和面临风险的敏感度也还远远不够,且管理效率和效果均不高。
近年来,因质量问题导致的设备故障时有发生,同时受全球气候变化影响雷暴、飙线风等极端天气呈多发趋势,对电网设备安全运行影响日益突出。因此,亟待一种能够结合调度、气象、视频监控等实时系统提供的信息,并增加高级智能诊断及辅助分析功能,以更好满足运检部门的工作需要的管理平台。
发明内容
本发明旨在至少解决上述技术问题之一。
为此,本发明的目的在于提出一种基于大数据的配电设备状态可视化平台,该平台能够满足集约化发展、精益化管理的业务需求,提高设备多源信息交互融合能力,实现对配电设备的全景实时感知、多维智能监测和控制,提前防范设备运行风险,提高对突发事件的反应速度,使设备的全寿命周期管理透明化、高效化。
为了实现上述目的,本发明的实施例提出了一种基于大数据的配电设备状态可视化平台,包括:数据处理模块,用于获取多平台数据,并对所述多平台数据进行处理,并展示处理后的数据;数据分析模块,用于进行大数据集成、存储、检索以及数据挖掘分析;评估模块,用于生成基于大数据的配电设备评估模型,并根据所述配电设备评估模型对配电设备进行评价,并根据评价结果生成相应的处理策略。
另外,根据本发明上述实施例的基于大数据的配电设备状态可视化平台还可以具有如下附加的技术特征:
在一些示例中,所述多平台数据至少包括:生产管理系统数据、在线监测系统数据、空间地理信息系统数据、气象系统数据和视频监控平台数据。
在一些示例中,所述数据处理模块用于对获取到的多平台数据预处理和清洗,包括:根据所述多平台数据所述的业务系统、类型、结构、大小,打上统一规范的标记,用于标识该数据的来源和种类,同时,结合预设的数据规则库,根据数据的标记,将相应的规则与数据进行封装,封装完成的数据可识别、可控制并带有相应清洗规则,可以送到数据清洗阶段进行清洗工作。
在一些示例中,所述数据分析模块包括感知层、网络层和应用层,其中,所述感知层用于进行数据采集;所述网络层用于进行数据传输;所述应用层进一步包括服务层、业务层、展现层、及一个工具集,所述服务层用于提供数据的挖掘分析能力,所述业务层用于实现具体产品的业务需求,所述展现层用于提供交互界面,所述工具集用于提供安装部署工具、数据挖掘工具、业务建模工具、代码生成工具。
在一些示例中,所述感知层、网络层和应用层之间进行交互,所述交互包括消息流和数据流,通过所述消息流来控制数据流的处理。
在一些示例中,所述配电设备评估模型至少包括:变压器类设备故障预测模型、开关和组合电器类设备状态的发展趋势和故障概率动态预测模型、基于复杂关联关系的输电线路故障预测模型。
在一些示例中,所述评估模块用于采用融合多因素的状态评价分析算法,包括:1)分析决策问题,构造出系统的命题集,即系统的识别框架Ω={A1,A2,……,Ak};2)针对目标信息系统,构造基于识别框架的证据体Ei(i=1,2,……,m);3)根据所收集到的各证据体的资料—全局全量数据,结合识别框架中各命题集合的特点,确定出各证据体的基本可信度分配mi(Aj),j=1,2,……,K,表示不同状态信息对设备状态的反应能力;4)根据基本可信度分配mi(Aj),分别计算单证据体作用下识别框架中各命题的信度区间[Beli,Pli];5)利用D-S合成规则计算所有证据体联合作用下的基本可信度分配m(Aj)和信度区间[Bel,Pl];6)根据具体问题构造相应的决策规则;7)根据该决策规则得出决策结论。
在一些示例中,所述评估模块对对配电设备进行评价,包括:A)按照配电设备状态评价导则中的相关要求,对应导则中的各个状态量阈值逐一扫描数据,当任意一个数据超过导则中限定的阈值时,将该数据标记为异常值,与原始数据分离;B)将数据变换为多元时间序列,计算出各一维时间序列的互协方差函数和互相关函数,从而得到传递函数分子、分母多项式的阶数及延迟参数,然后拟合传递函数模型,最后根据模型残差序列的ACF检验来判定干扰时刻及产生的异常数据;C)基于增量递推的最小二乘回归参数估计和广义似然比变化点检测,采用增量机制确定数据序列回归模型参数和分割点,实时提取数据趋势特征,将趋势改变的数据标记为异常数据。
在一些示例中,其中,配线路在不同天气条件下的故障率为将时间折合成单位为年时故障发生的次数,以1个日历年为单位时故障率的平均值λ可以表示为:
其中,N为正常天气的期望持续时间,S为恶劣天气的期望持续时间。表示正常天气时元件故障率的期望值,'为恶劣天气时元件故障率的期望值;
变压器的故障率及累积概率分布函数可表示为:
其中,模型假设在不同的温度下参数β和C都保持不变,使用两状态天气模型来描述变压器的偶然失效模式故障率,其表达式为:
其中,为变压器偶然失效的统计平均值,N为正常天气的持续时间,S为恶劣天气的持续时间,F为发生在恶劣天气的故障的比例,w为变压器当前所处的天气状况,正常天气w=0,恶劣天气w=1。
在一些示例中,所述评估模块还用于根据设备状态和系统风险进行设备重要度评估,包括:a)根据大数据状态评价结果、运行信息、微气象数据,利用PHM模型计算系统元件考虑大数据的实时故障概率;b)使用枚举法选择系统状态,枚举至3阶故障,形成预想故障事件,并计算故障事件发生的概率;c)对选取的系统状态进行静态安全分析,利用最优潮流计算系统状态是否满足充裕性,如需切负荷那么该系统状态为紧急状态,进入步骤d),如不需切负荷则该系统状态为警戒状态或健康状态,对系统进行N-1校验,如果满足安全准则,则为健康状态,返回步骤b),否则为警戒状态,进入步骤d);d)计算该系统状态下的紧急指数或警戒指数,利用风险追踪模型计算该状态下各个故障元件的贡献值;e)返回步骤b)直到遍历预想故障集的所有故障事件;f)计算系统总紧急指数和总警戒指数,并计算元件紧急重要度指标和警戒重要度指标,根据重要度指标排序,确定系统薄弱设备。
根据本发明实施例的基于大数据的配电设备状态可视化平台,通过多维度的可视化展现功能,最大限度复用已经建立的各种配电设备基础数据和检修管理资源,利用数据整合和数据挖掘技术实现设备综合分析,针对输、变电设备开展状态评价、故障诊断、风险评估、寿命预测及检修决策工作,辅助以技术监督和智能报表管理,为运维部门提供一个全景、实时、多维、智能化的设备管控信息平台,使数量庞大、新旧不一、状态各异的设备始终处于严密监控下,提前防范设备运行风险,提高对突发事件的反应速度,能够满足集约化发展、精益化管理的业务需求,提高设备多源信息交互融合能力,实现对配电设备的全景实时感知、多维智能监测和控制,使设备的全寿命周期管理透明化、高效化。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的基于大数据的配电设备状态可视化平台的结构框图;
图2是根据本发明一个具体实施例的数据清洗过程示意图;
图3是根据本发明一个具体实施例的变压器类设备的故障预测过程示意图;
图4是根据本发明另一个具体实施例的输电线路故障预测过程示意图;
图5是根据本发明一个具体实施例的融合多因素的状态评价分析算法示意图;
图6是根据本发明一个具体实施例的变压器类设备的差异化状态评价过程示意图;
图7是根据本发明一个具体实施例的设备状态的快速评估过程示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
以下结合附图描述根据本发明实施例的基于大数据的配电设备状态可视化平台。
图1是根据本发明一个实施例的基于大数据的配电设备状态可视化平台的结构框图。如图1所示,该基于大数据的配电设备状态可视化平台100包括:数据处理模块110、数据分析模块120和评估模块130。
其中,数据处理模块110用于获取多平台数据,并对多平台数据进行处理,并展示处理后的数据。其中,多平台数据例如至少包括生产管理系统(PMS)数据、在线监测系统数据、空间地理信息系统(GIS,Geographic Information System)数据、气象系统数据和视频监控平台数据。
换言之,即数据处理模块110可实现多平台数据获取。具体例如,配电设备状态可视化平台需要横向集成多个系统,并通过数据处理模块110取用其数据,现阶段例如包括生产管理系统(PMS)数据、在线监测系统数据、空间地理信息系统(GIS)数据、气象系统数据和视频监控平台数据等。配电设备状态可视化平台与这些系统横向数据集成遵循统一的接口规范,数据接口方式优先采用Web Service方式,同时结合项目实际情况综合处理。
在具体实例中,例如表1所示,展示了部分数据源系统及其接入对象的示例。
表1
进一步地,接口的实现方式例如包括以下几种:
Web Service服务调用接口:对于配电设备状态可视化平台,需要进一步处理的状态监测信息,并且状态检测已经提供服务接口的(对于配电设备状态可视化平台需要在线监测未提供服务接口的数据,通过服务调用获取状态监测中的数据,原则是随取随用,非特殊需要数据不在配电设备状态可视化平台数据库中存贮。
页面嵌入集成接口:对于配电设备状态可视化平台,不需要进一步处理的状态监测信息,且状态检测已经提供了相应的模块页面,则通过url调用相应的功能页面。
结构化数据获取接口:针对常规关系型数据库数据,采用JDBC/ODBC等编程接口直接获取数据库数据,对于安全极别较高、较私密的数据,由业务系统提供接口由数据获取/转换装置调用获取或由业务系统主动推送,将相关数据发送到企业消息总线上,数据获取/转换装置会对消息总线进行监听以获取数据。
非结构化数据获取接口:对于文档、音频、监控视频、巡检获得的图片等非结构化数据,数据获取/转换装置通过通用的文件传输协议直接读取调用相关文件,并进行后续的相关清理、转换等处理工作。
电网空间数据获取接口:电网空间数据较为复杂,包含了如坐标轴、经玮度等结构化数据,以及类似图像、文本等非结构化数据。数据获取/转换装置根据不同的数据类型分别利用结构化数据接口和非结构化数据接口从系统中获取数据。对于由数据获取/转换装置调用编程接口或系统接口从业务系统中拉取的数据,需要在装置中配置相关策略,定义好相关的接口、周期、调用频率、调用对象等相关参数,数据获取/转换装置会自动执行相关任务,从业务系统中拉取数据。数据获取主要分为信息内网数据获取和信息外网数据获取。数据获取/转换装置部署在信息内网,对于处于信息外网的业务系统数据获取需要通过安全隔离装置,基于安全的传输通道来获取。数据获取的整体思路是基于跨平台编程接口企业服务总线,采用数据接口、数据中心共享、网络隔离下的安全文件传输等方式,解决跨平台数据库访问、跨平台大数据文件高速并发读取、跨平台数据安全传输与同步等关键技术。
另一方面,配电设备状态可视化平台需要和众多的信息系统进行交互,需要采用松耦合方式进行连接。例如可采用面向服务的体系结构(Service-OrientedArchitecture,SOA),SOA是一个组件模型,它将应用程序的不同功能单元(称为服务)通过这些服务之间定义良好的接口和契约联系起来。接口是采用中立的方式进行定义的,它应该独立于实现服务的硬件平台、操作系统和编程语言。这使得构建在各种这样的系统中的服务能够以一种统一和通用的方式进行交互。
在本发明的一个实施例中,数据处理模块110用于对获取到的多平台数据进行预处理和清洗。这是由于获取的数据信息来源多、结构各异、属性繁多,因此,在进行数据质量管理环节需要对数据进行预处理和清洗工作。具体为:预处理主要是根据数据所属的业务系统、类型、结构、大小等,打上统一规范的标记,用于标识数据的来源、种类等属性。同时,结合预设的数据规则库,根据数据的标记,将相应的规则与数据进行封装,封装完成的数据可识别、可控制并带有相应清洗规则,可以送到数据清洗阶段进行清洗工作,例如图2所示。
设备状态评估数据源系统存储的数据通常保持着原始数据特性,通过数据转换技术来提升数据质量,从而提高数据挖掘或数据流挖掘的精度及性能。数据转换主要通过数据泛化、数据规范化、数据属性构造等操作进一步提升数据质量,提高数据挖掘或数据流挖掘的精度和性能。数据泛化使用概念分层,用高层次概念替换低层次“原始”数据,将数据库中的原始数据泛化成用户感兴趣的概念层次上的、聚合的、具有统计意义的元数据。
