CN108562265A - 一种双目立体视觉测距装置的测量范围估计方法 - Google Patents

一种双目立体视觉测距装置的测量范围估计方法 Download PDF

Info

Publication number
CN108562265A
CN108562265A CN201810198713.1A CN201810198713A CN108562265A CN 108562265 A CN108562265 A CN 108562265A CN 201810198713 A CN201810198713 A CN 201810198713A CN 108562265 A CN108562265 A CN 108562265A
Authority
CN
China
Prior art keywords
value
stereo vision
binocular stereo
point
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810198713.1A
Other languages
English (en)
Other versions
CN108562265B (zh
Inventor
王树彬
张恩硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University
Original Assignee
Inner Mongolia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University filed Critical Inner Mongolia University
Priority to CN201810198713.1A priority Critical patent/CN108562265B/zh
Publication of CN108562265A publication Critical patent/CN108562265A/zh
Application granted granted Critical
Publication of CN108562265B publication Critical patent/CN108562265B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)

Abstract

本发明公开一种双目立体视觉测距装置的测量范围估计方法,其包括以下步骤:建立双目立体视觉系统的数学模型;根据双目立体视觉测距装置的图像传感器的测量值,通过所述数学模型求出目标点坐标P(x0,y0,z0),其中x0、y0、z0分别代表X、Y、Z两两相互垂直的三维坐标轴上的目标点坐标值;利用极值消元法对P(x0,y0,z0)分别求得x0、y0、z0的边界极值点;将所得到的边界极值点进行排序,边界极值点中的最大值和最小值为所述双目立体视觉测距装置的工作边界即所述双目立体视觉测距装置的测量范围。本发明通过双目立体视觉测距装置本身的参数以及算法特性来估计双目立体视觉测距装置的取值范围,从而达到相对客观的双目立体视觉测距装置性能的目的。

