CN108555301A - 一种大型精密金属零件的分区并行式三维打印成型方法 - Google Patents

一种大型精密金属零件的分区并行式三维打印成型方法 Download PDF

Info

Publication number
CN108555301A
CN108555301A CN201810417069.2A CN201810417069A CN108555301A CN 108555301 A CN108555301 A CN 108555301A CN 201810417069 A CN201810417069 A CN 201810417069A CN 108555301 A CN108555301 A CN 108555301A
Authority
CN
China
Prior art keywords
powder
block
metal powder
induction coil
closed outline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810417069.2A
Other languages
English (en)
Other versions
CN108555301B (zh
Inventor
于艳玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Bailing Laser Intelligent Equipment Co ltd
Original Assignee
Wenzhou Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Polytechnic filed Critical Wenzhou Polytechnic
Priority to CN201810417069.2A priority Critical patent/CN108555301B/zh
Publication of CN108555301A publication Critical patent/CN108555301A/zh
Application granted granted Critical
Publication of CN108555301B publication Critical patent/CN108555301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种大型精密金属零件的分区并行式三维打印成型方法,包括:准备三维打印成型零件的CAD数据文件、成型基板、金属粉末和金属粉末感应熔炼成型阵列板;将各个分层切片分割为若干个封闭轮廓图形块;将所有封闭轮廓图形块进行内部分块式填充;通过平行喷嘴阵列与成型基板之间相对移动来填充每个封闭轮廓图形块中的每个小区块;从而实现成型零件从底部到顶部的层层堆叠。本发明将大型零部件的分层切片灵活分成多个图形块,利用并行式金属粉末感应熔炼成型阵列板与成型基板的相对运动,依次对每个图形块进行面阵投影式粉末并行喷射成型,使得原理上成型尺寸不受任何限制,可实现任意大尺寸零件的精密成型。