数据分析模块120用于进行大数据集成、存储、检索以及数据挖掘分析。
为了便于理解,首先描述下大数据技术的现状:随着智能电网的发展、各类信息平台的建立、智能变电站的建设以及智能配电设备的逐步应用,不同来源的大量信息网络化集成和共享是设备状态评价发展的必然趋势,推动配电设备状态评估和预测向基于全景状态的信息集成和综合分析方向发展。然而,影响配电设备运行状态的因素众多,爆发式增长的状态监测数据(如局放、振动、图像、视频等)加上与设备状态密切相关的电网运行、气象环境等信息数据量巨大且飞速增长,难以建立完善的、准确的设备状态评估机理模型和因果关系模型对这些数据进行分析,对提高电网设备运维管理水平提出了新的挑战,而配电设备状态评估领域对多源异构数据进行挖掘分析技术的滞后,成为掌控配电设备状态,确保电网安全的瓶颈。这种背景下,需要充分、合理、有效地利用已建成的各类信息系统中的数据,将大量分散的配电设备状态、运行和环境气象等多源信息有机融合成,利用先进的大数据处理技术实现差异化、多样化、复杂化的全方位分析,从大量数据中发现对设备状态评估有价值的规律,及时捕捉设备早期故障的先兆信息,预测故障发生的概率,为设备状态的精细化评价和预测提供全新的解决思路和技术手段,最终有效提升配电设备评估的准确性,有利于及时发现、快速诊断和消除故障隐患,提高设备的利用率,确保设备和电网安全可靠运行。
基于此,在本发明的一个实施例中,数据分析模块120例如包括感知层、网络层和应用层。感知层用于进行数据采集;网络层用于进行数据传输;应用层进一步包括服务层、业务层、展现层、及一个工具集,服务层用于提供数据的挖掘分析能力,业务层用于实现具体产品的业务需求,展现层用于提供交互界面,例如提供移动的APP应用、Web的浏览器应用,工具集用于提供安装部署工具、数据挖掘工具、业务建模工具、代码生成工具。
具体地说,感知层、网络层、应用层这三层都具有采集、存储、分析、传输的功能,但是每一层的侧重点不同,对自身的采集用于优化系统,同时每一层都具备接入第三方系统的能力,存储确保了任何节点出现故障数据都不会丢失的能力,分析从感知层、网络层、应用层不同角度的从点到面的分析。
在本发明的一个实施例中,感知层、网络层和应用层之间进行交互,该交互包括消息流和数据流,通过消息流来控制数据流的处理。
进一步地,应用层例如还包括存储层。存储层用于数据的存储,例如通过Redis负责实时数据存储,通过事件驱动可以将数据持久化到历史数据库HBASE、Oracle/MySql、SqlLite,HBASE用于大规模数据,Oracle/MySql用于中等规模数据,SqlLite用于小规模数据,可以使用统一接口访问Redis、HBASE、Oracle、MySql、SqlLite。
在具体示例中,服务层YARN是Hadoop2的资源调度管理器,在其基础之上提供了Spark、MapReduce,MapReduce提供了大数据的离线并行计算能力,Spark的Streaming提供了大数据的在线流式计算能力,Spark的Shark提供了Sql式交互计算能力,Spark的GraphX提供了图计算能力,Mahout和MLlib提供了数据挖掘和机器学习功能,本发明实施例通过工具集中的数据挖掘工具(类似于PRiSM)进行建模,然后将模型注入物联网平台,通过模型引擎驱动就可以实时进行数据挖掘分析了。
展现层在系统平台的基础上通过WebSocket、Node.js、JQuery、HTML5来统一实现移动、Web的交互界面。
存储层、服务层、展现层三层之间的交互是通过事件驱动的,这样保证了采集的数据可以即时展现到用户界面。
在具体示例中,关于数据分析模块采用的挖掘算法和耦合分析方法的描述如下:系统的异构大数据存储采用HADOOP2.0的分布式文件存储、分布式NoSQL列数据库、可扩展数据仓库等技术,提供大数据应用支撑,能够满足对大数据管理平台的相关技术要求。在Hadoop框架下,大数据管理平台软件实现分布式、面向列、多维度的数据存储系统。主要由以下部分构成:分布式协同工作系统,分布式文件系统,分布式数据库,分布式数据仓库,非结构化数据预处理和多级综合索引。分布式文件系统:系统使用基于HDFS和HBASE的分布式文件系统。对于海量的非结构化小文件,以及复杂多变的结构化数据,使用HBASE的key-value存储。对于较大的单个文件,可以直接存储在HDFS文件系统中。分布式数据库:系统中构建一写多读、多写多读的分布式NoSQL数据库。通过基于加速组件的主从复制技术,保证多个数据库之间的数据一致性,实现灾备功能,分担读数据时的压力。
综合分析系统需要进行复杂数据查询,但HADOOP的基于键-值的简单索引技术难以支撑多维数据查询。因此,需要建立多级综合索引,提高相似特征的评价数据检索性能。具体一级索引采用多维R树结构实现重点数据特征维度。聚类后的对象在同一簇的相对密度互相接近,不同簇的对象相对密度较低,以此来达到将对象聚类的目的。这样可以克服多数聚类或邻近算法存在一个简单全局的距离标准作为检测依据带来的局部性:与一定范围内的邻居的分布有关。通过克服全局距离阈值带来的一定的局限性,基于相邻密度算法将形成一种可调整可扩展的有效聚类方法,能够更好地支撑传输线等配电设备具备超网格化的数据特征。
评估模块130用于生成基于大数据的配电设备评估模型,并根据配电设备评估模型对配电设备进行评估,并根据评估结果生成相应的处理策略。
在本发明的一个实施例中,配电设备评估模型至少包括:变压器类设备故障预测模型、开关和组合电器类设备状态的发展趋势和故障概率动态预测模型、基于复杂关联关系的输电线路故障预测模型。考虑不同设备结构和故障类型的差异,对变压器、GIS/断路器以及输电线路的故障预测方法进行深入阐述。
变压器类设备故障预测模型:利用大数据信息系统中的传统在线监测、运行情况、试验检修记录、历史工况、缺陷记录结合实验室相关老化、缺陷模式识别等试验以及新型的家族差异、相关类比试验等构建变压器类设备故障诊断和动态预测的特征参量数据平台;统计分析变压器类设备的典型缺陷情况,利用大数据信息中拟合、类比等方法,研究部分特征数据缺失情况下缺失数据的人工补全方法。利用深度学习(分类)、聚类分析等技术对大量样本数据进行分析,通过数据关联算法挖掘配电设备典型缺陷和故障模式关联状态信息的变化规律及其权重组合,分析缺陷的类型、位置、严重程度与相关状态的关联关系,结合不良工况、电网运行状态、家族缺陷对设备状态变化的影响,构建基于大数据样本的多维度设备故障诊断预测模型,例如图3所示。
开关和组合电器类设备状态的发展趋势和故障概率动态预测模型:首先统计分析重大缺陷或故障历史数据、实验室模拟缺陷数据。利用关联规则挖掘、多元对应分析、主成分分析等相关关系识别技术,区分故障类型并找到起主导作用的有效数据组合,对于GIS及断路器来说,已知的直接对评判结果产生影响的有效数据有:合闸电阻、如SF6湿度、SF6气体压力、局部放电、振动情况等,结合设备情况开展相关试验,并搜集新型数据,建立GIS典型故障模式的有效数据多元逻辑模型和关联关系矩阵。对融合了电网信息、设备状态信息和自然环境信息的大数据信息进行关联规则挖掘,挖掘GIS典型缺陷和故障模式有效数据的变化规律,分析缺陷的类型、位置、严重程度与有效数据的关联关系,利用时间序列模型、灰色模型、支持向量机、回归模型等方法,计算出与有效数据关系密切的数据(如不良工况、电网运行状态、家族缺陷对设备状态变化等)和有效数据的关系指数。用来动态调整有效数据(合闸电阻、局放量等)的权重,构建基于大数据样本的多维度设备动态故障诊断模型。某些时间序列是依赖于时间的一簇时间变量,构成该时序的单个序列值虽然具有不确定性,但整个序列的变化确有一定的规律性,可以用相应的数学模型近似描述。结合设备有效数据的多元逻辑模型和状态演变历史数据,基于多元时间序列等技术研究GIS开关设备故障特征信息的关联演化规律和状态分布变化,结合状态确认和诊断分析结果,提出基于ARMA(Auto-Regressive and Moving Average Model,自回归滑动平均模型)模型的回归算法GIS开关设备状态发展趋势和故障概率动态预测的方法。
基于复杂关联关系的输电线路故障预测模型:根据输电线路故障的时间和位置信息,实现状态数据的区段化映射;进一步计算所有属性经过划分后的支持度,分析输电线路故障发生原因同其他状态参数变化之间的相关性,如输电线路和覆冰、风偏、雷暴、污闪等因素之间的关系,分析故障发展的客观规律,得到频繁项集,由频繁项集提取故障发展的关联规则;利用状态演变历史数据,结合设备故障模式多维关联规则分析,基于多元时间序列方法研究输电线路故障特征信息的关联演化规律和状态分布变化,最终建立输电线路故障概率动态预测模型,例如图4所示。
作为具体的示例,以下以变压器类设备、开关和GIS类设备、配电线路(电缆)设备为例分别说明其具体的技术路线。根据设备状态信息的层叠关系及内涵机理,分析设备全局全量数据与设备状态间的关联关系,确定设备的状态评价指标体系,提出相关特征参量反映设备状态的相关判据和设备状态综合评价模型,利用大数据样本的在线自学习方法从不同厂家、不同设备类型、不同电压等级、不同运行年限、不同运行环境,不同运行季节等层面分析设备状态变化的个性化规律,据此给出评价模型参数、判断阈值的个性化调整方法,统计分析设备个体属性信息得到状态评价修正指数,建立设备状态评价的差异化评价模型。下面以变压器类设备、开关和GIS类设备、输电线路(电缆)设备为例分别说明其具体的技术路线。通过D-S证据推理理论和规则组合起来得到基于多证据体联合作用下的基本概率赋值函数、信度函数和似然函数,如图5所示,形成融合多因素的状态评价分析算法。
换言之,即在本方面的一个实施例中,评估模块130用于采用融合多因素的状态评价分析算法,例如图5所示,具体包括:
1)分析决策问题,构造出系统的命题集,如GIS本体评价模块,即系统的识别框架Ω={A1,A2,……,Ak};
2)针对目标信息系统,构造基于识别框架的证据体Ei(i=1,2,……,m),具体检测手段,如局部放电、SF6湿度等;
3)根据所收集到的各证据体的资料—全局全量数据,结合识别框架中各命题集合的特点,确定出各证据体的基本可信度分配mi(Aj),j=1,2,……,K,即不同状态信息对设备状态的反应能力;
4)根据基本可信度分配mi(Aj),分别计算单证据体作用下识别框架中各命题的信度区间[Beli,Pli];
5)利用D-S合成规则计算所有证据体联合作用下的基本可信度分配m(Aj)和信度区间[Bel,Pl];
6)根据具体问题构造相应的决策规则;
7)根据该决策规则得出决策结论。
进一步地,在本发明的一个实施例中,结合图6所示,变压器类设备的差异化状态评价过程描述如下:首先分析归纳变压器状态评价相关参量,确定相关参量数据类型,通过对数据的统计分析、分类识别等方法,提出图像、视频、文本等非结构化数据的特征提取方法,然后采用主成分分析法、关联分析法等大数据核心挖掘分析方法,确定与变压器状态相关的特征参量及其与设备状态间的耦合关系,完善已有特征参量集。最后,对于指定参量或参量集,运用多元统计分析、多维度关联分析等方法,确定变压器状态评价的评价判据及评判模型,建立完备的评价指标体系;通过定期或不定期的数据分析,实现指标体系的动态维护;统计分析设备属性、特殊工况、不同结构等情况下变压器状态判断的误差,确定相应条件下的修正指数,运用人工神经网络、模糊聚类等方法,建立变压器个体化状态评估模型,实现变压器类设备状态的差异化评估。