Description

一种双目立体视觉测距装置的测量范围估计方法
技术领域
本发明涉及工作范围估计方法,尤其涉及一种双目立体视觉测距装置的工作范围估计方法,即一种双目立体视觉测距装置的测量范围估计方法。
背景技术
现行的绝大部分双目立体视觉测距装置,是根据两个空间位置不同的图像传感器显示同一目标点的视差,来确定目标点的空间位置的。由图像传感器的结构可以知道双目立体视觉测距装置实际能采集的点是有限的且均为整数,即算法的输入参数是有限的。因此,以这种算法为工作原理的双目立体视觉测距装置有着一个工作范围。
发明内容
为了实现以视差计算方法为工作原理的双目立体视觉测距装置有着一个工作范围,本发明提供一种双目立体视觉测距装置的测量范围估计方法。
本发明采用以下技术方案实现:一种双目立体视觉测距装置的测量范围估计方法,其包括以下步骤:
建立双目立体视觉系统的数学模型;
根据双目立体视觉测距装置的图像传感器的测量值,通过所述数学模型求出目标点坐标P(x0,y0,z0),其中x0、y0、z0分别代表X、Y、Z两两相互垂直的三维坐标轴上的目标点坐标值;
利用极值消元法对P(x0,y0,z0)分别求得x0、y0、z0的边界极值点;
将所得到的边界极值点进行排序,边界极值点中的最大值和最小值为所述双目立体视觉测距装置的工作边界即所述双目立体视觉测距装置的测量范围。
作为上述方案的进一步改进,所述数学模型采用双目立体视觉的算法模型。
作为上述方案的进一步改进,定义目标点P(x0,y0,z0)的坐标为
其中,其中,xo1、xo2分别是双目立体视觉测距装置的左右两方图像传感器横纵方向的视场角所在平面的交点,左右两方图像传感器的感光原件在所设定的标准空间坐标系的位置的横坐标均为y1,xo1、xo2、y1为常数;x1、x2分别是左右两方图像传感器测量目标点时所得到的横坐标,x1、x2的取值范围分别是[a,b]、[a+l,b+l],[a,b]分别为左方图像传感器的最左和最右点的横坐标,l是左右两方图像传感器的间距,因此[a+l,b+l]分别为右方图像传感器的最左和最右点的横坐标,z2是右方图像传感器测量目标点所得的竖坐标,z2的取值范围是[-w,w],w为常数;
利用极值消元法来计算x0,y0,z0的取值边界,包括以下步骤:
(a)求x0,按照先消去x1后消去x2的原则,首先求对x1的偏导数,
方程无解,这说明当x1为变量,x2为常量时x0取值的边界在x1的定义域边界上,令x1为相应的值后就消去了变量x1得到值T(x2),但其余的变量还是存在的,将T(x2)命名为参数极值;
参数极值一,
参数极值二,
接下来再求对x2的偏导数,
方程无解,因此参数极值在x2的值域边界点,进而有:
所得到的四组解中的最大值和最小值就是x0的最大值和最小值;
(b)接下来求y0的极值,按照先消去x1后消去x2进行计算:
方程无解,因此其参数极值,
方程无解,因此其参数极值
挑选出其中的最大值和最小值,就是y0取的最大值和最小值;
(c)用求y0极值的相同办法求出z0的极值是:
挑选出其中的最大值和最小值,就是z0可取的最大值和最小值。
进一步地,按照先消去x2后消去x1的方法计算x0的极值,
方程无解,证明参数极值在x2的边界点上,因此参数极值为:
对参数极值分别求x1的偏导数
方程均无解,说明参数极值的极值点就在变量x1的取值边界点上,进而有:
进一步地,按照先消去x2后消去x1的方法计算y0的极值,
方程无解,这说明参数极值在x2的取值边界上,进而得到参数极值,
对x1求偏导数有:
方程无解,说明极值点在x1的取值边界上,进而有:
本发明还提供一种双目立体视觉测距装置,其采用上述任意的测量范围估计方法。
本发明还提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述任意的测量范围估计方法。
本发明还提供一种计算机终端,其包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述程序时实现上述任意的测量范围估计方法。
本发明通过双目立体视觉测距装置本身的参数以及算法特性来估计双目立体视觉测距装置的取值范围,从而达到相对客观的双目立体视觉测距装置性能的目的。
附图说明
图1为经典的双目立体视觉的算法模型图。
图2为利用本发明双目立体视觉测距装置的测量范围估计方法,在xo1=320,xo2=1960,y1=879.2,z2=130时的仿真图像。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明能够计算以视差比较为原理的双目立体视觉装置的工作范围。本发明在建立双目立体视觉系统数学模型的基础上,根据双目立体视觉测距装置的图像传感器的测量值求出目标点坐标,再利用极值消元法分别求得x0,y0,z0的边界极值,获得其最大最小值,以此来确定双目立体视觉测距装置的双目立体视觉系统的工作范围。
本发明的双目立体视觉测距装置的测量范围估计方法,包括以下步骤:
建立双目立体视觉系统的数学模型;
根据双目立体视觉测距装置的图像传感器的测量值,通过所述数学模型求出目标点坐标P(x0,y0,z0),其中x0、y0、z0分别代表X、Y、Z两两相互垂直的三维坐标轴上的目标点坐标值;
利用极值消元法对P(x0,y0,z0)分别求得x0、y0、z0的边界极值点;
