CN108552169B - 一种缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂及其制备方法、应用 - Google Patents

一种缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂及其制备方法、应用 Download PDF

Info

Publication number
CN108552169B
CN108552169B CN201810436309.3A CN201810436309A CN108552169B CN 108552169 B CN108552169 B CN 108552169B CN 201810436309 A CN201810436309 A CN 201810436309A CN 108552169 B CN108552169 B CN 108552169B
Authority
CN
China
Prior art keywords
solution
gamma
glutamic acid
poly
ammonium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810436309.3A
Other languages
English (en)
Other versions
CN108552169A (zh
Inventor
杨革
梁鑫鑫
车程川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Xianjin Chemical Co ltd
Original Assignee
Qufu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qufu Normal University filed Critical Qufu Normal University
Priority to CN201810436309.3A priority Critical patent/CN108552169B/zh
Publication of CN108552169A publication Critical patent/CN108552169A/zh
Application granted granted Critical
Publication of CN108552169B publication Critical patent/CN108552169B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/12Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/14Quaternary ammonium compounds, e.g. edrophonium, choline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Dermatology (AREA)
  • Toxicology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Manufacturing & Machinery (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

本发明属于医学技术领域,涉及一种缓释高效聚γ‑谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂及其制备方法、应用。该杀菌剂是通过聚γ‑谷氨酸和十二烷基二甲基苄基氯化铵制备而成。制备的抗菌剂,具有良好的抗菌抑菌效果,具有较好的缓释性能,粒径均一,且对1227的负载率可达34.2%~47.8%。本发明制备的纳米抗菌剂具备无毒性、可降解性、无污染、生物相容性等多种优良的性能,具有广泛的应用前景。

Description

一种缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米 杀菌剂及其制备方法、应用
技术领域
本发明属于医学技术领域,涉及一种缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂及其制备方法、应用。
背景技术
随着夏季的到来,天气变暖,温度升高,许多细菌,真菌的繁殖也逐渐增多起来,如何保卫好公共卫生,处理好公共卫生场所、食品工业制备场所、医疗器械、以及实验人员经常使用的各种仪器的灭菌问题,抑制有害细菌、真菌的繁殖,避免发生流行性疾病等问题,成为人们日益关注的首要问题。实验和医疗人员常会用环氧乙烷等化学药物对实验器材进行灭菌,但是其废液难处理,造成更大范围的谁污染,以及成本的提高。对于公共卫生,也会喷洒一些药物暂时抑制住细菌和真菌的繁殖,但持续时间短,成本高昂等,也在一定程度上限制了灭菌化学药物的使用;对于处理伤口的药物,每年开发的新型药物都会层出不穷,但是,寻求理想的具有缓释性能的药物,逐渐成为研究的热点。
聚γ-谷氨酸(γ-PGA)是由微生物产生的无毒性、可降解性、生物相容性、亲水性等良好性能的高分子化合物,重均分子量一般在100KD~10000KD左右,γ-PGA上存在大量的肽键,可被蛋白酶等降解为谷氨酸小分子物质,具备优良的降解性能,且产物无毒性,对环境无污染。
十二烷基二甲基苄基氯化铵,别名1227,属于非氧化性杀菌剂,具有广谱、高效的杀菌灭藻能力,现有技术中,使用时多与其他杀菌剂等复配使用,但是,仍不能解决其缓释等问题。因此,寻求一种理想的具有缓释性能的药物成为了亟待解决的问题。
发明内容
针对现有技术存在的问题,本发明提供了一种缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂。
本发明还提供了一种上述纳米杀菌剂的制备方法。
本发明还提供了一种利用上述制备方法制备的缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂在医药产品等方面的应用。
本发明为了实现上述目的所采用的技术方案为:
本发明提供了一种缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂,该杀菌剂是通过聚γ-谷氨酸和十二烷基二甲基苄基氯化铵制备而成。(γ-PGA/1227)的制备和应用。
本发明制备的该纳米杀菌剂的粒径为30~60 nm。
本发明还提供了一种上述缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂的制备方法,包括以下步骤:
(1)配制总浓度为5mg/mL的聚γ-谷氨酸/壳寡糖溶液,搅拌均匀,制备成聚γ-谷氨酸/壳寡糖基质溶液;
(2)EDC与NHS分别配制成0.2 M浓度溶液,按比例混合,得EDC/NHS溶液,将EDC/NHS溶液加入到制备好的基质溶液中,常温下,搅拌5 h,形成均一溶液后,超声破碎5 h,制备负载纳米颗粒溶液;
(3)配制浓度为400μg/mL的1227溶液,加入到负载纳米颗粒溶液中,继续超声5 h,制备负载1227药物的纳米抗菌剂;
(4)超声后,取出纳米抗菌剂溶液,-80℃下冷冻干燥制备成粉末状聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂。
进一步的,所述γ-PGA与壳寡糖的质量比在10~14:1;优选的质量比为12:1。
进一步的,所述EDC溶液和NHS溶液的体积比为2:1。
进一步的,所述EDC/NHS溶液和基质溶液的体积比为1:7。
进一步的,所述γ-PGA与1227的质量比在500~700:0.5~1。
本发明还提供了一种利用上述制备方法制备的聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂的应用。
本发明制备的聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂能够在医药产品上、公共卫生场所、食品制备工业场所、医疗器械及用品的消毒灭菌,以及在伤口创伤方面的消毒的药品中的应用。
本发明的有益效果为:
(1)制备的抗菌剂,具有良好的抗菌抑菌效果,具有较好的缓释性能,粒径均一,且对1227的负载率可达34.2%~47.8%。
(2)本发明制备的纳米抗菌剂具备无毒性、可降解性、无污染、生物相容性等多种优良的性能。
(3)本发明制备的高效纳米抗菌剂在医药产品,尤其是在公共卫生场所、食品制备工业场所、医疗器械及用品的消毒灭菌,以及在伤口创伤方面的消毒等具有广泛的应用。
具体实施方式
下面结合具体实施方案,来进一步阐述本发明。并认为,这些实施例仅用于说明本发明,而不用于限制本发明的范围。
实施例1
于聚γ-谷氨酸/壳寡糖质量比为10:1条件下制备纳米抗菌剂
步骤1新型高效纳米抑菌剂的制备
1)于8.75 mL体系中,配制质量比为10:1(总浓度为5 mg/mL)的聚γ-谷氨酸/壳寡糖溶液(溶剂为去离子水,下同),搅拌均匀,制备成聚γ-谷氨酸/壳寡糖基质溶液;
2)EDC与NHS分别配制成0.2 M浓度溶液,按2:1比例混合,得EDC/NHS溶液,取制备好的EDC/NHS溶液1.25 mL加入到制备好的基质溶液中,常温下,搅拌5 h,形成均一溶液后,超声破碎5 h,制备负载纳米颗粒;
3)配制浓度400 μg/mL的1227溶液10 mL,按照1:1比例加入到制备好的负载纳米颗粒溶液,继续超声5 h,制备负载1227药物的纳米抗菌剂;
4)超声过后,取出纳米抗菌剂溶液,-80℃下冷冻干燥制备成抗菌剂粉末,为防止吸水变潮,密封保存。
步骤2 高效液相检测1227负载率
仪器:安捷伦1260Ⅱ,紫外可见光检测器;色谱柱:EC—C18;流动相:甲醇:水=60:40;流速:1 mL/min;检测波长:215 nm;柱温:30 ℃;进样体积:10 μL;实验组:制备好的纳米抗菌剂;设置空白对照组:1227药物浓度为200 μg/mL的溶液。
步骤3 抑菌效果的检测
制备平板固体LB培养基,平板表面均匀涂布100 μL大肠杆菌和金黄色葡萄菌;取牛津杯(d=8 mm)置于涂布好的LB平板上,里面加入200 μL制备好的纳米抗菌剂溶液,对照组为浓度为200 μg/mL的1227药物溶液;于37℃恒温培养箱中培养12 h后观察抑菌结果(通过透明圈的大小来衡量抑菌效果)。
结果如表1和表2所示,在聚γ-谷氨酸/壳寡糖质量比为10:1条件下制备的负载1227药物的纳米抗菌剂,其纳米颗粒大小在80~120 nm之间,与对照组相比,随着时间的延长,到12 h后,药物的负载量能够达到110.4±0.2左右,说明能够负载大量的药物并明显延长药物的作用时间,该药物对金黄色葡萄球菌和大肠杆菌有明显的抑菌效果,其透明圈比较接近对照组透明圈的大小,抑菌效果良好。
表1 聚γ-谷氨酸/壳寡糖质量比为10:1条件下对1227负载率的影响
Figure 118308DEST_PATH_IMAGE001
表2 聚γ-谷氨酸/壳寡糖质量比为10:1条件下制备的纳米抗菌剂抑菌效果
Figure 173988DEST_PATH_IMAGE002
实施例2 于聚γ-谷氨酸/壳寡糖质量比为12:1条件下制备纳米抗菌剂
步骤1新型高效纳米抑菌剂的制备
1)于8.75 mL体系中,配制质量比为12:1(总浓度为5 mg/mL)的聚γ-谷氨酸/壳寡糖溶液,搅拌均匀,制备成聚γ-谷氨酸/壳寡糖基质溶液;
2)EDC与NHS分别配制成0.2 M浓度溶液,按2:1比例混合,得EDC/NHS溶液,取制备好的交联剂EDC/NHS溶液1.25 mL加入到制备好的基质溶液中,常温下,搅拌5 h,形成均一溶液后,超声破碎5 h,制备负载纳米颗粒;
3)配制浓度400 μg/mL的1227溶液10 mL,按照1:1比例加入到制备好的纳米颗粒溶液,继续超声5 h,制备负载1227药物的纳米抗菌剂;
4)超声过后,取出纳米抗菌剂溶液,-80℃下冷冻干燥制备成抗菌剂粉末,为防止吸水变潮,密封保存。
步骤2 高效液相检测1227负载率
仪器:安捷伦1260Ⅱ,紫外可见光检测器;色谱柱:EC—C18;流动相:甲醇:水=60:40;流速:1 mL/min;检测波长:215 nm;柱温:30 ℃;进样体积:10 μL;实验组:制备好的纳米抗菌剂;设置空白对照组:1227药物浓度为200 μg/mL的溶液。
步骤3 抑菌效果的检测
制备平板固体LB培养基,平板表面均匀涂布100 μL大肠杆菌和金黄色葡萄菌;取牛津杯(d=8 mm)置于涂布好的LB平板上,里面加入200 μL实施例1制备的纳米抗菌剂溶液,对照组为浓度为200 μg/mL的1227药物溶液;于37℃恒温培养箱中培养12 h后观察抑菌结果(通过透明圈的大小来衡量抑菌效果)。
结果如表3和表4所示,在聚γ-谷氨酸/壳寡糖质量比为12:1条件下制备的负载1227药物的纳米抗菌剂,其纳米颗粒大小在40~60 nm之间,与对照组相比,随着时间的延长,到12 h后,药物的负载量能够达到125.8±0.2左右,说明能够负载大量的药物并明显延长药物的作用时间,该药物对金黄色葡萄球菌以及大肠杆菌有明显的抑菌效果,其透明圈比较接近对照组透明圈的大小,抑菌效果良好。
表3聚γ-谷氨酸/壳寡糖质量比为12:1条件下对1227负载率的影响
Figure 193897DEST_PATH_IMAGE003
表4 聚γ-谷氨酸/壳寡糖质量比为12:1条件下制备的纳米抗菌剂抑菌效果
Figure 508073DEST_PATH_IMAGE004
实施例3 于聚γ-谷氨酸/壳寡糖质量比为14:1条件下制备纳米抗菌剂
步骤1新型高效纳米抑菌剂的制备
1)于8.75 mL体系中,配制质量比为14:1(总浓度为5 mg/mL)的聚γ-谷氨酸/壳寡糖溶液,搅拌均匀,制备成聚γ-谷氨酸/壳寡糖基质溶液;
2)EDC与NHS分别配制成0.2 M浓度溶液,按2:1比例混合,得EDC/NHS溶液,取制备好的交联剂EDC/NHS溶液1.25 mL加入到制备好的基质溶液中,常温下,搅拌5 h,形成均一溶液后,超声破碎5 h,制备负载纳米颗粒;
3)配制浓度400 μg/mL的1227溶液10 mL,按照1:1比例加入到制备好的纳米颗粒溶液,继续超声5 h,制备负载1227药物的纳米抗菌剂;
4)超声过后,取出纳米抗菌剂溶液,-80℃下冷冻干燥制备成抗菌剂粉末,为防止吸水变潮,密封保存。
步骤2 高效液相检测1227负载率
仪器:安捷伦1260Ⅱ,紫外可见光检测器;色谱柱:EC—C18;流动相:甲醇:水=60:40;流速:1 mL/min;检测波长:215 nm;柱温:30 ℃;进样体积:10 μL;实验组:制备好的纳米抗菌剂;设置空白对照组:1227药物浓度为200 μg/mL的溶液。
步骤3 抑菌效果的检测
制备平板固体LB培养基,平板表面均匀涂布100 μL大肠杆菌和金黄色葡萄菌;取牛津杯(d=8 mm)置于涂布好的LB平板上,里面加入200 μL实施例1制备的纳米抗菌剂溶液,对照组为浓度为200 μg/mL的1227药物溶液;于37℃恒温培养箱中培养12 h后观察抑菌结果(通过透明圈的大小来衡量抑菌效果)。
结果如表5和表6所示,在聚γ-谷氨酸/壳寡糖质量比为14:1条件下制备的负载1227药物的纳米抗菌剂,其纳米颗粒大小在100~200 nm之间,与对照组相比,随着时间的延长,到12 h后,药物的负载量能够达到125.8±0.2左右,说明能够负载大量的药物并明显延长药物的作用时间,该药物对金黄色葡萄球菌以及大肠杆菌有明显的抑菌效果,其透明圈比较接近对照组透明圈的大小,抑菌效果良好。
表5 聚γ-谷氨酸/壳寡糖质量比为14:1条件下对1227负载率的影响
Figure 562616DEST_PATH_IMAGE005
表6 聚γ-谷氨酸/壳寡糖质量比为14:1条件下制备的纳米抗菌剂抑菌效果
Figure 523619DEST_PATH_IMAGE006
对比例1 仅有聚γ-谷氨酸存在的条件下对纳米抗菌剂制备的影响
与实施例2不同之处在于,在20 mL体系中,控制聚γ-谷氨酸浓度为5 mg/mL,不添加壳寡糖,其他条件不变,制备仅有聚γ-谷氨酸存在的条件下的纳米抗菌剂,对照组为浓度为200 μg/mL的1227药物溶液。
结果如表7和表8所示,仅有聚γ-谷氨酸存在的条件下制备的负载1227药物的纳米抗菌剂,其纳米颗粒大小在250~500 nm之间,其纳米颗粒的大小要远远大于实施例1~3中制备的纳米颗粒的大小;对比例1中实验组与对照组相比,到12 h后,药物的负载量仅为60.4±0.2左右,其负载量的效果远低于实施例1~3的负载量效果,仅高于对照组。
表7仅有聚γ-谷氨酸存在的条件下对1227负载率的影响
Figure DEST_PATH_IMAGE007
表8 仅有聚γ-谷氨酸存在的条件下制备的纳米抗菌剂抑菌效果
Figure 578294DEST_PATH_IMAGE008
对比例2 仅有聚γ-谷氨酸存在的条件下对纳米抗菌剂制备的影响
与实施例2不同之处在于,在20 mL体系中,不添加聚γ-谷氨酸,控制壳寡糖浓度为5 mg/mL,其他条件不变,制备仅有壳寡糖存在的条件下的纳米抗菌剂,对照组为浓度为200 μg/mL的1227药物溶液。
结果如表9和表10所示,仅有壳寡糖存在的条件下制备的负载1227药物的纳米抗菌剂,其纳米颗粒大小在100~200 nm之间,其纳米颗粒的大小要远远大于实施例1~3,尤其是实施例1中制备的纳米颗粒的大小;对比例2中实验组与对照组相比,到12 h后,药物的负载量仅为60.4±0.2左右,其负载量的效果远低于实施例1~3的负载量效果,仅高于对照组。
表9仅有壳寡糖存在的条件下对1227负载率的影响
Figure DEST_PATH_IMAGE009
表10仅有壳寡糖存在的条件下制备的纳米抗菌剂抑菌效果
Figure 915734DEST_PATH_IMAGE010
对比例3
于聚γ-谷氨酸/壳寡糖质量比为10:1条件下制备纳米抗菌剂
步骤1新型高效纳米抑菌剂的制备
1)于8.75 mL体系中,配置浓度为4.54 mg/mL的聚γ-谷氨酸溶液;
2)EDC与NHS分别配制成0.2 M浓度溶液,按2:1比例混合,得EDC/NHS溶液;
3)配制浓度400 μg/mL的1227溶液10 mL,按照1:1比例加入到制备好的聚γ-谷氨酸溶液,搅拌均匀后,加入壳寡糖,搅拌均匀,形成均一的溶液,然后加入1.25mLEDC/NHS溶液,继续超声5 h,制备负载1227药物的纳米抗菌剂;
4)超声过后,取出纳米抗菌剂溶液,-80℃下冷冻干燥制备成抗菌剂粉末,为防止吸水变潮,密封保存。
该对比例制备的纳米颗粒大小在300-500nm之间,其纳米颗粒的大小要远远大于实施例1~3,尤其是实施例1中制备的纳米颗粒的大小;对比例2与实施例1相比,到12 h后,药物的负载量仅为63.1±0.2左右,其负载量的效果远低于实施例1的负载量效果。抑菌结果如表11所示。
表11
Figure DEST_PATH_IMAGE011

Claims (6)

1.一种缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂,其特征在于,该杀菌剂是通过聚γ-谷氨酸和十二烷基二甲基苄基氯化铵制备而成;
具体包括以下步骤:
(1)配制总浓度为5mg/mL的聚γ-谷氨酸/壳寡糖溶液,搅拌均匀,制备成聚γ-谷氨酸/壳寡糖基质溶液;
(2)EDC与NHS分别配制成0.2 M浓度溶液,按比例混合,得EDC/NHS溶液,将EDC/NHS溶液加入到制备好的基质溶液中,常温下,搅拌5 h,形成均一溶液后,超声破碎5 h,制备负载纳米颗粒溶液;
(3)配制浓度为400μg/mL的十二烷基二甲基苄基氯化铵溶液,加入到负载纳米颗粒溶液中,继续超声5 h,制备负载十二烷基二甲基苄基氯化铵药物的纳米抗菌剂;
(4)超声后,取出纳米抗菌剂溶液,-80℃下冷冻干燥制备成粉末状聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂;
所述聚γ-谷氨酸与壳寡糖的质量比在10~14:1。
2.根据权利要求1所述的缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂,其特征在于,该纳米杀菌剂的粒径为30~60 nm 。
3.根据权利要求1所述的缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂,其特征在于,所述EDC溶液和NHS溶液的体积比为2:1。
4.根据权利要求1所述的缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂,其特征在于,所述EDC/NHS溶液和基质溶液的体积比为1:7。
5.根据权利要求1所述的缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂,其特征在于,所述聚γ-谷氨酸与十二烷基二甲基苄基氯化铵的质量比在500~700:0.5~1。
6.一种如权利要求1-4任一项所述的聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂的应用,其特征在于,所述聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂在医药产品上、公共卫生场所、食品制备工业场所、医疗器械及用品的消毒灭菌,以及在制备伤口创伤方面的消毒的药品中的应用。
CN201810436309.3A 2018-05-09 2018-05-09 一种缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂及其制备方法、应用 Expired - Fee Related CN108552169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810436309.3A CN108552169B (zh) 2018-05-09 2018-05-09 一种缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810436309.3A CN108552169B (zh) 2018-05-09 2018-05-09 一种缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂及其制备方法、应用

Publications (2)

Publication Number Publication Date
CN108552169A CN108552169A (zh) 2018-09-21
CN108552169B true CN108552169B (zh) 2020-10-30

Family

ID=63538084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810436309.3A Expired - Fee Related CN108552169B (zh) 2018-05-09 2018-05-09 一种缓释高效聚γ-谷氨酸/十二烷基二甲基苄基氯化铵纳米杀菌剂及其制备方法、应用

Country Status (1)

Country Link
CN (1) CN108552169B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321256A (zh) * 2011-09-06 2012-01-18 南开大学 生物相容性γ-聚谷氨酸水凝胶制备方法
CN104490765A (zh) * 2014-12-24 2015-04-08 昆明振华制药厂有限公司 一种黄藤素眼用凝胶剂及其制备方法
CN106365817A (zh) * 2016-08-27 2017-02-01 安徽省司尔特肥业股份有限公司 一种山核桃专用增产保水肥
CN107198789A (zh) * 2017-06-28 2017-09-26 曲阜师范大学 一种纳米铂聚合物及其制备方法和应用
CN107362130A (zh) * 2017-07-19 2017-11-21 曲阜师范大学 一种铜纳米粒凝胶载药系统及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321256A (zh) * 2011-09-06 2012-01-18 南开大学 生物相容性γ-聚谷氨酸水凝胶制备方法
CN104490765A (zh) * 2014-12-24 2015-04-08 昆明振华制药厂有限公司 一种黄藤素眼用凝胶剂及其制备方法
CN106365817A (zh) * 2016-08-27 2017-02-01 安徽省司尔特肥业股份有限公司 一种山核桃专用增产保水肥
CN107198789A (zh) * 2017-06-28 2017-09-26 曲阜师范大学 一种纳米铂聚合物及其制备方法和应用
CN107362130A (zh) * 2017-07-19 2017-11-21 曲阜师范大学 一种铜纳米粒凝胶载药系统及其制备方法和应用

Also Published As

Publication number Publication date
CN108552169A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
Rozman et al. Potential antimicrobial applications of chitosan nanoparticles (ChNP)
Prasanna et al. Metal oxide curcumin incorporated polymer patches for wound healing
Janani et al. Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging
Liu et al. Chitosan-sodium alginate nanoparticle as a delivery system for ε-polylysine: Preparation, characterization and antimicrobial activity
Calamak et al. Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag+ release and antibacterial activity
Dizaj et al. Antimicrobial activity of the metals and metal oxide nanoparticles
AU2014264224B2 (en) Doped metal oxide nanoparticles of and uses thereof
Archana et al. In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material
Darvishi et al. Ultrasound-assisted synthesis of MIL-88 (Fe) coordinated to carboxymethyl cellulose fibers: A safe carrier for highly sustained release of tetracycline
Chin et al. Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers
Lu et al. Novel wound dressing with chitosan gold nanoparticles capped with a small molecule for effective treatment of multiantibiotic-resistant bacterial infections
Mohamed et al. Synthesis and characterization of antimicrobial crosslinked carboxymethyl chitosan nanoparticles loaded with silver
EP3747932A1 (en) Branched polyamino acid bacteriostatic agent and application thereof
CN104546717A (zh) 一种高抗菌壳聚糖成膜喷剂及其制备方法
Yang et al. The synthesis of nano-silver/sodium alginate composites and their antibacterial properties
Wu et al. Long-term antibacterial composite via alginate aerogel sustained release of antibiotics and Cu used for bone tissue bacteria infection
CN104686511B (zh) 一种新型高效杀菌抑菌剂
Gregorova et al. Lignin-containing polyethylene films with antibacterial activity
CN104857550B (zh) 一种ε‑聚赖氨酸‑对羟基苯丙酸抗菌水凝胶敷料及其制备方法
Paneysar et al. Novel temperature responsive films impregnated with silver nano particles (Ag-NPs) as potential dressings for wounds
Abou El Fadl et al. Effect of nano-metal oxides (TiO2, MgO, CaO, and ZnO) on antibacterial property of (PEO/PEC-co-AAm) hydrogel synthesized by gamma irradiation
CN103980665A (zh) 一种水溶性抗菌复合材料及其制备方法
Sun et al. Fabrication of functionalized chitosan hydrogels triggered by charge interactions and pH response for bacterial capture and killing
Gamarra et al. Ionic coupling of hyaluronic acid with ethyl N-lauroyl L-arginate (LAE): Structure, properties and biocide activity of complexes
CN104784103B (zh) 基于寡聚氨基酸两亲分子可注射抗菌水凝胶

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220208

Address after: 225300 Xianjin village, Louzhuang Town, Jiangyan District, Taizhou City, Jiangsu Province

Patentee after: TAIZHOU XIANJIN CHEMICAL Co.,Ltd.

Address before: 273165 Jingxuan West Road, Qufu City, Jining, Shandong Province, No. 57

Patentee before: QUFU NORMAL University

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201030

CF01 Termination of patent right due to non-payment of annual fee