GIS/断路器类设备差异化状态评价过程描述如下:从大数据综合分析平台中抽取配电设备运行条件的相关参量,综合气象环境信息、运行工况信息、在线监测信息、预试定检信息、人工巡视以及设备个体化数据等信息,采用系统层次聚类方法,分析上述参量之间和参量与GIS/断路器状态之间的依赖关系,建立GIS/断路器局部放电、开断短路电流等关键性能的评价模型。采用序列规则挖掘方法分析设备个体差异(投运年限、厂家型号、运行工况)与GIS/断路器关键性能劣化的影响,扩展评价模型的影响因素,形成基于数据状态依存关系的GIS/断路器关键性能的个性化、差异化评价方法。
配电线路的差异化状态评价过程描述如下:从大数据平台中抽取与输电线路、电缆运行条件的相关参量,包括气象环境、运行工况、在线监测、人工巡视、预试定检等数据,采用系统层次聚类方法,分析上述参量之间和参量与配电线路状态之间的依赖关系,建立配电线路(电缆)覆冰、弧垂、绝缘子污秽、防雷水平等关键性能的评价模型。采用序列规则挖掘方法分析设备个体差异(投运年限、厂家型号、运行工况)与配电线路(电缆)关键性能劣化的影响,扩展评价模型的影响因素,形成基于数据状态依存关系的配电线路关键性能的个性化、差异化评价方法。
以下结合图7,对设备状态的快速评估方法进行描述。具体地,在大数据硬件平台的支撑下,利用预测模型、孤点分析、聚类分区等方法,提出基于状态信息实时数据流挖掘技术的异常状态快速检出和预警方法,实现异常状态的快速检测和预警,提高评估的时效性。状态信息数据流是由大量连续到达、潜在无限长、不断变化的多源状态信息数据组成的有序时间序列。随着配电设备状态监测系统和生产管理系统的改进和完善以及电网信息、环境气象信息的实时融合,配电设备状态信息相关数据呈现出数据流数量大、连续性的特征,快速挖掘和检出数据流中的异常状态能够为配电设备提供早期预警、状态评价和决策支持。状态信息实时数据流异常值的快速挖掘和预警研究一方面需要对设备大量结构化数据流异常状态进行实时挖掘,另一方面需要对图像、视频、振动(波形、指纹)、局放(波形、图谱)、测试报告等非结构化数据特征值的快速提取。
具体地,结合图7所示,首先对设备状态信息数据流进行汇总操作,即设置一个定长的窗口,窗口内包含有限采集周期内的所有数据。对汇总后的数据共有三种异常值检测方法,为对比状态评价导则中的阈值、趋势分析方法和时间序列传递函数模型。这三种方法分别可以检测出三种类型的异常值,超出状态量阈值的异常值、外界干扰产生的水平迁移异常值、潜在故障产生的趋势改变异常值,具体包括以下步骤:
A)按照配电设备状态评价导则中的相关要求,对应导则中的各个状态量阈值逐一扫描数据,当任意一个数据超过导则中限定的阈值时,将该数据标记为异常值,与原始数据分离。
B)将数据变换为多元时间序列,计算出各一维时间序列的互协方差函数和互相关函数,从而得到传递函数分子、分母多项式的阶数及延迟参数,然后拟合传递函数模型,最后根据模型残差序列的ACF检验来判定干扰时刻及产生的异常数据。具体地说,配电设备在运行中某一时刻系统可能受到外界干扰而影响到状态量数据的分布(如当变压器遭受一次短路冲击时油温会有短时的上升),在这种情况下,数据会在时刻T干扰发生时具有一定的初始迁移效应,之后会由于根据干扰原因、状态量属性差异而发生永久性水平迁移或暂时性水平迁移。这类异常值可以通过时间序列的传递函数模型来快速检出,即首先将数据变换为多元时间序列,计算出各一维时间序列的互协方差函数和互相关函数,从而得到传递函数分子、分母多项式的阶数及延迟参数,然后拟合传递函数模型,最后根据模型残差序列的ACF检验来判定干扰时刻及产生的异常数据。
C)基于增量递推的最小二乘回归参数估计和广义似然比变化点检测,采用增量机制确定数据序列回归模型参数和分割点,实时提取数据趋势特征,将趋势改变的数据标记为异常数据。这是由于配电设备在运行过程中可能发生绝缘老化、机械缺陷等原因,状态量数据可能会存在趋势改变(如变压器的油纸绝缘劣化加速会导致油介损、油中CO和CO2气体的上升趋势加强),因此分离出此类趋势改变的异常值对检测配电设备的潜在故障具有重大意义。在本发明的实施例中,这类异常值的检测方法是基于增量递推的最小二乘回归参数估计和广义似然比变化点检测,该算法采用增量机制确定数据序列回归模型参数和分割点,实时提取数据趋势特征,将趋势改变的数据标记为异常数据。
进一步地,为建立更加精确的配电设备停运概率模型,基于电力企业历史事故记录、设备实时状态监测信息,揭示设备内部状态、外界环境的演变与设备强迫停运的内在联系,建立“事故学习—事件驱动”型的时空状态模型再励学习系统。采用不确定理论,如可信性理论、云模型等方法给出采集数据缺乏情况下的可切换时变设备停运模型。建立参数学习库,使得设备停运模型具备自适应反馈修正与安全校核功能。设备的强迫停运率主要受到时间、空间两方面的因素的影响,时间因素主要体现在设备老化,空间因素主要体现在设备在电力系统中的不同位置及周围不同的气象环境。基于时空状态分析的变压器故障率进行建模,模型应该具有很强的泛化能力,具有通用性。考虑大数据的配电设备故障率模型不仅能够表征设备的一般老化,也能考虑大数据、多因素对设备的影响,可以量化内部协变量与外部协变量对故障率的影响,比如设备某些检测信息、设备运行的外部环境、气象条件和系统情况。模型同时要考虑到状态转移的随机过程,考虑特定设备的随机过程将使模型更加精确和特殊化,也更加贴近实际。除了一般性的模型,不同设备在不同条件下也有很多具体的模型。输电线路老化失效的主要原因是导线抗拉强度的损失,是一个逐渐积累和不可逆的过程。理论分析及实验结果表明,高温导体的退火是导线抗拉强度的损失的主要原因。架空输电导线温度主要取决于导线电流、环境温度、风速、风向、日照热量。
在本发明的一个实施例中,配线路在不同天气条件下的故障率为将时间折合成单位为年时故障发生的次数,以1个日历年为单位时故障率的平均值可以表示为:
其中,N为正常天气的期望持续时间,S为恶劣天气的期望持续时间,λ表示正常天气时元件故障率的期望值,λ′为恶劣天气时元件故障率的期望值。
电网中使用的变压器大多数为油浸变压器。变压器老化失效的主要原因是绝缘纸机械强度的损失,这是一个逐渐积累和不可逆的过程。变压器的绝缘失效与其运行的温度有关。通常认为变压器热点温度是变压器绝缘系统所遭受的最高温度,热点在变压器高压或者低压绕组的顶部附近。变压器老化过程常用Weibull分布来描述,其长期失效的Arrhenius-Weibull模型,因此,变压器的故障率及累积概率分布函数可表示为:
应该指出的是,该模型假设在不同的温度下参数β和C都保持不变。在具有足够多样本的情况下,可以通过最小二乘法或极大似然法来估计这些参数。使用两状态天气模型来描述变压器的偶然失效模式故障率,使用两状态天气模型来描述变压器的偶然失效模式故障率,其表达式为:
其中,为变压器偶然失效的统计平均值,N为正常天气的持续时间,S为恶劣天气的持续时间,F为发生在恶劣天气的故障的比例,w为变压器当前所处的天气状况,正常天气w=0,恶劣天气w=1。
进一步地,评估模块130还用于根据设备状态和系统风险进行设备重要度评估。配电设备运行的可靠性直接关系到电力系统的安全与稳定。随着电力规模的不断扩大和市场经济的引入,电力企业对配电设备的安全、经济运行提出了更高的要求;维修计划的完善程度及维修策略的制定直接决定着电力设备使用阶段的成本以及使用寿命;因此进行电力设备故障风险分析及系统风险的重要度评估不仅有利于制定恰当的维修计划、提高系统运行的可靠性,而且能够较好地避免传统预防性维修方案存在的维修不足和维修过剩等问题,降低维修费用及运营成本费用,有效地提高电力设备运行的可靠性和经济性。
在本发明的一个实施例中,根据设备状态和系统风险进行设备重要度评估,具体包括如下步骤:
a)根据大数据状态评价结果、运行信息、微气象数据,利用PHM模型计算系统元件考虑大数据的实时故障概率;
b)使用枚举法选择系统状态,枚举至3阶故障,形成预想故障事件,并计算故障事件发生的概率;
c)对选取的系统状态进行静态安全分析,利用最优潮流计算系统状态是否满足充裕性,如需切负荷那么该系统状态为紧急状态,进入步骤d),如不需切负荷则该系统状态为警戒状态或健康状态,对系统进行N-1校验,如果满足安全准则,则为健康状态,返回步骤b),否则为警戒状态,进入步骤d);
d)计算该系统状态下的紧急指数或警戒指数,利用风险追踪模型计算该状态下各个故障元件的贡献值;
e)返回步骤b)直到遍历预想故障集的所有故障事件;
f)计算系统总紧急指数和总警戒指数,并计算元件紧急重要度指标和警戒重要度指标,根据重要度指标排序,确定系统薄弱设备。
综上,根据本发明实施例的基于大数据的配电设备状态可视化平台,在系统的开发过程中使用软件工程比较成熟的开发技术,对系统功能进行需求分析,构建网络应用系统。同时建立安全的运行机制,保障系统持续可靠运行,根据相关的管理规范,制定合理的工作流程,主要涉及配网设备供电分析、状态检修、配网设备全寿命周期管理以及用电信息采集业务模块。平台利用信息化手段,建立稳定高效的运维及数据核查体系,促进系统实用化及深化应用,保障各系统的可持续发展;实现供电公司对所辖范围内配电设备的供电分析及信息预警要求。该基于大数据的配电设备状态可视化平台主要从如下几个方面进行完善提升:
(1)更为强大的设备状态监控功能。
全面适应国网公司未来PMS2.0数据结构要求,对各类设备状态信息进行集中展示。应用可视化技术,将数字和文字转化为图形,采用动态曲线、统计图、列表等友好方式展示设备状态的个体差异和发展趋势。开发“我关注的设备”模块,方便不同层级、不同单位的运检人员根据需要动态实时掌握设备状态,实现可视化监控。
(2)基于大数据分析,全景展示设备状态功能。
平台将接入PMS2.0系统数据、配电自动化系统数据,挖掘与设备负载能力密切关联的核心状态参量,建立不同服役环境、不同设备老化状态、不同设备缺陷情况下的设备负载能力短期、中期、长期多尺度动态评估及预测模型,研究配电设备过负荷运行及与设备健康状态和寿命的相关关系,提出设备实时动态增容调控策略与设备负载安全裕度的动态校核方法。多维度展现设备状态信息,提高配网设备精细化管理。
(3)更加丰富的设备故障诊断功能。
高度融合来自不同应用系统的信息,配备状态检测、检修工作、辅助工作、供电质量分析、风险预警等高级诊断模块,对海量数据进行深层次挖掘和多角度分析,结合配电设备状态监测信息和PMS中的设备检修试验信息,对配电设备状态进行在线诊断,同时利用典型故障、缺陷援例库和设备标准库,提高状态诊断实时性和准确性,支持管理人员快速准确决策。
(4)更加全面的运行风险预警功能。
根据既定规则对电网薄弱点进行连续实时的扫描,自动查找存在严重缺陷、状态劣化等故障风险的配电设备,通过风险信息汇总、巡视缺陷、巡视隐患、监测异常等模块展示,并自动发布预警信息。
一方面,该平台采用了基于电力大数据分析的配电设备评估方法,从大数据综合分析平台中抽取变电设备运行条件的相关参量,采用序列规则挖掘方法分析设备个体差异与设备关键性能劣化的影响,形成基于数据状态依存关系的设备关键性能差异化评估方法。
另一方面,该平台采用了油色谱H2、CO和总烃3类特征气体异常值的最小协方差行列式MCD稳健多元检测方法。利用迭代和Mahalanobis距离思想构造一个稳健的协方差估计量对异常值进行检测,强化了油色谱数据的统计规律;通过对异常值区间的跟踪评估,更加明显地反映变压器运行状态的变化。
进一步地,该平台采用了基于提升双树复小波变换和BP神经网络的变压器局部放电模式识别方法,设计了基于超高频法的变压器局部放电检测系统,应用提升双树复小波变换对收集的局部放电包络信号进行去噪,利用BP神经网络对变压器放电类型进行模式识别,有效排除原始信号中空间电磁波和硬件电路噪声干扰,提高了局放类型识别的正确率。
根据本发明实施例的基于大数据的配电设备状态可视化平台,通过多维度的可视化展现功能,最大限度复用已经建立的各种配电设备基础数据和检修管理资源,利用数据整合和数据挖掘技术实现设备综合分析,针对输、变电设备开展状态评价、故障诊断、风险评估、寿命预测及检修决策工作,辅助以技术监督和智能报表管理,为运维部门提供一个全景、实时、多维、智能化的设备管控信息平台,使数量庞大、新旧不一、状态各异的设备始终处于严密监控下,提前防范设备运行风险,提高对突发事件的反应速度,能够满足集约化发展、精益化管理的业务需求,提高设备多源信息交互融合能力,实现对配电设备的全景实时感知、多维智能监测和控制,使设备的全寿命周期管理透明化、高效化。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同限定。
Claims (10)
1.一种基于大数据的配电设备状态可视化平台,其特征在于,包括:
数据处理模块,用于获取多平台数据,并对所述多平台数据进行处理,并展示处理后的数据;
数据分析模块,用于进行大数据集成、存储、检索以及数据挖掘分析;
评估模块,用于生成基于大数据的配电设备评估模型,并根据所述配电设备评估模型对配电设备进行评估,并根据评估结果生成相应的处理策略。
2.根据权利要求1所述的基于大数据的配电设备状态可视化平台,其特征在于,所述多平台数据至少包括:生产管理系统数据、在线监测系统数据、空间地理信息系统数据、气象系统数据和视频监控平台数据。
3.根据权利要求2所述的基于大数据的配电设备状态可视化平台,其特征在于,所述数据处理模块用于对获取到的多平台数据进行预处理和清洗,包括:
根据所述多平台数据所述的业务系统、类型、结构、大小,打上统一规范的标记,用于标识该数据的来源和种类,同时,结合预设的数据规则库,根据数据的标记,将相应的规则与数据进行封装,封装完成的数据可识别、可控制并带有相应清洗规则,可以送到数据清洗阶段进行清洗工作。
4.根据权利要求1所述的基于大数据的配电设备状态可视化平台,其特征在于,所述数据分析模块包括感知层、网络层和应用层,其中,
所述感知层用于进行数据采集;
所述网络层用于进行数据传输;
所述应用层进一步包括服务层、业务层、展现层、及一个工具集,所述服务层用于提供数据的挖掘分析能力,所述业务层用于实现具体产品的业务需求,所述展现层用于提供交互界面,所述工具集用于提供安装部署工具、数据挖掘工具、业务建模工具、代码生成工具。
5.根据权利要求4所述的基于大数据的配电设备状态可视化平台,其特征在于,所述感知层、网络层和应用层之间进行交互,所述交互包括消息流和数据流,通过所述消息流来控制数据流的处理。
6.根据权利要求1所述的基于大数据的配电设备状态可视化平台,其特征在于,所述配电设备评估模型至少包括:变压器类设备故障预测模型、开关和组合电器类设备状态的发展趋势和故障概率动态预测模型、基于复杂关联关系的输电线路故障预测模型。
7.根据权利要求6所述的基于大数据的配电设备状态可视化平台,其特征在于,所述评估模块用于采用融合多因素的状态评价分析算法,包括:
1)分析决策问题,构造出系统的命题集,即系统的识别框架Ω={A1,A2,……,Ak};
2)针对目标信息系统,构造基于识别框架的证据体Ei(i=1,2,……,m);
3)根据所收集到的各证据体的资料—全局全量数据,结合识别框架中各命题集合的特点,确定出各证据体的基本可信度分配mi(Aj),j=1,2,……,K,表示不同状态信息对设备状态的反应能力;
4)根据基本可信度分配mi(Aj),分别计算单证据体作用下识别框架中各命题的信度区间[Beli,Pli];
5)利用D-S合成规则计算所有证据体联合作用下的基本可信度分配m(Aj)和信度区间[Bel,Pl];
6)根据具体问题构造相应的决策规则;
7)根据该决策规则得出决策结论。
8.根据权利要求1所述的基于大数据的配电设备状态可视化平台,其特征在于,所述评估模块对对配电设备进行评价,包括:
A)按照配电设备状态评价导则中的相关要求,对应导则中的各个状态量阈值逐一扫描数据,当任意一个数据超过导则中限定的阈值时,将该数据标记为异常值,与原始数据分离;
B)将数据变换为多元时间序列,计算出各一维时间序列的互协方差函数和互相关函数,从而得到传递函数分子、分母多项式的阶数及延迟参数,然后拟合传递函数模型,最后根据模型残差序列的ACF检验来判定干扰时刻及产生的异常数据;
C)基于增量递推的最小二乘回归参数估计和广义似然比变化点检测,采用增量机制确定数据序列回归模型参数和分割点,实时提取数据趋势特征,将趋势改变的数据标记为异常数据。
9.根据权利要求8所述的基于大数据的配电设备状态可视化平台,其特征在于,其中,配线路在不同天气条件下的故障率为将时间折合成单位为年时故障发生的次数,以1个日历年为单位时故障率的平均值λ可以表示为:
其中,N为正常天气的期望持续时间,S为恶劣天气的期望持续时间。表示正常天气时元件故障率的期望值,'为恶劣天气时元件故障率的期望值;
变压器的故障率及累积概率分布函数可表示为:
其中,模型假设在不同的温度下参数β和C都保持不变,使用两状态天气模型来描述变压器的偶然失效模式故障率,其表达式为:
其中,为变压器偶然失效的统计平均值,N为正常天气的持续时间,S为恶劣天气的持续时间,F为发生在恶劣天气的故障的比例,w为变压器当前所处的天气状况,正常天气w=0,恶劣天气w=1。
10.根据权利1所述的基于大数据的配电设备状态可视化平台,其特征在于,所述评估模块还用于根据设备状态和系统风险进行设备重要度评估,包括:
a)根据大数据状态评价结果、运行信息、微气象数据,利用PHM模型计算系统元件考虑大数据的实时故障概率;
b)使用枚举法选择系统状态,枚举至3阶故障,形成预想故障事件,并计算故障事件发生的概率;
c)对选取的系统状态进行静态安全分析,利用最优潮流计算系统状态是否满足充裕性,如需切负荷那么该系统状态为紧急状态,进入步骤d),如不需切负荷则该系统状态为警戒状态或健康状态,对系统进行N-1校验,如果满足安全准则,则为健康状态,返回步骤b),否则为警戒状态,进入步骤d);
d)计算该系统状态下的紧急指数或警戒指数,利用风险追踪模型计算该状态下各个故障元件的贡献值;
e)返回步骤b)直到遍历预想故障集的所有故障事件;
f)计算系统总紧急指数和总警戒指数,并计算元件紧急重要度指标和警戒重要度指标,根据重要度指标排序,确定系统薄弱设备。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810215277.4A CN108564254B (zh) | 2018-03-15 | 2018-03-15 | 基于大数据的配电设备状态可视化平台 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810215277.4A CN108564254B (zh) | 2018-03-15 | 2018-03-15 | 基于大数据的配电设备状态可视化平台 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108564254A true CN108564254A (zh) | 2018-09-21 |
CN108564254B CN108564254B (zh) | 2021-04-09 |
Family
ID=63532863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810215277.4A Expired - Fee Related CN108564254B (zh) | 2018-03-15 | 2018-03-15 | 基于大数据的配电设备状态可视化平台 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108564254B (zh) |
Cited By (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109255389A (zh) * | 2018-09-28 | 2019-01-22 | 中国科学院长春光学精密机械与物理研究所 | 一种装备评价方法、装置、设备及可读存储介质 |
CN109359785A (zh) * | 2018-11-30 | 2019-02-19 | 安徽四创电子股份有限公司 | 基于大数据的强制隔离戒毒解除人员复吸预测分析系统 |
CN109408353A (zh) * | 2018-11-13 | 2019-03-01 | 郑州云海信息技术有限公司 | 一种存储分区利用率和iops的分析方法,系统及终端设备 |
CN109579913A (zh) * | 2018-12-21 | 2019-04-05 | 云南电网有限责任公司电力科学研究院 | 一种配电变压器多态监测方法与系统 |
CN109634233A (zh) * | 2018-12-06 | 2019-04-16 | 南京邮电大学 | 工业大数据智能分析决策方法、可读存储介质和终端 |
CN109684322A (zh) * | 2018-12-26 | 2019-04-26 | 交通运输部水运科学研究所 | 一种用于自动海事稽核的数据处理系统和方法 |
CN109783553A (zh) * | 2018-11-28 | 2019-05-21 | 中国电力科学研究院有限公司 | 一种配电网海量数据质量提升系统 |
CN109800274A (zh) * | 2018-12-14 | 2019-05-24 | 国网浙江省电力有限公司 | 电网大数据关联挖掘成果全寿命周期挖掘方法 |
CN109919406A (zh) * | 2018-12-18 | 2019-06-21 | 国网浙江桐乡市供电有限公司 | 配电网运行方式的智能辅助安排方法 |
CN109920241A (zh) * | 2019-02-22 | 2019-06-21 | 山东欧德利电气设备有限公司 | 一种远程数字量单向传输系统 |
CN109974780A (zh) * | 2019-04-01 | 2019-07-05 | 西京学院 | 一种基于物联网的电气设备状态监测系统 |
CN110008285A (zh) * | 2019-03-26 | 2019-07-12 | 国网上海市电力公司 | 含微型同步相量测量的智能配电网信息集成系统及方法 |
CN110048430A (zh) * | 2019-05-08 | 2019-07-23 | 国网福建省电力有限公司莆田供电公司 | 一种电压敏感用户电网薄弱点识别方法 |
CN110174578A (zh) * | 2019-07-11 | 2019-08-27 | 云南电网有限责任公司电力科学研究院 | 一种变电设备状态检测方法及装置 |
CN110245163A (zh) * | 2019-01-17 | 2019-09-17 | 国网浙江德清县供电有限公司 | 一种电力系统运行隐患排查方法 |
CN110264095A (zh) * | 2019-06-25 | 2019-09-20 | 昆明能讯科技有限责任公司 | 一种基于地理信息系统的配电网设备可视化辅助运维方法 |
CN110275983A (zh) * | 2019-06-05 | 2019-09-24 | 青岛海信网络科技股份有限公司 | 交通监控数据的检索方法及装置 |
CN110287935A (zh) * | 2019-07-02 | 2019-09-27 | 云南电网有限责任公司信息中心 | 一种基于图像识别的电力设备数据核查方法及系统 |
CN110336382A (zh) * | 2019-08-01 | 2019-10-15 | 广东电网有限责任公司 | 一种电网故障告警信息的确认方法、装置、设备及介质 |
CN110413622A (zh) * | 2019-08-01 | 2019-11-05 | 国网内蒙古东部电力有限公司信息通信分公司 | 一种基于电力大数据平台的数据处理方法 |
CN110417849A (zh) * | 2019-06-05 | 2019-11-05 | 浙江工业大学 | 介入式工业设备边缘计算系统 |