将所得到的边界极值点进行排序,边界极值点中的最大值和最小值为所述双目立体视觉测距装置的工作边界即所述双目立体视觉测距装置的测量范围。
故,首先要建立双目立体视觉测距装置的双目立体视觉系统的数学模型,并根据双目立体视觉测距装置的图像传感器的测量值求出目标点坐标,用极值消元法来计算双目立体视觉测距装置的极值点,将所得到的极值点进行排序,所得极值点的最大值和最小值作为双目立体视觉测距装置的工作边界。
下面论证本发明的可行性。
(1)双目立体视觉算法(视差计算原理)
如图1所示,图1为经典的双目立体视觉的算法模型,相关条件已经在图中给出,可得得到最终结果:目标点坐标P(x0,y0,z0),
(2)极值消元法
有前面的模型可以得到目标点P(x0,y0,z0)的坐标这个结论是针对连续采集点的。也就是说当图像传感器的采集点取值是连续的话,P点可以再无穷远处。但是图像传感器的测量值是有限的,因为通过相元测量得到的点的坐标位整数。由于在一个给定取值范围内的整数个数是有限的,因此双目立体视觉测量装置的测量范围是有限的。可以根据图像传感器的参数来确定双目立体视觉测量装置的测量范围。
现根据来讨论各个坐标点的取值范围。其中,xo1、xo2分别是双目立体视觉测距装置的左右两方图像传感器横纵方向的视场角所在平面的交点,左右两方图像传感器的感光原件在所设定的标准空间坐标系的位置的横坐标均为y1,xo1、xo2、y1为常数;x1、x2分别是左右两方图像传感器测量目标点时所得到的横坐标,x1、x2的取值范围分别是[a,b]、[a+l,b+l],[a,b]分别为左方图像传感器的最左和最右点的横坐标,l是左右两方图像传感器的间距,因此[a+l,b+l]分别为右方图像传感器的最左和最右点的横坐标,z2是右方图像传感器测量目标点所得的竖坐标,z2的取值范围是[-w,w],w为常数;需要注意的是这里的范围是取值边界,且只能取整数。
先讨论x0,由来判断x0的取值范围。由于所求取值范围有两个未知量且取值相互独立,因此是一个二元函数的求极值问题,虽然是带有约束的问题,但约束并不是一条曲线或一个关系,故无法使用拉格朗日乘数法来解决。因此需要开发新的算法—极值消元法来解决这个问题。极值消元法的工作原理是将多元函数的变量从极值或边界值处消去从而最终将多远函数极值问题转化为多个一元函数的极值的问题,所有一元函数的极值的并集就是所求多元函数的极值。下面使用极值消元法来计算x0,y0,z0的取值边界。
求x0,按照先消去x1后消去x2,对x1的偏导数
方程无解。这说明当x1为变量,x2为常量(x2可以取定义域内的任意值)时x0取值的边界在x1的定义域边界上。令x1为相应的值后就消去了变量x1得到值T(x2),但其余的变量还是存在的,将T(x2)命名为参数极值。
参数极值1
参数极值2
接下来求对x2的偏导数,
方程无解。因此参数极值在x2的值域边界点,进而有,
所得到的四组解中的最大值和最小值就是x0的最大值和最小值。为了验证算法的正确性,可按照先消去x2后消去x1的计算方法进行计算,比较两次的计算结果。由方程无解,证明参数极值在x2的边界点上。因此参数极值 对参数极值分别求x1的偏导数:
方程均无解,说明参数极值的极值点就在变量x1的取值边界点上。进而有,
比较计算结果,和先消去x1后消去x2的计算结果是相同的。
接下来讨论y0的极值,按照先消去x1后消去x2进行计算。
方程无解。因此其参数极值
方程无解。因此其参数极值:
挑选出其中的最大值和最小值,就是y0可取的最大值和最小值。
按照先消去x2后消去x1计算过程如下:
方程无解,这说明参数极值在x2的取值边界上。进而得到参数极值, 对x1求偏导数有 方程无解。说明极值点在x1的取值边界上。进而有:
通过比较,和先消去x1后消去x2的结果相同。用相同的办法可以求出z0的极值是:
挑选出其中的最大值和最小值,就是z0可取的最大值和最小值。
(3)算法仿真
仿真的原理是通过计算的所有取值,并将所得结果绘制成图像,通过图像所显示的取值范围来比对。
取xo1=320,xo2=1960,y1=879.2,z2=130,对测量范围进行仿真,得到如图2所示,当xo1=320,xo2=1960,y1=879.2,z2=130时的仿真图像。
计算x0,y0,z0的取值范围,将相关参数带入到1小节中的公式中可得x0Max=144187,x0Min=-144187,y0Min=-30134,y0Max=30134,z0Min=-21296,z0Min=21296。从图像可以看出所得的最值和图像所显示的取值范围基本吻合。在实际的系统中y0的值是不会出现负数的,但实际的系统中计算出了负数,因为采集点在遍历计算过程中计算了所有可能,这种可能是数学上的,会与实际情况不符。但是目前没有稳定的匹配算法可以采集到绝对满足实际情况的采集点坐标,因此图像和计算值都是合理的。
(4)结论
极值消元发可以用来估算双目立体视觉系统的工作范围,且能计算出所有可能的结果的最值。
本发明提出了根据图像传感器的成像原理估计双目立体视觉装置的工作范围的方法,提出了限定参数取值范围的多元函数的值域的计算方法。本实施例中仅限于对该算法的一种取值设定,不代表该算法的唯一取值,所有符合条件的任意数值都可以应用于该算法。
利用算法仿真,求出上述极值的最大最小值。
仿真的原理是通过计算的所有取值,并将所得结果绘制成图像,通过图像所显示的取值范围来比对。