Description

一种大型精密金属零件的分区并行式三维打印成型方法
技术领域
本发明属于增材制造技术领域,具体涉及一种大型精密金属零件的分区并行式三维打印成型方法。
背景技术
3D打印(增材制造)技术实际上是一系列零部件快速成型技术的统称,其基本原理都是叠层制造,由快速成型机在X-Y平面内通过扫描形式形成工件的截面形状,而在Z坐标间断地作层面厚度的位移,最终形成三维制件。目前市场上的快速成型技术分为3DP技术、FDM熔融层积成型技术、SLA立体平版印刷技术、SLS选区激光烧结、DLP激光成型技术和UV紫外线成型技术等。
由于金属的熔点很高,针对金属材料的3D打印成型技术需要高能量密度的激光束或电子束作为热源。随着科学技术的发展和推广应用的需要,利用激光增材制造直接制造金属零件越来越受到人们关注。激光增材制造可分为以下三种快速成形方法:①直接金属沉积技术;②选区激光烧结技术;③选区激光熔化技术。
直接金属沉积技术是利用一般快速成形思想,采用大功率激光熔化同步供给的金属粉末,利用特制喷嘴在沉积基板上逐层堆积而形成金属零件的快速成形技术。直接金属沉积技术的实质是计算机控制金属熔体的三维堆积成形,其存在的最严重的工艺问题是激光熔覆层开裂倾向明显,裂纹的存在将极大地降低激光熔覆件的致密度。
选区激光烧结技术是采用激光束有选择地分层烧结固体粉末,烧结过程中激光束逐行、逐层的移动进行区域化扫描,并使烧结成形的固化层层层叠加生成所需形状的零件,其整个工艺过程包括CAD模型的建立及数据处理、铺粉、烧结以及后处理等。选区激光烧结技术在烧结铁粉过程中,由于激光束作用于粉末时的温度比较高,能量比较大,在成形过程中易发生烧结层的分层,从而形成球化现象和形成比较大的裂纹。
选区激光熔化技术的工作原理与选区激光烧结技术相似,区别在于选区激光烧结技术在作用于粉末时,粉末未被完全熔化,呈半熔化状态制备成所需的成形件。选区激光熔化技术作用于粉末时,使粉末发生完全熔化并凝固,从而成形件的成形质量相比于选区激光烧结技术制备出的成形件有着显著的提高。
感应熔炼的主要原理是法拉第电磁感应定律和电流热效应的焦耳一楞茨定律。加热开始时,给感应线圈通以交变电流,电流在它的周围空间和导体内部激发出交变磁场,使得置于磁场中心的材料内产生感应电流,这些电流在闭合回路内流动时,自由电子要克服各种阻力。于是,一部分电能用于做功而转换成热能,从而使材料升温。真空感应熔炼是真空冶金领域中的一个重要分支,真空感应熔炼能够精确控制产品在熔炼过程中的化学组成和温度,同时可以自发地阻止基体被一些易反应气体污染。金属及合金材料在进行感应加热时,强大的变频电流经感应线圈产生很强的磁场,产生电磁力。被熔化的金属受到电磁力的作用产生强烈搅拌,凝固体系产生规则的波动,加快了杂质在硅中的运动,一方面有利于易挥发杂质尽快转移到挥发表面,发生挥发反应,另一方面,杂质这种强烈的搅拌作用会在一定程度上改变晶体的显微组织形貌,进而影响杂质在晶体的分布状态。
现有技术中,各类金属3D打印技术基本上都采用金属粉末作为成型原材料,需要依靠外部高能束(激光束或电子束)的辐照使得粉末熔化后再凝固成型,其不足之处有:1)成型过程中需要依赖单个或多个高能束线性扫描,对于每个高能束来说,其扫描路径上的粉末依次熔化-凝固成型,本质上无法实现并行成型,因此成型速度慢、效率低;2)由于激光器、电子束源的电光转换效率低(一般小于20%),并且金属粉末的熔点很高,使得成型所需的能量密度极高,实际耗能很高;3)由于采用的是微米粒度金属粉末,粉末的高熔点特性使得其熔池冶金质量、成型表面粗糙度等工艺质量不高,容易产生残余应力累积、热应力变形、内部热裂纹等缺陷;4)由于热应力变形问题,成型零件尺寸受限,否则无法获得满足尺寸精度要求的成型件。
发明内容
本发明针对上述现有技术的不足,提供了一种大型精密金属零件的分区并行式三维打印成型方法。
本发明是通过如下技术方案实现的:
一种大型精密金属零件的分区并行式三维打印成型方法,包括如下步骤:
(1)准备三维打印成型零件的CAD数据文件、成型基板、金属粉末和金属粉末感应熔炼成型阵列板;
所述三维打印成型零件的CAD数据文件是采用三维CAD软件对待成型加工的零部件进行三维建模,并根据获得的零部件三维模型尺寸外形添加辅助支撑结构,然后按传统三维打印的叠层制造原理设定层厚进行分层切片后获得的封闭轮廓图形数据集合;
所述成型基板的上表面为平面且要求能够将三维打印成型零件的最底层切片的封闭轮廓图形包括在内;
所述金属粉末用于三维打印成型,要求所述金属粉末的熔点不高于成型基板的熔点,且具有高频或中频电场感应涡流加热效应;
所述金属粉末感应熔炼成型阵列板包括由若干个送粉喷嘴组合构成的平行喷嘴阵列和感应线圈,所述感应线圈为高频感应线圈或中频感应线圈,感应线圈为多个,要求其个数与送粉喷嘴的个数相等,每个感应线圈分别一一对应的固定设置在每个送粉喷嘴的出射端,使得感应线圈的磁场中心位于送粉喷嘴的出射端中心轴线上;所述送粉喷嘴的外壁内部和感应线圈的内部均设置有冷却水循环通道;所述送粉喷嘴上设置有喷射阀门,通过控制喷射阀门的关闭与打开,即可控制是否喷射金属粉末;
(3)设平行喷嘴阵列上所有送粉喷嘴的出射端排布图形为S,三维打印成型零件的各个分层切片的封闭轮廓图形为Ki,i=1~N,N为分层切片的个数;遍历各个分层切片的封闭轮廓图形为Ki,若S能将Ki包含在内,则将封闭轮廓图形为Ki作为该分层切片对应的封闭轮廓图形块;若S不能将Ki包含在内,则将对应的Ki分割为若干个封闭轮廓图形块且使每个封闭轮廓图形块均被S包含;
(3)根据金属粉末感应熔炼成型阵列板的平行喷嘴阵列排布关系,将每层切片对应的所有封闭轮廓图形块进行内部分块式填充,其分块式填充方法为:将封闭轮廓图形块的内部分割为若干个小区块,要求每个小分块的位置均与唯一一个送粉喷嘴的位置对应,即小区块与送粉喷嘴的数量和位置为一一对应关系,且小分块质心与其对应的送粉喷嘴出口横截面几何中心之间的连线相互平行;与送粉喷嘴对应的,小区块的形状是任意多边形或者曲线封闭图形,要求每个小区块的尺寸面积均小于面积设定值,所述面积设定值是指步骤(7)中金属粉末熔化后的单层平铺面积×(1-重叠量),所述重叠量为10~50%;
(4)将三维打印成型零件的CAD数据文件最底层切片作为当前切片;
(5)取得当前切片的切片数据,选择其任一个未成型的封闭轮廓图形块作为当前图形块;
(6)通过平行喷嘴阵列与成型基板之间相对移动来调整成型基板与金属粉末感应熔炼成型阵列板的相对方位,使得金属粉末感应熔炼成型阵列板中平行喷嘴阵列与成型基板的表面垂直,并且当前图形块按照分块式填充后获得的每个小区块均与平行喷嘴阵列中的一个送粉喷嘴位置对应,即金属粉末经由平行送粉喷嘴喷射出来并被感应线圈熔化后的金属液滴近乎垂直撞击于成型基板的表面,用于填充对应小区块;
(7)按照当前图形块对应分割的小区块,控制打开对应的送粉喷嘴的喷射阀门并保持对应的感应线圈处于工作状态,通过输运气体流的驱动作用,使得金属粉末经由送粉喷嘴流出,之后经过感应线圈的快速加热熔化,形成金属液滴随后近乎垂直撞击于成型基板的当前成型表面,即落在当前成型表面所对应的分块式填充的小区块中,并流平于小区块内,紧接着与当前成型表面凝固为一体,并使其对应的小区块增加一定厚度,从而完成当前图形块的成型;
(8)判断当前切片是否存在未成型的封闭轮廓图形块,若是,则将该未成型的封闭轮廓图形块作为当前图形块,返回步骤(6);否则,进入步骤(9);
(9)调整成型基板与金属粉末感应熔炼成型阵列板喷射输出端口的相对距离,按照分层切片从底部到顶部的顺序,取下一个切片为当前切片;
(10)重复执行步骤(5)-(9),实现成型零件从底部到顶部的层层堆叠,直至所有分层全部成型完毕。
本发明具有如下有益效果:
1)本发明利用了中高频感应熔炼原理,对微细金属粉末进行实时、高速熔炼,无需外加激光、电子束等高能束作用,即实现了金属粉末的有效熔炼与精确定域沉积成型,生产率高、质量好。
2)本发明在成型过程中将成型基板及已成型部分整体加热,没有成型基板及已成型部分的温度梯度问题,消除了传统高能束扫描三维成型方法因温度梯度无可避免导致的成型热应力难题,同时消除了残余应力累积、热应力变形、内部热裂纹等缺陷。
3)本发明材料兼容性高,任何微纳米尺寸的金属粉末均可作为原材料,尤其是可以采用纳米粒径粉末,从而成型的层厚精度高、成型件表面粗糙度降低(理论上表面粗糙度约为成型粉末的二分之一粒径,因此纳米金属粉末的成型件表面更光滑),工艺质量更好,实现了基于纳米金属粉末的超精细、超高速三维零部件三维成型(增材制造)。
4)本发明可以在成型过程中根据需要送不同粉(送粉喷嘴按时间、空间调整送粉种类),从而可成型梯度材料、异种材料等任意成分与分布的构件,灵活方便,自由度大。
5)本发明采用了中高频电场感应效应,一方面实现微细金属粉末的高速熔炼形成液滴,另一方面其强交变电场对已成型表面的金属液滴流平过程具有强烈的电磁搅拌作用,可使得其冶金过程更加均匀充分,有利于消除了内部结晶偏析、热裂纹等缺陷问题,成型质量更好。
6)本发明将大型零部件的分层切片灵活分成多个图形块,利用并行式金属粉末感应熔炼成型阵列板与成型基板的相对运动,依次对每个图形块进行面阵投影式粉末并行喷射成型,使得原理上成型尺寸不受任何限制,可实现任意大尺寸零件的精密成型。
附图说明
图1为金属粉末感应熔炼成型阵列板的结构图;
图2为网格喷管阵列示意图;
图3为圆管网格喷管阵列示意图;
具体实施方式
下面结合具体实施方式对本发明做进一步详细的说明。
如图1所示,本发明提供了一种金属粉末感应熔炼成型阵列板,包括由若干个送粉喷嘴1组合构成的平行喷嘴阵列和感应线圈2,所述感应线圈2为高频感应线圈或中频感应线圈,感应线圈2为多个,要求其个数与送粉喷嘴1的个数相等,每个感应线圈2分别一一对应的固定设置在每个送粉喷嘴1的出射端,使得感应线圈2的磁场中心位于送粉喷嘴1的出射端中心轴线上。
所述送粉喷嘴1的外壁内部和感应线圈2的内部均设置有冷却水循环通道6。所述送粉喷嘴1上设置有喷射阀门,通过控制喷射阀门的关闭与打开,即可控制是否喷射金属粉末5。
所述送粉喷嘴1的形状要求其管道横截面是任意多边形或曲线封闭图形,送粉喷嘴1的管道尺寸要求最大粒径尺寸的单颗金属粉末5可以无阻碍通过。若干个送粉喷嘴1的形状和尺寸可以相同,也可以不同。
喷射阀门打开后,金属粉末5由输运气体携带从送粉喷嘴1的出射端喷射出来,之后进入感应线圈2的磁场内,被感应线圈2快速感应加热至熔化状态。所述感应线圈2与外部高频或中频感应电源相连,要求其感应熔炼功率足够在金属粉末5通过感应线圈时将其熔化。
所述输运气体要求在高温下不与金属粉末5发生化学反应,一般为惰性气体、氮气、二氧化碳或多种气体的混合。
优选的,送粉喷嘴1的内部送粉通道为倒锥形,出射端的内径最小,使得金属粉末5经此倒锥形内部送粉通道,由输运气体携带喷射出来后可形成汇聚效果。
典型的金属粉末感应熔炼成型阵列板的排布方式有:井字形网格喷管阵列、蜂巢形多边形、网格喷管阵列(如图2所示)、圆管网格喷管阵列(如图3所示)等。
本发明还提供了一种大型精密金属零件的分区并行式三维打印成型方法,包括如下步骤:
(1)准备三维打印成型零件的CAD数据文件、成型基板、金属粉末和金属粉末感应熔炼成型阵列板;
所述三维打印成型零件的CAD数据文件是由设计人员采用三维CAD软件对待成型加工的零部件进行三维建模,并根据获得的零部件三维模型尺寸外形添加必要的辅助支撑结构,然后按传统三维打印的叠层制造原理设定层厚(金属粉末熔化后的单层平铺层厚)进行分层切片后获得的封闭轮廓图形数据集合;
所述成型基板的上表面为平面且要求能够将三维打印成型零件的最底层切片的封闭轮廓图形包括在内,所述成型基板的材质为导热性良好的金属或陶瓷材料;
优选的,所述成型基板带有可控温度的加热装置以实现将成型基板的上表面加热并保持在设定温度范围内。
优选的,也可以在三维打印成型零件的实时成型表面部分采用跟随感应线圈实时加热并控温在设定温度范围内。
所述金属粉末用于三维打印成型,典型的成型粉末粒径在10纳米至500微米,要求金属粉末的熔点不高于基板的熔点,且具有高频或中频电场感应涡流加热效应。
优选的,金属粉末自身带有磁性或电荷,可以被磁场或电场加速。
(2)设平行喷嘴阵列上所有送粉喷嘴1的出射端排布图形为S,三维打印成型零件的各个分层切片的封闭轮廓图形为Ki(i=1~N,N为分层切片的个数)。遍历各个分层切片的封闭轮廓图形为Ki,若S能将Ki包含在内,则将封闭轮廓图形为Ki作为该分层切片对应的封闭轮廓图形块;若S不能将Ki包含在内,则将对应的Ki分割为若干个封闭轮廓图形块且使每个封闭轮廓图形块均被S包含。如此则每个分层切片均对应一个或若干个封闭轮廓图形块,且每个封闭轮廓图形块均被S包含。在三维打印成型时使平行喷嘴阵列与成型基板发生相对移动,以依次完成每一个图形块的成型。
(3)根据金属粉末感应熔炼成型阵列板的平行喷嘴阵列排布关系,将每层切片对应的所有封闭轮廓图形块进行内部分块式填充,其分块式填充方法为:将封闭轮廓图形块的内部分割为若干个小区块,要求每个小分块的位置均与唯一一个送粉喷嘴1的位置对应,即小区块与送粉喷嘴1的数量和位置为一一对应关系,且小分块质心(假设为均匀密度的等厚板,质心一定存在)与其对应的送粉喷嘴1出口横截面几何中心之间的连线相互平行;与送粉喷嘴1对应的,小区块的形状是任意多边形或者曲线封闭图形,要求每个小区块的尺寸面积均小于面积设定值,所述面积设定值是指步骤(7)中金属粉末熔化后的单层平铺面积×(1-重叠量),所述重叠量为10~50%。其中,步骤(7)中金属粉末熔化后的单层平铺面积和步骤(1)中金属粉末熔化后的单层平铺层厚可以通过实验方法提前测出。
(4)将三维打印成型零件的CAD数据文件最底层切片作为当前切片;
(5)取得当前切片的切片数据,选择其任一个未成型的封闭轮廓图形块作为当前图形块;
(6)通过平行喷嘴阵列与成型基板3之间相对移动来调整成型基板3与金属粉末感应熔炼成型阵列板的相对方位,使得金属粉末感应熔炼成型阵列板中平行喷嘴阵列与成型基板3的表面垂直,并且当前图形块按照分块式填充后获得的每个小区块均与平行喷嘴阵列中的一个送粉喷嘴1位置对应,即金属粉末5经由平行送粉喷嘴1喷射出来并被感应线圈2熔化后的金属液滴近乎垂直撞击于成型基板3的表面,用于填充对应小区块。
优选的,使成型方向(金属粉末经由平行送粉喷嘴1喷射出来的运动方向)为沿重力竖直方向,以避免重力偏折效应。
优选的,将成型基板3和金属粉末感应熔炼成型阵列板喷射的输出端口置于真空成型腔室内,还可以对真空成型腔室进行隔振处理,使其振动幅度不大于成型尺寸精度。
优选的,通过加热使成型基板3及已成型部分4在成型过程中始终保持在设定温度,所述设定温度要求在已成型部分4的金属材料熔点以下。
(7)按照当前图形块对应分割的小区块,控制打开对应的送粉喷嘴1的喷射阀门并保持对应的感应线圈2处于工作状态,通过输运气体流的驱动作用,使得金属粉末5经由送粉喷嘴1流出,之后经过感应线圈2的快速加热熔化,形成金属液滴随后近乎垂直撞击于成型基板3的当前成型表面,即落在当前成型表面所对应的分块式填充的小区块中,并流平于小区块内,紧接着与当前成型表面凝固为一体,并使其对应的小区块增加一定厚度,从而完成当前图形块的成型。
优选的,若金属粉末5自身带有磁性或电荷,可以施加磁场或电场使其在送粉喷嘴1流出后继续被加速直至被感应熔化撞击成型表面。
(8)判断当前切片是否存在未成型的封闭轮廓图形块,若是,则将该未成型的封闭轮廓图形块作为当前图形块,返回步骤(6);否则,进入步骤(9);
(9)调整成型基板3与金属粉末感应熔炼成型阵列板喷射输出端口的相对距离(即移动一个单层成型层厚,保持二者不发生碰触且处于合适的喷射成型距离范围内),按照分层切片从底部到顶部的顺序,取下一个切片为当前切片;
(10)重复执行步骤(5)-(9),实现成型零件从底部到顶部的层层堆叠,直至所有分层全部成型完毕。
本发明可改变为多种方式对本领域的技术人员是显而易见的,这样的改变不认为脱离本发明的范围。所有这样的对所述领域的技术人员显而易见的修改,将包括在本权利要求的范围之内。

Claims (1)

1.一种大型精密金属零件的分区并行式三维打印成型方法,其特征在于,包括如下步骤:
(1)准备三维打印成型零件的CAD数据文件、成型基板、金属粉末和金属粉末感应熔炼成型阵列板;
所述三维打印成型零件的CAD数据文件是采用三维CAD软件对待成型加工的零部件进行三维建模,并根据获得的零部件三维模型尺寸外形添加辅助支撑结构,然后按传统三维打印的叠层制造原理设定层厚进行分层切片后获得的封闭轮廓图形数据集合;
所述成型基板的上表面为平面且要求能够将三维打印成型零件的最底层切片的封闭轮廓图形包括在内;
所述金属粉末用于三维打印成型,要求所述金属粉末的熔点不高于成型基板的熔点,且具有高频或中频电场感应涡流加热效应;
所述金属粉末感应熔炼成型阵列板包括由若干个送粉喷嘴组合构成的平行喷嘴阵列和感应线圈,所述感应线圈为高频感应线圈或中频感应线圈,感应线圈为多个,要求其个数与送粉喷嘴的个数相等,每个感应线圈分别一一对应的固定设置在每个送粉喷嘴的出射端,使得感应线圈的磁场中心位于送粉喷嘴的出射端中心轴线上;所述送粉喷嘴的外壁内部和感应线圈的内部均设置有冷却水循环通道;所述送粉喷嘴上设置有喷射阀门,通过控制喷射阀门的关闭与打开,即可控制是否喷射金属粉末;
(2)设平行喷嘴阵列上所有送粉喷嘴的出射端排布图形为S,三维打印成型零件的各个分层切片的封闭轮廓图形为Ki,i=1~N,N为分层切片的个数;遍历各个分层切片的封闭轮廓图形为Ki,若S能将Ki包含在内,则将封闭轮廓图形为Ki作为该分层切片对应的封闭轮廓图形块;若S不能将Ki包含在内,则将对应的Ki分割为若干个封闭轮廓图形块且使每个封闭轮廓图形块均被S包含;
(3)根据金属粉末感应熔炼成型阵列板的平行喷嘴阵列排布关系,将每层切片对应的所有封闭轮廓图形块进行内部分块式填充,其分块式填充方法为:将封闭轮廓图形块的内部分割为若干个小区块,要求每个小分块的位置均与唯一一个送粉喷嘴的位置对应,即小区块与送粉喷嘴的数量和位置为一一对应关系,且小分块质心与其对应的送粉喷嘴出口横截面几何中心之间的连线相互平行;与送粉喷嘴对应的,小区块的形状是任意多边形或者曲线封闭图形,要求每个小区块的尺寸面积均小于面积设定值,所述面积设定值是指步骤(7)中金属粉末熔化后的单层平铺面积×(1-重叠量),所述重叠量为10~50%;
(4)将三维打印成型零件的CAD数据文件最底层切片作为当前切片;
(5)取得当前切片的切片数据,选择其任一个未成型的封闭轮廓图形块作为当前图形块;
(6)通过平行喷嘴阵列与成型基板之间相对移动来调整成型基板与金属粉末感应熔炼成型阵列板的相对方位,使得金属粉末感应熔炼成型阵列板中平行喷嘴阵列与成型基板的表面垂直,并且当前图形块按照分块式填充后获得的每个小区块均与平行喷嘴阵列中的一个送粉喷嘴位置对应,即金属粉末经由平行送粉喷嘴喷射出来并被感应线圈熔化后的金属液滴近乎垂直撞击于成型基板的表面,用于填充对应小区块;
(7)按照当前图形块对应分割的小区块,控制打开对应的送粉喷嘴的喷射阀门并保持对应的感应线圈处于工作状态,通过输运气体流的驱动作用,使得金属粉末经由送粉喷嘴流出,之后经过感应线圈的快速加热熔化,形成金属液滴随后近乎垂直撞击于成型基板的当前成型表面,即落在当前成型表面所对应的分块式填充的小区块中,并流平于小区块内,紧接着与当前成型表面凝固为一体,并使其对应的小区块增加一定厚度,从而完成当前图形块的成型;
(8)判断当前切片是否存在未成型的封闭轮廓图形块,若是,则将该未成型的封闭轮廓图形块作为当前图形块,返回步骤(6);否则,进入步骤(9);
(9)调整成型基板与金属粉末感应熔炼成型阵列板喷射输出端口的相对距离,按照分层切片从底部到顶部的顺序,取下一个切片为当前切片;
(10)重复执行步骤(5)-(9),实现成型零件从底部到顶部的层层堆叠,直至所有分层全部成型完毕。
CN201810417069.2A 2018-05-03 2018-05-03 一种大型精密金属零件的分区并行式三维打印成型方法 Active CN108555301B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810417069.2A CN108555301B (zh) 2018-05-03 2018-05-03 一种大型精密金属零件的分区并行式三维打印成型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810417069.2A CN108555301B (zh) 2018-05-03 2018-05-03 一种大型精密金属零件的分区并行式三维打印成型方法

Publications (2)

Publication Number Publication Date
CN108555301A true CN108555301A (zh) 2018-09-21
CN108555301B CN108555301B (zh) 2020-09-29

Family

ID=63537469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810417069.2A Active CN108555301B (zh) 2018-05-03 2018-05-03 一种大型精密金属零件的分区并行式三维打印成型方法

Country Status (1)

Country Link
CN (1) CN108555301B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109128169A (zh) * 2018-10-16 2019-01-04 北京锐海三维科技有限公司 一种大型高性能金属零件激光直接制造技术
CN109703010A (zh) * 2019-01-18 2019-05-03 深圳市硬核智娱科技有限公司 一种用于积木制造的模块化3d打印机
CN110057858A (zh) * 2019-03-29 2019-07-26 江苏大学 一种激光烧结测试系统及方法
CN110614368A (zh) * 2019-11-07 2019-12-27 常州英诺激光科技有限公司 一种通过激光加工硬化处理提高3d打印零件密度的方法
CN111186139A (zh) * 2019-12-25 2020-05-22 西北工业大学 一种3d打印模型的多层次并行切片方法
CN111515397A (zh) * 2020-05-06 2020-08-11 中国航空制造技术研究院 一种增材制造面热源的设计方法及使用方法
CN112848314A (zh) * 2021-03-12 2021-05-28 杜晖 一种无需模具的三维注塑设备
CN114248440A (zh) * 2021-12-28 2022-03-29 先临三维科技股份有限公司 3d打印切片方法、打印方法、装置、介质及设备
CN115071135A (zh) * 2022-08-18 2022-09-20 杭州爱新凯科技有限公司 一种3d打印路径填充方法
CN115107274A (zh) * 2022-07-06 2022-09-27 重庆大学 3d打印设备及其打印方法
CN115592953A (zh) * 2021-06-28 2023-01-13 广州黑格智造信息科技有限公司(Cn) 用于3d打印的固化处理方法、系统、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140336680A1 (en) * 2009-05-15 2014-11-13 Board Of Regents, The University Of Texas System Reticulated Mesh Arrays and Dissimilar Array Monoliths by Additive Layered Manufacturing Using Electron and Laser Beam Melting
CN106111985A (zh) * 2015-05-07 2016-11-16 吴小平 群扫描激光选择性烧结或固化方法及其3d成型机
CN106694878A (zh) * 2015-11-15 2017-05-24 罗天珍 激光烧结或固化3d成型机的群扫描标定及辅加热方法
CN106965421A (zh) * 2017-04-29 2017-07-21 梁福鹏 一种三维打印方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140336680A1 (en) * 2009-05-15 2014-11-13 Board Of Regents, The University Of Texas System Reticulated Mesh Arrays and Dissimilar Array Monoliths by Additive Layered Manufacturing Using Electron and Laser Beam Melting
CN106111985A (zh) * 2015-05-07 2016-11-16 吴小平 群扫描激光选择性烧结或固化方法及其3d成型机
CN106694878A (zh) * 2015-11-15 2017-05-24 罗天珍 激光烧结或固化3d成型机的群扫描标定及辅加热方法
CN106965421A (zh) * 2017-04-29 2017-07-21 梁福鹏 一种三维打印方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109128169A (zh) * 2018-10-16 2019-01-04 北京锐海三维科技有限公司 一种大型高性能金属零件激光直接制造技术
CN109703010A (zh) * 2019-01-18 2019-05-03 深圳市硬核智娱科技有限公司 一种用于积木制造的模块化3d打印机
CN110057858A (zh) * 2019-03-29 2019-07-26 江苏大学 一种激光烧结测试系统及方法
CN110614368A (zh) * 2019-11-07 2019-12-27 常州英诺激光科技有限公司 一种通过激光加工硬化处理提高3d打印零件密度的方法
CN111186139A (zh) * 2019-12-25 2020-05-22 西北工业大学 一种3d打印模型的多层次并行切片方法
CN111515397B (zh) * 2020-05-06 2022-06-10 中国航空制造技术研究院 一种增材制造面热源的设计方法及使用方法
CN111515397A (zh) * 2020-05-06 2020-08-11 中国航空制造技术研究院 一种增材制造面热源的设计方法及使用方法
CN112848314A (zh) * 2021-03-12 2021-05-28 杜晖 一种无需模具的三维注塑设备
CN115592953A (zh) * 2021-06-28 2023-01-13 广州黑格智造信息科技有限公司(Cn) 用于3d打印的固化处理方法、系统、装置及存储介质
CN115592953B (zh) * 2021-06-28 2024-03-12 广州黑格智造信息科技有限公司 用于3d打印的固化处理方法、系统、装置及存储介质
CN114248440A (zh) * 2021-12-28 2022-03-29 先临三维科技股份有限公司 3d打印切片方法、打印方法、装置、介质及设备
CN114248440B (zh) * 2021-12-28 2024-05-17 先临三维科技股份有限公司 3d打印切片方法、打印方法、装置、介质及设备
CN115107274A (zh) * 2022-07-06 2022-09-27 重庆大学 3d打印设备及其打印方法
CN115107274B (zh) * 2022-07-06 2024-05-17 重庆大学 3d打印设备及其打印方法
CN115071135A (zh) * 2022-08-18 2022-09-20 杭州爱新凯科技有限公司 一种3d打印路径填充方法

Also Published As

Publication number Publication date
CN108555301B (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
CN108555301A (zh) 一种大型精密金属零件的分区并行式三维打印成型方法
CN108405863A (zh) 一种基于感应熔炼的并行式金属三维打印成型方法
CN105798299B (zh) 非接触控制增材制造金属零件凝固组织的方法及装置
CN107130124B (zh) 一种增材制造技术成形高熵合金的方法
Zhang et al. Fundamental study on plasma deposition manufacturing
CN108380871A (zh) 一种基于感应加热的纳米金属粉末三维打印成型方法
CN103056367B (zh) 一种基于脉冲小孔液滴喷射三维快速成型的方法及装置
US9757802B2 (en) Additive manufacturing methods and systems with fiber reinforcement
Ma et al. Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L Stainless Steel
CN103121105B (zh) 一种制备微细球形Nb-W-Mo-Zr合金粉末的方法
Fang et al. Building three‐dimensional objects by deposition of molten metal droplets
CN109261967A (zh) 一种多孔钨材料的电子束分区扫描成形方法
US20090047439A1 (en) Method and apparatus for manufacturing porous articles
CN107470627A (zh) 金属玻璃复合材料超声辅助3d冷打印装置及方法
CN108620584A (zh) 全等轴晶金属构件的激光增材制造方法及其装置
CN102941343B (zh) 一种钛铝合金复杂零件的快速制造方法
CN105689718B (zh) 一种复相增强金属基复合材料的成形系统和方法
JPH11501258A (ja) 層溶着による形状自在製品
JP2002504024A (ja) 金属の層溶着により作られる製品
CN109396434A (zh) 一种基于选区激光熔化技术制备钛合金零件的方法
CN109550959A (zh) 一种金属零件增材制造方法及装置
JP6635227B1 (ja) 三次元形状造形物の製造方法
CN108607995B (zh) 一种基于纳米温度尺寸效应的金属三维打印成型方法
CN110695365A (zh) 一种采用气固两相雾化制备金属型包覆粉的方法及装置
Fang et al. An investigation on effects of process parameters in fused-coating based metal additive manufacturing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220624

Address after: No. 58, Gongye North Road, Licheng District, Jinan City, Shandong Province

Patentee after: SHANDONG CHENGKUN INFORMATION TECHNOLOGY CO.,LTD.

Address before: 325000 Wenzhou City National University Science Park incubator, No. 38 Dongfang South Road, Ouhai Economic Development Zone, Wenzhou, Zhejiang

Patentee before: WENZHOU VOCATIONAL & TECHNICAL College

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221121

Address after: No.1668, Huacheng Road, Jintan District, Changzhou City, Jiangsu Province 213200

Patentee after: Jiangsu bailing laser Intelligent Equipment Co.,Ltd.

Address before: No. 58, Gongye North Road, Licheng District, Jinan City, Shandong Province

Patentee before: SHANDONG CHENGKUN INFORMATION TECHNOLOGY CO.,LTD.