CN110472753A (zh) * | 2019-08-22 | 2019-11-19 | 苏宝炜 | 一种基于深度学习的设备设施单元评估方法及装置 |
CN110490408A (zh) * | 2019-07-04 | 2019-11-22 | 广东电网有限责任公司 | 一种配变重要度的分析计算方法 |
CN110543903A (zh) * | 2019-08-23 | 2019-12-06 | 国网江苏省电力有限公司电力科学研究院 | 一种gis局部放电大数据系统的数据清洗方法及系统 |
CN110728381A (zh) * | 2019-09-28 | 2020-01-24 | 上海电力大学 | 一种基于rfid和数据处理的发电厂智能巡检方法及系统 |
CN110750384A (zh) * | 2019-10-15 | 2020-02-04 | 浙江众鑫空间科技有限公司 | 大数据管理系统 |
CN111062633A (zh) * | 2019-12-24 | 2020-04-24 | 广东电网有限责任公司 | 一种基于多源异构数据的输变电线路和设备状态评估系统 |
CN111078781A (zh) * | 2019-12-30 | 2020-04-28 | 电信科学技术第五研究所有限公司 | 一种多源流式大数据融合汇聚处理框架模型实现方法 |
CN111177205A (zh) * | 2019-12-31 | 2020-05-19 | 重庆中电自能科技有限公司 | 一种新能源场站数据共享方法及系统 |
CN111199361A (zh) * | 2020-01-13 | 2020-05-26 | 国网福建省电力有限公司信息通信分公司 | 基于模糊推理理论的电力信息系统健康评估方法及系统 |
CN111308337A (zh) * | 2020-03-31 | 2020-06-19 | 张铭源 | 一种离心风机入口导叶调节阀门性能评价方法 |
CN111402215A (zh) * | 2020-03-07 | 2020-07-10 | 西南交通大学 | 一种基于鲁棒主成分分析法的接触网绝缘子状态检测方法 |
CN111428895A (zh) * | 2020-03-27 | 2020-07-17 | 安徽数升数据科技有限公司 | 一种智能电表故障诊断支撑中心 |
CN111425193A (zh) * | 2020-01-21 | 2020-07-17 | 东北石油大学 | 一种基于聚类分析测井岩石物理相划分的储层可压性评价方法 |
CN111460656A (zh) * | 2020-03-31 | 2020-07-28 | 合肥优尔电子科技有限公司 | 一种电力机房通信电源运行寿命评估方法和系统 |
CN111537845A (zh) * | 2020-04-26 | 2020-08-14 | 云南电网有限责任公司电力科学研究院 | 基于拉曼光谱聚类分析的油纸绝缘设备老化状态识别方法 |
CN111538762A (zh) * | 2020-04-22 | 2020-08-14 | 深圳市欣横纵技术股份有限公司 | 一种基于数据挖掘技术的信息管理分析方法 |
CN111698331A (zh) * | 2020-06-15 | 2020-09-22 | 江苏方天电力技术有限公司 | 一种物联管理数据云同步方法 |
CN111709447A (zh) * | 2020-05-14 | 2020-09-25 | 中国电力科学研究院有限公司 | 电网异常检测方法、装置、计算机设备和存储介质 |
CN111800655A (zh) * | 2020-05-14 | 2020-10-20 | 中国传媒大学 | 网络平台的监播方法和系统 |
CN111815190A (zh) * | 2020-07-15 | 2020-10-23 | 国网能源研究院有限公司 | 基于多元信息深度挖掘的电网发展诊断分析方法和系统 |
CN111831862A (zh) * | 2020-07-20 | 2020-10-27 | 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 | 高质量绝缘评估系统 |
CN112257937A (zh) * | 2020-10-28 | 2021-01-22 | 国网信通亿力科技有限责任公司 | 一种基于大数据技术的配电网故障预测系统及方法 |
CN112269821A (zh) * | 2020-10-30 | 2021-01-26 | 内蒙古电力(集团)有限责任公司乌海超高压供电局 | 一种基于大数据的电力设备状态分析方法 |
CN112269779A (zh) * | 2020-10-30 | 2021-01-26 | 国网上海市电力公司 | 一种用于电力设备缺陷的大数据分析系统和方法 |
CN112328847A (zh) * | 2019-12-26 | 2021-02-05 | 国家电网有限公司 | 一种基于大数据的变压器过载可视化方法及系统 |
CN112330152A (zh) * | 2020-11-05 | 2021-02-05 | 华润电力技术研究院有限公司 | 一种基于数据融合的给水泵状态评价与运维方法和系统 |
CN112329959A (zh) * | 2020-12-01 | 2021-02-05 | 西安交通大学 | 一种热力设备智能运维系统及方法 |
CN112365009A (zh) * | 2020-10-28 | 2021-02-12 | 国网山东省电力公司电力科学研究院 | 一种基于深度学习网络的二次设备异常诊断方法 |
CN112437113A (zh) * | 2020-10-23 | 2021-03-02 | 厦门渊亭信息科技有限公司 | 一种基于web的可视化服务共享管理系统 |
CN112434963A (zh) * | 2020-12-01 | 2021-03-02 | 北京瑞物云信息技术有限公司 | 一种配电系统方案生成方法、装置及计算机可读存储介质 |
CN112488181A (zh) * | 2020-11-26 | 2021-03-12 | 哈尔滨工程大学 | 一种基于MIDS-Tree的服务故障高响应匹配方法 |
CN112541729A (zh) * | 2020-11-25 | 2021-03-23 | 中国海洋大学 | 基于大数据的生产全流程可视化智能管控方法及系统 |
CN112633611A (zh) * | 2021-01-07 | 2021-04-09 | 中海石油(中国)有限公司 | 基于大数据分析的海底电缆状态检修策略优化方法及系统 |
CN112688431A (zh) * | 2020-12-28 | 2021-04-20 | 国家电网有限公司 | 一种基于大数据的配电网负荷过载可视化方法及系统 |
CN112698129A (zh) * | 2020-12-11 | 2021-04-23 | 深圳供电局有限公司 | 基于多体系信息融合的配电网设备可靠性分析方法及系统 |
CN112835970A (zh) * | 2021-02-02 | 2021-05-25 | 上海华盖科技发展股份有限公司 | 一种大数据安全可视化交互分析系统及方法 |
CN112883380A (zh) * | 2021-01-29 | 2021-06-01 | 深圳市鹰硕技术有限公司 | 智慧教育平台的大数据组件安全风险分析方法及系统 |
CN112928817A (zh) * | 2020-11-20 | 2021-06-08 | 南京优尚文化传播有限公司 | 配电终端作业数据管理系统 |
CN112947127A (zh) * | 2021-02-04 | 2021-06-11 | 彭浩明 | 智慧用电控制管理系统 |
CN113177040A (zh) * | 2021-04-29 | 2021-07-27 | 东北大学 | 铝/铜板带材生产全流程大数据清洗与分析方法 |
CN113344026A (zh) * | 2021-04-29 | 2021-09-03 | 国网浙江省电力有限公司嘉兴供电公司 | 一种基于多元融合的变电站设备异常识别定位方法 |
CN113419284A (zh) * | 2021-06-30 | 2021-09-21 | 东北石油大学 | 一种基于聚类分析测井岩石物理相双甜点识别方法 |
CN113447764A (zh) * | 2021-08-09 | 2021-09-28 | 安徽恒凯电力保护设备有限公司 | 应用于电网的智慧监测及故障管控方法 |
CN113537415A (zh) * | 2021-09-17 | 2021-10-22 | 中国南方电网有限责任公司超高压输电公司广州局 | 基于多信息融合的换流站巡检方法、装置和计算机设备 |
CN113552860A (zh) * | 2021-07-28 | 2021-10-26 | 南京新和普软件技术有限公司 | 一种基于智能变电站远动配置的智能校验系统 |
CN113567785A (zh) * | 2021-07-24 | 2021-10-29 | 福州大学 | 一种智能化电磁电器性能评估方法及系统 |
CN113573169A (zh) * | 2021-07-08 | 2021-10-29 | 上海机器人产业技术研究院有限公司 | 无人机的配电箱数据读取及检测方法及系统 |
CN113742883A (zh) * | 2020-11-20 | 2021-12-03 | 国网河北省电力有限公司雄安新区供电公司 | 一种基于多元时间序列的交流接触器寿命周期分割方法 |
CN113810447A (zh) * | 2020-06-17 | 2021-12-17 | 成都鼎桥通信技术有限公司 | 数据监控方法、系统、服务器、发电设备和监控设备 |
CN114034978A (zh) * | 2021-11-11 | 2022-02-11 | 四川中电启明星信息技术有限公司 | 一种用于配网类项目的自动模型检测方法及系统 |
CN114205355A (zh) * | 2021-12-13 | 2022-03-18 | 南方电网数字电网研究院有限公司 | 一种变电网关附属设备性能测试方法及系统 |
CN114201537A (zh) * | 2022-02-17 | 2022-03-18 | 深圳市聚能优电科技有限公司 | 储能数据的采集存储方法、系统、设备及存储介质 |
CN114257885A (zh) * | 2021-12-15 | 2022-03-29 | 国网江苏省电力有限公司营销服务中心 | 一种基于双尺度窗口滚动递推异常状态判别的居配现场检测预警系统及方法 |
CN114386742A (zh) * | 2021-11-16 | 2022-04-22 | 国网河南省电力公司郑州供电公司 | 一种便于人员快速识别的变电设备使用状态评价系统 |
CN114626955A (zh) * | 2022-03-24 | 2022-06-14 | 合肥金人科技有限公司 | 一种基于增强现实技术的智慧工厂管理系统 |
CN114638553A (zh) * | 2022-05-17 | 2022-06-17 | 四川观想科技股份有限公司 | 一种基于大数据的维修质量分析方法 |
CN114662803A (zh) * | 2022-05-23 | 2022-06-24 | 成都普惠道智慧能源科技有限公司 | 一种分布式能源仓储安全监控方法及物联网系统 |
CN114707039A (zh) * | 2022-03-29 | 2022-07-05 | 安徽体育运动职业技术学院 | 一种基于海量数据快速数据治理方法 |