取xo1=320,xo2=1960,y1=879.2,z2=130,对测量范围进行仿真,得到如图2所示。计算x0,y0,z0的取值范围,将相关参数带入到公式中可得x0Max=144187,x0Min=-144187;y0Min=-30134,y0Max=30134;z0Min=-21296,z0Min=21296。
从图像可以看出所得的最值和图像所显示的取值范围基本吻合。在实际的系统中y0的值是不会出现负数的,但实际的系统中计算出了负数,因为采集点在遍历计算过程中计算了所有可能,这种可能是数学上的,因此在实际系统中需剔除负数的部分。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种双目立体视觉测距装置的测量范围估计方法,其特征在于:其包括以下步骤:
建立双目立体视觉系统的数学模型;
根据双目立体视觉测距装置的图像传感器的测量值,通过所述数学模型求出目标点坐标P(x0,y0,z0),其中x0、y0、z0分别代表X、Y、Z两两相互垂直的三维坐标轴上的目标点坐标值;
利用极值消元法对P(x0,y0,z0)分别求得x0、y0、z0的边界极值点;
将所得到的边界极值点进行排序,边界极值点中的最大值和最小值为所述双目立体视觉测距装置的工作边界即所述双目立体视觉测距装置的测量范围。
2.如权利要求1所述的双目立体视觉测距装置的测量范围估计方法,其特征在于:所述数学模型采用双目立体视觉的算法模型。
3.如权利要求1所述的双目立体视觉测距装置的测量范围估计方法,其特征在于:定义目标点P(x0,y0,z0)的坐标为:
其中,xo1、xo2分别是双目立体视觉测距装置的左右两方图像传感器横纵方向的视场角所在平面的交点,左右两方图像传感器的感光原件在所设定的标准空间坐标系的位置的横坐标均为y1,xo1、xo2、y1为常数;x1、x2分别是左右两方图像传感器测量目标点时所得到的横坐标,x1、x2的取值范围分别是[a,b]、[a+l,b+l],[a,b]分别为左方图像传感器的最左和最右点的横坐标,l是左右两方图像传感器的间距,因此[a+l,b+l]分别为右方图像传感器的最左和最右点的横坐标,z2是右方图像传感器测量目标点所得的竖坐标,z2的取值范围是[-w,w],w为常数;
利用极值消元法来计算x0,y0,z0的取值边界,包括以下步骤:
(a)求x0,按照先消去x1后消去x2的原则,首先求对x1的偏导数,
方程无解,这说明当x1为变量,x2为常量时x0取值的边界在x1的定义域边界上,令x1为相应的值后就消去了变量x1得到值T(x2),但其余的变量还是存在的,将T(x2)命名为参数极值;
参数极值一,
参数极值二,
接下来再求对x2的偏导数,
方程无解,因此参数极值在x2的值域边界点,进而有:
所得到的四组解中的最大值和最小值就是x0的最大值和最小值;
(b)接下来求y0的极值,按照先消去x1后消去x2进行计算:
方程无解,因此其参数极值,
方程无解,因此其参数极值
挑选出其中的最大值和最小值,就是y0取的最大值和最小值;
(c)用求y0极值的相同办法求出z0的极值是
挑选出其中的最大值和最小值,就是z0可取的最大值和最小值。
4.如权利要求3所述的双目立体视觉测距装置的测量范围估计方法,其特征在于:w的数值为双目立体视觉测距装置的图像传感器的感光原件的宽度的一半。
5.如权利要求3所述的双目立体视觉测距装置的测量范围估计方法,其特征在于:按照先消去x2后消去x1的方法计算x0的极值,
方程无解,证明参数极值在x2的边界点上,因此参数极值为:
对参数极值分别求x1的偏导数:
方程均无解,说明参数极值的极值点就在变量x1的取值边界点上,进而有:
6.如权利要求3所述的双目立体视觉测距装置的测量范围估计方法,其特征在于:按照先消去x2后消去x1的方法计算y0的极值,
方程无解,这说明参数极值在x2的取值边界上,进而得到参数极值,
对x1求偏导数有:
方程无解,说明极值点在x1的取值边界上,进而有:
7.一种双目立体视觉测距装置,其特征在于,其采用如权利要求1至6中任意一项所述的测量范围估计方法。
8.一种计算机可读存储介质,其上存储有计算机程序,其特征在于:所述程序被处理器执行时实现如权利要求1至6中任意一项所述的测量范围估计方法。
9.一种计算机终端,其包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序;其特征在于:所述处理器执行所述程序时实现如权利要求1至6中任意一项所述的测量范围估计方法。
CN201810198713.1A 2018-03-12 2018-03-12 一种双目立体视觉测距装置的测量范围估计方法 Active CN108562265B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810198713.1A CN108562265B (zh) 2018-03-12 2018-03-12 一种双目立体视觉测距装置的测量范围估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810198713.1A CN108562265B (zh) 2018-03-12 2018-03-12 一种双目立体视觉测距装置的测量范围估计方法