CN115630839A (zh) * | 2022-11-01 | 2023-01-20 | 苏州泽达兴邦医药科技有限公司 | 一种基于数据挖掘的生产智能反馈调控系统 |
CN116316481A (zh) * | 2023-03-22 | 2023-06-23 | 国网安徽省电力有限公司六安市叶集供电公司 | 一种基于大数据的电力系统配网保护定值整定系统 |
CN116307665A (zh) * | 2023-02-23 | 2023-06-23 | 烟台大学 | 一种复杂流程工业超结构优化调度方法 |
CN116705340A (zh) * | 2023-04-07 | 2023-09-05 | 中南大学湘雅三医院 | 一种基于区块链的公共卫生智慧监测系统及方法 |
CN116915824A (zh) * | 2023-09-13 | 2023-10-20 | 长沙弘汇电子科技有限公司 | 一种基于物联网的水利工程闸泵远程监测系统 |
CN116975769A (zh) * | 2023-09-22 | 2023-10-31 | 南京国睿信维软件有限公司 | 用于状态监测实时预警的自适应多维度异常值检测方法 |
CN116992399A (zh) * | 2023-09-27 | 2023-11-03 | 北京前景无忧电子科技股份有限公司 | 一种基于电力数据分析的电力设备运维评估方法 |
CN117134503A (zh) * | 2023-10-23 | 2023-11-28 | 武汉宏联电线电缆有限公司 | 一种大型电力供电装置的状态监测方法及系统 |
US11842301B1 (en) | 2022-05-23 | 2023-12-12 | Chengdu Puhuidao Smart Energy Technology Co., Ltd. | Methods for monitoring distributed energy storage safety and internet of things systems thereof |
CN117540330A (zh) * | 2024-01-09 | 2024-02-09 | 北京松岛菱电设备有限公司 | 基于自学习功能的配电柜系统 |
CN117910639A (zh) * | 2024-01-19 | 2024-04-19 | 湖北省聚广鑫科技有限公司 | 一种配电网可靠性优化方法及系统 |
CN117932972A (zh) * | 2024-03-15 | 2024-04-26 | 南京凯奥思数据技术有限公司 | 基于web应用于设备状态算法模型的可视化建模平台及方法 |
CN118091319A (zh) * | 2024-03-01 | 2024-05-28 | 珠海敏微电科技有限公司 | 一种基于大数据的配电设备线路异常监测系统及方法 |
CN118152951A (zh) * | 2024-01-25 | 2024-06-07 | 无锡科一电子有限公司 | 一种平台集成信息分析系统 |
CN118411157A (zh) * | 2024-07-02 | 2024-07-30 | 山东国华时代投资发展有限公司 | 一种新能源场站运行智慧可视化管理方法及平台 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9031824B2 (en) * | 2006-07-19 | 2015-05-12 | Power Analytics Corporation | Real-time predictive systems for intelligent energy monitoring and management of electrical power networks |
CN106651188A (zh) * | 2016-12-27 | 2017-05-10 | 贵州电网有限责任公司贵阳供电局 | 一种输变电设备多源状态评估数据处理方法及其应用 |
CN107145959A (zh) * | 2017-03-23 | 2017-09-08 | 北京国电通网络技术有限公司 | 一种基于大数据平台的电力数据处理方法 |
-
2018
- 2018-03-15 CN CN201810215277.4A patent/CN108564254B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9031824B2 (en) * | 2006-07-19 | 2015-05-12 | Power Analytics Corporation | Real-time predictive systems for intelligent energy monitoring and management of electrical power networks |
CN106651188A (zh) * | 2016-12-27 | 2017-05-10 | 贵州电网有限责任公司贵阳供电局 | 一种输变电设备多源状态评估数据处理方法及其应用 |
CN107145959A (zh) * | 2017-03-23 | 2017-09-08 | 北京国电通网络技术有限公司 | 一种基于大数据平台的电力数据处理方法 |
Non-Patent Citations (6)
Title |
---|
何剑等: "条件相依的输变电设备短期可靠性模型", 《中国电机工程学报》 * |
周黔等: "一种动态数据流的实时趋势分析算法", 《控制与决策》 * |
唐思华等: "一种基于大数据的设备状态诊断方法", 《科技创新导报》 * |
惠晓林等: "智能配电网与物联网的融合", 《物联网技术》 * |
赵乙镔等: "融合神经网络与证据理论的发射场试验信息处理方案设计", 《兵工自动化》 * |
邓彬等: "基于well-being分析的电网设备重要度评估与排序方法", 《电网技术》 * |
Cited By (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109255389A (zh) * | 2018-09-28 | 2019-01-22 | 中国科学院长春光学精密机械与物理研究所 | 一种装备评价方法、装置、设备及可读存储介质 |
CN109255389B (zh) * | 2018-09-28 | 2022-03-25 | 中国科学院长春光学精密机械与物理研究所 | 一种装备评价方法、装置、设备及可读存储介质 |
CN109408353B (zh) * | 2018-11-13 | 2022-02-18 | 郑州云海信息技术有限公司 | 一种存储分区利用率和iops的分析方法,系统及终端设备 |
CN109408353A (zh) * | 2018-11-13 | 2019-03-01 | 郑州云海信息技术有限公司 | 一种存储分区利用率和iops的分析方法,系统及终端设备 |
CN109783553A (zh) * | 2018-11-28 | 2019-05-21 | 中国电力科学研究院有限公司 | 一种配电网海量数据质量提升系统 |
CN109359785A (zh) * | 2018-11-30 | 2019-02-19 | 安徽四创电子股份有限公司 | 基于大数据的强制隔离戒毒解除人员复吸预测分析系统 |
CN109634233A (zh) * | 2018-12-06 | 2019-04-16 | 南京邮电大学 | 工业大数据智能分析决策方法、可读存储介质和终端 |
CN109800274A (zh) * | 2018-12-14 | 2019-05-24 | 国网浙江省电力有限公司 | 电网大数据关联挖掘成果全寿命周期挖掘方法 |
CN109919406A (zh) * | 2018-12-18 | 2019-06-21 | 国网浙江桐乡市供电有限公司 | 配电网运行方式的智能辅助安排方法 |
CN109579913A (zh) * | 2018-12-21 | 2019-04-05 | 云南电网有限责任公司电力科学研究院 | 一种配电变压器多态监测方法与系统 |
CN109684322A (zh) * | 2018-12-26 | 2019-04-26 | 交通运输部水运科学研究所 | 一种用于自动海事稽核的数据处理系统和方法 |
CN110245163A (zh) * | 2019-01-17 | 2019-09-17 | 国网浙江德清县供电有限公司 | 一种电力系统运行隐患排查方法 |
CN109920241A (zh) * | 2019-02-22 | 2019-06-21 | 山东欧德利电气设备有限公司 | 一种远程数字量单向传输系统 |
CN110008285A (zh) * | 2019-03-26 | 2019-07-12 | 国网上海市电力公司 | 含微型同步相量测量的智能配电网信息集成系统及方法 |
CN110008285B (zh) * | 2019-03-26 | 2024-01-26 | 国网上海市电力公司 | 含微型同步相量测量的智能配电网信息集成系统及方法 |
CN109974780A (zh) * | 2019-04-01 | 2019-07-05 | 西京学院 | 一种基于物联网的电气设备状态监测系统 |
CN110048430A (zh) * | 2019-05-08 | 2019-07-23 | 国网福建省电力有限公司莆田供电公司 | 一种电压敏感用户电网薄弱点识别方法 |
CN110275983A (zh) * | 2019-06-05 | 2019-09-24 | 青岛海信网络科技股份有限公司 | 交通监控数据的检索方法及装置 |
CN110275983B (zh) * | 2019-06-05 | 2022-11-22 | 青岛海信网络科技股份有限公司 | 交通监控数据的检索方法及装置 |
CN110417849A (zh) * | 2019-06-05 | 2019-11-05 | 浙江工业大学 | 介入式工业设备边缘计算系统 |
CN110264095A (zh) * | 2019-06-25 | 2019-09-20 | 昆明能讯科技有限责任公司 | 一种基于地理信息系统的配电网设备可视化辅助运维方法 |
CN110287935A (zh) * | 2019-07-02 | 2019-09-27 | 云南电网有限责任公司信息中心 | 一种基于图像识别的电力设备数据核查方法及系统 |
CN110490408A (zh) * | 2019-07-04 | 2019-11-22 | 广东电网有限责任公司 | 一种配变重要度的分析计算方法 |
CN110174578A (zh) * | 2019-07-11 | 2019-08-27 | 云南电网有限责任公司电力科学研究院 | 一种变电设备状态检测方法及装置 |
CN110336382A (zh) * | 2019-08-01 | 2019-10-15 | 广东电网有限责任公司 | 一种电网故障告警信息的确认方法、装置、设备及介质 |
CN110413622B (zh) * | 2019-08-01 | 2023-01-24 | 国家电网有限公司 | 一种基于电力大数据平台的数据处理方法 |
CN110413622A (zh) * | 2019-08-01 | 2019-11-05 | 国网内蒙古东部电力有限公司信息通信分公司 | 一种基于电力大数据平台的数据处理方法 |
CN110472753A (zh) * | 2019-08-22 | 2019-11-19 | 苏宝炜 | 一种基于深度学习的设备设施单元评估方法及装置 |
CN110543903A (zh) * | 2019-08-23 | 2019-12-06 | 国网江苏省电力有限公司电力科学研究院 | 一种gis局部放电大数据系统的数据清洗方法及系统 |
CN110543903B (zh) * | 2019-08-23 | 2022-02-15 | 国网江苏省电力有限公司电力科学研究院 | 一种gis局部放电大数据系统的数据清洗方法及系统 |
CN110728381A (zh) * | 2019-09-28 | 2020-01-24 | 上海电力大学 | 一种基于rfid和数据处理的发电厂智能巡检方法及系统 |
CN110750384A (zh) * | 2019-10-15 | 2020-02-04 | 浙江众鑫空间科技有限公司 | 大数据管理系统 |
CN111062633A (zh) * | 2019-12-24 | 2020-04-24 | 广东电网有限责任公司 | 一种基于多源异构数据的输变电线路和设备状态评估系统 |
CN112328847A (zh) * | 2019-12-26 | 2021-02-05 | 国家电网有限公司 | 一种基于大数据的变压器过载可视化方法及系统 |
CN111078781A (zh) * | 2019-12-30 | 2020-04-28 | 电信科学技术第五研究所有限公司 | 一种多源流式大数据融合汇聚处理框架模型实现方法 |
CN111177205B (zh) * | 2019-12-31 | 2023-04-21 | 重庆中电自能科技有限公司 | 一种新能源场站数据共享方法及系统 |
CN111177205A (zh) * | 2019-12-31 | 2020-05-19 | 重庆中电自能科技有限公司 | 一种新能源场站数据共享方法及系统 |
CN111199361A (zh) * | 2020-01-13 | 2020-05-26 | 国网福建省电力有限公司信息通信分公司 | 基于模糊推理理论的电力信息系统健康评估方法及系统 |
CN111425193A (zh) * | 2020-01-21 | 2020-07-17 | 东北石油大学 | 一种基于聚类分析测井岩石物理相划分的储层可压性评价方法 |
CN111402215A (zh) * | 2020-03-07 | 2020-07-10 | 西南交通大学 | 一种基于鲁棒主成分分析法的接触网绝缘子状态检测方法 |
CN111402215B (zh) * | 2020-03-07 | 2022-04-29 | 西南交通大学 | 一种基于鲁棒主成分分析法的接触网绝缘子状态检测方法 |
CN111428895A (zh) * | 2020-03-27 | 2020-07-17 | 安徽数升数据科技有限公司 | 一种智能电表故障诊断支撑中心 |
CN111460656B (zh) * | 2020-03-31 | 2023-06-27 | 合肥优尔电子科技有限公司 | 一种电力机房通信电源运行寿命评估方法和系统 |
CN111460656A (zh) * | 2020-03-31 | 2020-07-28 | 合肥优尔电子科技有限公司 | 一种电力机房通信电源运行寿命评估方法和系统 |
CN111308337A (zh) * | 2020-03-31 | 2020-06-19 | 张铭源 | 一种离心风机入口导叶调节阀门性能评价方法 |
CN111538762A (zh) * | 2020-04-22 | 2020-08-14 | 深圳市欣横纵技术股份有限公司 | 一种基于数据挖掘技术的信息管理分析方法 |
CN111537845A (zh) * | 2020-04-26 | 2020-08-14 | 云南电网有限责任公司电力科学研究院 | 基于拉曼光谱聚类分析的油纸绝缘设备老化状态识别方法 |
CN111709447A (zh) * | 2020-05-14 | 2020-09-25 | 中国电力科学研究院有限公司 | 电网异常检测方法、装置、计算机设备和存储介质 |
CN111800655A (zh) * | 2020-05-14 | 2020-10-20 | 中国传媒大学 | 网络平台的监播方法和系统 |
CN111698331A (zh) * | 2020-06-15 | 2020-09-22 | 江苏方天电力技术有限公司 | 一种物联管理数据云同步方法 |
CN113810447A (zh) * | 2020-06-17 | 2021-12-17 | 成都鼎桥通信技术有限公司 | 数据监控方法、系统、服务器、发电设备和监控设备 |
CN111815190A (zh) * | 2020-07-15 | 2020-10-23 | 国网能源研究院有限公司 | 基于多元信息深度挖掘的电网发展诊断分析方法和系统 |
CN111831862B (zh) * | 2020-07-20 | 2023-04-07 | 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 | 高质量绝缘评估系统 |
CN111831862A (zh) * | 2020-07-20 | 2020-10-27 | 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 | 高质量绝缘评估系统 |
CN112437113A (zh) * | 2020-10-23 | 2021-03-02 | 厦门渊亭信息科技有限公司 | 一种基于web的可视化服务共享管理系统 |
CN112257937B (zh) * | 2020-10-28 | 2023-06-16 | 国网信通亿力科技有限责任公司 | 一种基于大数据技术的配电网故障预测系统及方法 |
CN112365009A (zh) * | 2020-10-28 | 2021-02-12 | 国网山东省电力公司电力科学研究院 | 一种基于深度学习网络的二次设备异常诊断方法 |
CN112257937A (zh) * | 2020-10-28 | 2021-01-22 | 国网信通亿力科技有限责任公司 | 一种基于大数据技术的配电网故障预测系统及方法 |
CN112269779A (zh) * | 2020-10-30 | 2021-01-26 | 国网上海市电力公司 | 一种用于电力设备缺陷的大数据分析系统和方法 |
CN112269821A (zh) * | 2020-10-30 | 2021-01-26 | 内蒙古电力(集团)有限责任公司乌海超高压供电局 | 一种基于大数据的电力设备状态分析方法 |
CN112330152A (zh) * | 2020-11-05 | 2021-02-05 | 华润电力技术研究院有限公司 | 一种基于数据融合的给水泵状态评价与运维方法和系统 |
CN112928817A (zh) * | 2020-11-20 | 2021-06-08 | 南京优尚文化传播有限公司 | 配电终端作业数据管理系统 |
CN113742883A (zh) * | 2020-11-20 | 2021-12-03 | 国网河北省电力有限公司雄安新区供电公司 | 一种基于多元时间序列的交流接触器寿命周期分割方法 |
CN112541729A (zh) * | 2020-11-25 | 2021-03-23 | 中国海洋大学 | 基于大数据的生产全流程可视化智能管控方法及系统 |
CN112488181A (zh) * | 2020-11-26 | 2021-03-12 | 哈尔滨工程大学 | 一种基于MIDS-Tree的服务故障高响应匹配方法 |
CN112329959B (zh) * | 2020-12-01 | 2023-06-23 | 西安交通大学 | 一种热力设备智能运维系统及方法 |
CN112434963A (zh) * | 2020-12-01 | 2021-03-02 | 北京瑞物云信息技术有限公司 | 一种配电系统方案生成方法、装置及计算机可读存储介质 |
CN112329959A (zh) * | 2020-12-01 | 2021-02-05 | 西安交通大学 | 一种热力设备智能运维系统及方法 |
CN112698129A (zh) * | 2020-12-11 | 2021-04-23 | 深圳供电局有限公司 | 基于多体系信息融合的配电网设备可靠性分析方法及系统 |
CN112688431A (zh) * | 2020-12-28 | 2021-04-20 | 国家电网有限公司 | 一种基于大数据的配电网负荷过载可视化方法及系统 |
CN112633611A (zh) * | 2021-01-07 | 2021-04-09 | 中海石油(中国)有限公司 | 基于大数据分析的海底电缆状态检修策略优化方法及系统 |
CN112883380A (zh) * | 2021-01-29 | 2021-06-01 | 深圳市鹰硕技术有限公司 | 智慧教育平台的大数据组件安全风险分析方法及系统 |
CN112883380B (zh) * | 2021-01-29 | 2023-09-15 | 深圳市鹰硕技术有限公司 | 智慧教育平台的大数据组件安全风险分析方法及系统 |
CN112835970A (zh) * | 2021-02-02 | 2021-05-25 | 上海华盖科技发展股份有限公司 | 一种大数据安全可视化交互分析系统及方法 |
CN112947127A (zh) * | 2021-02-04 | 2021-06-11 | 彭浩明 | 智慧用电控制管理系统 |
CN113177040A (zh) * | 2021-04-29 | 2021-07-27 | 东北大学 | 铝/铜板带材生产全流程大数据清洗与分析方法 |
CN113344026B (zh) * | 2021-04-29 | 2022-05-24 | 国网浙江省电力有限公司嘉兴供电公司 | 一种基于多元融合的变电站设备异常识别定位方法 |
CN113344026A (zh) * | 2021-04-29 | 2021-09-03 | 国网浙江省电力有限公司嘉兴供电公司 | 一种基于多元融合的变电站设备异常识别定位方法 |
CN113419284A (zh) * | 2021-06-30 | 2021-09-21 | 东北石油大学 | 一种基于聚类分析测井岩石物理相双甜点识别方法 |
CN113573169A (zh) * | 2021-07-08 | 2021-10-29 | 上海机器人产业技术研究院有限公司 | 无人机的配电箱数据读取及检测方法及系统 |
CN113573169B (zh) * | 2021-07-08 | 2024-03-15 | 上海机器人产业技术研究院有限公司 | 无人机的配电箱数据读取及检测方法及系统 |
CN113567785A (zh) * | 2021-07-24 | 2021-10-29 | 福州大学 | 一种智能化电磁电器性能评估方法及系统 |
CN113552860A (zh) * | 2021-07-28 | 2021-10-26 | 南京新和普软件技术有限公司 | 一种基于智能变电站远动配置的智能校验系统 |
CN113447764A (zh) * | 2021-08-09 | 2021-09-28 | 安徽恒凯电力保护设备有限公司 | 应用于电网的智慧监测及故障管控方法 |
CN113537415A (zh) * | 2021-09-17 | 2021-10-22 | 中国南方电网有限责任公司超高压输电公司广州局 | 基于多信息融合的换流站巡检方法、装置和计算机设备 |
CN114034978B (zh) * | 2021-11-11 | 2023-11-10 | 四川中电启明星信息技术有限公司 | 一种用于配网类项目的自动模型检测方法及系统 |
CN114034978A (zh) * | 2021-11-11 | 2022-02-11 | 四川中电启明星信息技术有限公司 | 一种用于配网类项目的自动模型检测方法及系统 |
CN114386742A (zh) * | 2021-11-16 | 2022-04-22 | 国网河南省电力公司郑州供电公司 | 一种便于人员快速识别的变电设备使用状态评价系统 |
CN114205355B (zh) * | 2021-12-13 | 2022-08-26 | 南方电网数字电网研究院有限公司 | 一种变电网关附属设备性能测试方法、系统及电子设备 |
CN114205355A (zh) * | 2021-12-13 | 2022-03-18 | 南方电网数字电网研究院有限公司 | 一种变电网关附属设备性能测试方法及系统 |
CN114257885A (zh) * | 2021-12-15 | 2022-03-29 | 国网江苏省电力有限公司营销服务中心 | 一种基于双尺度窗口滚动递推异常状态判别的居配现场检测预警系统及方法 |
CN114201537A (zh) * | 2022-02-17 | 2022-03-18 | 深圳市聚能优电科技有限公司 | 储能数据的采集存储方法、系统、设备及存储介质 |
CN114626955A (zh) * | 2022-03-24 | 2022-06-14 | 合肥金人科技有限公司 | 一种基于增强现实技术的智慧工厂管理系统 |
CN114707039A (zh) * | 2022-03-29 | 2022-07-05 | 安徽体育运动职业技术学院 | 一种基于海量数据快速数据治理方法 |
CN114638553B (zh) * | 2022-05-17 | 2022-08-12 | 四川观想科技股份有限公司 | 一种基于大数据的维修质量分析方法 |
CN114638553A (zh) * | 2022-05-17 | 2022-06-17 | 四川观想科技股份有限公司 | 一种基于大数据的维修质量分析方法 |
US11842301B1 (en) | 2022-05-23 | 2023-12-12 | Chengdu Puhuidao Smart Energy Technology Co., Ltd. | Methods for monitoring distributed energy storage safety and internet of things systems thereof |
CN114662803A (zh) * | 2022-05-23 | 2022-06-24 | 成都普惠道智慧能源科技有限公司 | 一种分布式能源仓储安全监控方法及物联网系统 |
CN114662803B (zh) * | 2022-05-23 | 2022-08-26 | 成都普惠道智慧能源科技有限公司 | 一种分布式能源仓储安全监控方法及物联网系统 |
CN115630839B (zh) * | 2022-11-01 | 2023-11-10 | 苍南县求是中医药创新研究院 | 一种基于数据挖掘的生产智能反馈调控系统 |
CN115630839A (zh) * | 2022-11-01 | 2023-01-20 | 苏州泽达兴邦医药科技有限公司 | 一种基于数据挖掘的生产智能反馈调控系统 |
CN116307665A (zh) * | 2023-02-23 | 2023-06-23 | 烟台大学 | 一种复杂流程工业超结构优化调度方法 |
CN116316481A (zh) * | 2023-03-22 | 2023-06-23 | 国网安徽省电力有限公司六安市叶集供电公司 | 一种基于大数据的电力系统配网保护定值整定系统 |
CN116316481B (zh) * | 2023-03-22 | 2023-08-11 | 国网安徽省电力有限公司六安市叶集供电公司 | 一种基于大数据的电力系统配网保护定值整定系统 |
CN116705340A (zh) * | 2023-04-07 | 2023-09-05 | 中南大学湘雅三医院 | 一种基于区块链的公共卫生智慧监测系统及方法 |
CN116705340B (zh) * | 2023-04-07 | 2024-02-02 | 中南大学湘雅三医院 | 一种基于区块链的公共卫生智慧监测系统及方法 |
CN116915824B (zh) * | 2023-09-13 | 2023-11-24 | 长沙弘汇电子科技有限公司 | 一种基于物联网的水利工程闸泵远程监测系统 |
CN116915824A (zh) * | 2023-09-13 | 2023-10-20 | 长沙弘汇电子科技有限公司 | 一种基于物联网的水利工程闸泵远程监测系统 |
CN116975769A (zh) * | 2023-09-22 | 2023-10-31 | 南京国睿信维软件有限公司 | 用于状态监测实时预警的自适应多维度异常值检测方法 |
CN116975769B (zh) * | 2023-09-22 | 2023-12-22 | 南京国睿信维软件有限公司 | 用于状态监测实时预警的自适应多维度异常值检测方法 |
CN116992399A (zh) * | 2023-09-27 | 2023-11-03 | 北京前景无忧电子科技股份有限公司 | 一种基于电力数据分析的电力设备运维评估方法 |
CN116992399B (zh) * | 2023-09-27 | 2024-02-27 | 北京前景无忧电子科技股份有限公司 | 一种基于电力数据分析的电力设备运维评估方法 |
CN117134503B (zh) * | 2023-10-23 | 2024-01-19 | 武汉宏联电线电缆有限公司 | 一种大型电力供电装置的状态监测方法及系统 |
CN117134503A (zh) * | 2023-10-23 | 2023-11-28 | 武汉宏联电线电缆有限公司 | 一种大型电力供电装置的状态监测方法及系统 |
CN117540330A (zh) * | 2024-01-09 | 2024-02-09 | 北京松岛菱电设备有限公司 | 基于自学习功能的配电柜系统 |
CN117540330B (zh) * | 2024-01-09 | 2024-04-09 | 北京松岛菱电设备有限公司 | 基于自学习功能的配电柜系统 |
CN117910639A (zh) * | 2024-01-19 | 2024-04-19 | 湖北省聚广鑫科技有限公司 | 一种配电网可靠性优化方法及系统 |
CN118152951A (zh) * | 2024-01-25 | 2024-06-07 | 无锡科一电子有限公司 | 一种平台集成信息分析系统 |
CN118091319A (zh) * | 2024-03-01 | 2024-05-28 | 珠海敏微电科技有限公司 | 一种基于大数据的配电设备线路异常监测系统及方法 |
CN118091319B (zh) * | 2024-03-01 | 2024-10-11 | 珠海敏微电科技有限公司 | 一种基于大数据的配电设备线路异常监测系统及方法 |
CN117932972A (zh) * | 2024-03-15 | 2024-04-26 | 南京凯奥思数据技术有限公司 | 基于web应用于设备状态算法模型的可视化建模平台及方法 |
CN117932972B (zh) * | 2024-03-15 | 2024-05-28 | 南京凯奥思数据技术有限公司 | 基于web应用于设备状态算法模型的可视化建模平台及方法 |
CN118411157A (zh) * | 2024-07-02 | 2024-07-30 | 山东国华时代投资发展有限公司 | 一种新能源场站运行智慧可视化管理方法及平台 |
Also Published As
Publication number | Publication date |
---|---|
CN108564254B (zh) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108564254B (zh) | 基于大数据的配电设备状态可视化平台 | |
CN113904443B (zh) | 多维度空间可视化的现场变电设备监控与预警系统 | |
CN109146093B (zh) | 一种基于学习的电力设备现场勘查方法 | |
CN107561997B (zh) | 一种基于大数据决策树的电力设备状态监测方法 | |
CN112926257A (zh) | 往复式天然气压缩机故障诊断系统以及诊断方法 | |
CN109753591A (zh) | 业务流程预测性监控方法 | |
CN108964023B (zh) | 一种用于电网的母线电压态势短期预测方法及系统 | |
CN107918830A (zh) | 一种基于大数据技术的配电网运行状态评估系统及方法 | |
CN113420162B (zh) | 一种基于知识图谱的设备运行链状态监测方法 | |
CN115423009A (zh) | 一种面向云边协同的电力设备故障识别方法及系统 | |
CN106600447A (zh) | 一种变电站巡检机器人集中监控系统大数据云分析方法 | |
CN111143447A (zh) | 一种电网薄弱环节动态监测预警决策系统及方法 | |
CN116614177A (zh) | 一种光纤状态多维度参量监测系统 | |
CN104506137A (zh) | 一种设备故障诊断方法和装置 | |
CN117955245B (zh) | 电网的运行状态的确定方法、装置、存储介质和电子设备 | |
CN114154728A (zh) | 一种故障预测方法、装置、电子设备及存储介质 | |
CN117639228A (zh) | 基于数字孪生的配电网运行状态预测方法及系统 | |
CN117807155B (zh) | 多维度预警提示信息的生成方法、设备及存储介质 | |
CN116596301A (zh) | 基于零次学习法的电缆多状态变量评估模型设计方法及装置 | |
Ramirez-Gonzalez et al. | Convolutional neural network based approach for static security assessment of power systems | |
CN117371607A (zh) | 基于物联网技术的锅炉汽水流程再造监测系统 | |
Guo et al. | Big data processing and analysis platform for condition monitoring of electric power system | |
Li et al. | Multi-source heterogeneous log fusion technology of power information system based on big data and imprecise reasoning theory | |
Liangzhi et al. | Research on fault prediction and diagnosis of power equipment based on big data | |
Xiaodong et al. | Artificial Intelligence in power multimodal data analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210409 |
|
CF01 | Termination of patent right due to non-payment of annual fee |