Publications (2)

Publication Number Publication Date
CN108562265A true CN108562265A (zh) 2018-09-21
CN108562265B CN108562265B (zh) 2021-01-12

Family

ID=63532633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810198713.1A Active CN108562265B (zh) 2018-03-12 2018-03-12 一种双目立体视觉测距装置的测量范围估计方法

Country Status (1)

Country Link
CN (1) CN108562265B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630072A (zh) * 2013-10-25 2014-03-12 大连理工大学 双目视觉测量系统中摄像机的布局优化方法
CN104091345A (zh) * 2014-07-24 2014-10-08 中国空气动力研究与发展中心高速空气动力研究所 基于前方交会约束的五点相对定向方法
CN104182949A (zh) * 2014-08-18 2014-12-03 武汉大学 基于直方图特征点配准的影像匀色与融合方法及系统
EP2913999A1 (en) * 2014-02-28 2015-09-02 Ricoh Company, Ltd. Disparity value deriving device, equipment control system, movable apparatus, robot, disparity value deriving method, and computer-readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630072A (zh) * 2013-10-25 2014-03-12 大连理工大学 双目视觉测量系统中摄像机的布局优化方法
EP2913999A1 (en) * 2014-02-28 2015-09-02 Ricoh Company, Ltd. Disparity value deriving device, equipment control system, movable apparatus, robot, disparity value deriving method, and computer-readable storage medium
CN104091345A (zh) * 2014-07-24 2014-10-08 中国空气动力研究与发展中心高速空气动力研究所 基于前方交会约束的五点相对定向方法
CN104182949A (zh) * 2014-08-18 2014-12-03 武汉大学 基于直方图特征点配准的影像匀色与融合方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙洪波: "《高等数学(经济管理类)》", 31 December 2012 *
高宏伟: "《电子封装工艺与装备技术基础教程》", 31 December 2017 *

Also Published As

Publication number Publication date
CN108562265B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
CN108038902A (zh) 一种面向深度相机的高精度三维重建方法和系统
KR20120048370A (ko) 물체 자세 인식장치 및 이를 이용한 물체 자세 인식방법
CN113344986B (zh) 点云配准结果的评估方法、装置、设备及存储介质
CN105809702A (zh) 一种基于Tsai算法的改进位姿估计方法
JP2007263669A (ja) 3次元座標取得装置
CN111047634B (zh) 场景深度的确定方法、装置、设备及存储介质
JP2013186551A (ja) 移動物体位置姿勢推定装置及び方法
Byrod et al. Improving numerical accuracy of gröbner basis polynomial equation solvers
CN106525466B (zh) 一种动车组制动系统关键部件鲁棒滤波方法和系统
US10032288B2 (en) Method and system for generating integral image marker
Zheng et al. Minimal solvers for 3d geometry from satellite imagery
CN105761270A (zh) 一种基于外极线距离变换的树型滤波立体匹配方法
CN110033492A (zh) 摄像机标定方法及终端
CN107392898B (zh) 应用于双目立体视觉中的像素点视差值计算方法及装置
JP6359985B2 (ja) デプス推定モデル生成装置及びデプス推定装置
CN108562265A (zh) 一种双目立体视觉测距装置的测量范围估计方法
CN108416811B (zh) 一种摄影机自标定方法及装置
CN103142212B (zh) 基于一致球的身体对称性检测方法
CN113048985B (zh) 已知相对旋转角度条件下的像机相对运动估计方法
US12014551B2 (en) Method, device, computer program and computer program product for providing a trajectory of an object for a vehicle
CN109522837B (zh) 一种路面检测方法及装置
CN106548482A (zh) 一种基于稀疏匹配与图像边缘的稠密匹配方法及系统
Rahmani et al. Grid-edge-depth map building employing sad with sobel edge detector
Mair et al. Error propagation in monocular navigation for Z∞ compared to eightpoint algorithm
CN111177290A (zh) 一种三维地图准确度的评价方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant