CN108548997B - Transformer substation space partial discharge positioning method and system - Google Patents

Transformer substation space partial discharge positioning method and system Download PDF

Info

Publication number
CN108548997B
CN108548997B CN201810338375.7A CN201810338375A CN108548997B CN 108548997 B CN108548997 B CN 108548997B CN 201810338375 A CN201810338375 A CN 201810338375A CN 108548997 B CN108548997 B CN 108548997B
Authority
CN
China
Prior art keywords
partial discharge
uhf
simulated
substation
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810338375.7A
Other languages
Chinese (zh)
Other versions
CN108548997A (en
Inventor
李臻
罗林根
周南
盛戈皞
钱勇
刘亚东
宋辉
江秀臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiao Tong University
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to CN201810338375.7A priority Critical patent/CN108548997B/en
Publication of CN108548997A publication Critical patent/CN108548997A/en
Application granted granted Critical
Publication of CN108548997B publication Critical patent/CN108548997B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了变电站空间局部放电定位方法,其包括步骤:(1)在被测区域选定N个测量点,构建模拟局部放电信号强度概率分布特性矩阵Ψ(m);(2)当局部放电实际发生时,采用q个特高频传感器采集局部放电信号并获得实测局部放电强度特性向量

Figure DDA0001629894920000011
(3)基于模型公式获取局部放电的定位结果E。此外,本发明还公开了一种变电站空间局部放电定位系统,包括:q个特高频传感器以及与该q个特高频传感器数据连接的处理单元。该变电站空间局部放电定位方法定位快速,受空间环境和电磁环境的影响较小,降低了变电站局部放电监测的难度,提高了电力设备故障的检修效率,进而提高了变电站运维的智能化水平。

Figure 201810338375

The invention discloses a method for localizing partial discharge in substation space, which comprises the steps of: (1) selecting N measurement points in a measured area, and constructing a probability distribution characteristic matrix Ψ (m) of simulated partial discharge signal strength; (2) when partial discharge When it actually occurs, q UHF sensors are used to collect the partial discharge signal and obtain the measured partial discharge intensity characteristic vector.

Figure DDA0001629894920000011
(3) Obtain the localization result E of partial discharge based on the model formula. In addition, the invention also discloses a substation space partial discharge positioning system, comprising: q ultra-high frequency sensors and a processing unit connected with the q ultra-high frequency sensors for data. The spatial partial discharge positioning method of the substation can locate quickly, and is less affected by the space environment and electromagnetic environment, which reduces the difficulty of partial discharge monitoring in the substation, improves the maintenance efficiency of power equipment faults, and further improves the intelligent level of the operation and maintenance of the substation.

Figure 201810338375

Description

一种变电站空间局部放电定位方法及系统Method and system for localization of partial discharge in substation space

技术领域technical field

本发明涉及一种定位方法及系统,尤其涉及用于局部放电信号的定位方法及系统。The present invention relates to a positioning method and system, in particular to a positioning method and system for partial discharge signals.

背景技术Background technique

电力设备带电检测是发现电力设备运行隐患的重要手段之一,也是电力设备安全、稳定地运行的重要保障。据统计,随着我国电力系统电压等级的不断提高,在电力设备故障中,绝缘故障占比达50%以上。设备绝缘故障的一个重要表现就是局部放电的发生。局部放电不仅是绝缘劣化的表现,同时也会加剧绝缘劣化的程度,造成恶性循环,最终造成绝缘击穿,进而引起重大事故的发生。有效的局部放电检测与定位技术可以及时发现绝缘故障并进行精确定位,加快检修速度与效率,避免事故的蔓延。因此,局部放电的检测与定位便成为了带电检测工作的重点。The live detection of power equipment is one of the important means to discover hidden dangers in the operation of power equipment, and it is also an important guarantee for the safe and stable operation of power equipment. According to statistics, with the continuous improvement of the voltage level of my country's power system, insulation faults account for more than 50% of power equipment faults. An important manifestation of equipment insulation failure is the occurrence of partial discharge. Partial discharge is not only a manifestation of insulation degradation, but also aggravates the degree of insulation degradation, resulting in a vicious circle, which eventually leads to insulation breakdown, which in turn leads to major accidents. Effective partial discharge detection and positioning technology can detect insulation faults in time and accurately locate them, speed up maintenance speed and efficiency, and avoid the spread of accidents. Therefore, the detection and localization of partial discharge has become the focus of live detection work.

若采用对变电站全站空间的每一个电力设备均进行监测和排查,则会大大增加设备以及人力成本,且监测效率极低。而目前采用的变电站全站空间的特高频局部放电定位技术主要包括两种:时差法以及角度定位法。其中时差法由于需要以很高的采样频率对信号进行采样,因此该方法对于硬件的要求较高,实现起来较为困难;角度定位法则容易受到空间环境和电磁环境的影响,在实际应用中难以准确定位。If the monitoring and investigation of every power equipment in the whole station space of the substation is adopted, the equipment and labor costs will be greatly increased, and the monitoring efficiency will be extremely low. At present, there are mainly two types of UHF partial discharge localization technologies used in the whole station space of substations: time difference method and angle location method. Among them, the time difference method needs to sample the signal at a high sampling frequency, so this method has high requirements on hardware and is difficult to implement; the angle positioning method is easily affected by the space environment and the electromagnetic environment, and it is difficult to be accurate in practical applications. position.

基于此,期望获得一种针对变电站全站空间的局部放电定位方法,当局部放电发生时,该局部放电定位方法快速定位故障设备,极大地提高局部放电的检测和定位效率,并且显著降低了设备、人力成本。此外,该局部放电定位方法受空间环境和电磁环境的影响较小,降低了变电站局部放电监测的难度,提高了电力设备故障的检修效率,最终提高了变电站运维的智能化水平。Based on this, it is expected to obtain a partial discharge localization method for the entire substation space. When partial discharge occurs, the partial discharge localization method can quickly locate the faulty equipment, greatly improve the detection and localization efficiency of partial discharge, and significantly reduce the equipment. ,Labor costs. In addition, the partial discharge localization method is less affected by the space environment and electromagnetic environment, which reduces the difficulty of partial discharge monitoring in substations, improves the maintenance efficiency of power equipment faults, and finally improves the intelligent level of substation operation and maintenance.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种变电站空间局部放电定位方法,该变电站空间局部放电定位方法基于所构建的模拟局部放电信号强度概率分布特性,然后通过贝叶斯概率法判断局部放电发生在各区域的概率,最终通过综合分析实现局部放电的空间定位。该变电站空间局部放电定位方法定位快速,受空间环境和电磁环境的影响较小,降低了变电站局部放电监测的难度,提高了电力设备故障的检修效率,进而提高了变电站运维的智能化水平。The purpose of the present invention is to provide a localization method for partial discharge in substation space. The method for localization of partial discharge in substation space is based on the constructed simulated partial discharge signal intensity probability distribution characteristics, and then uses Bayesian probability method to determine the occurrence of partial discharge in each area. probability, and finally realize the spatial localization of partial discharge through comprehensive analysis. The spatial partial discharge positioning method of the substation can locate quickly, and is less affected by the space environment and electromagnetic environment, which reduces the difficulty of partial discharge monitoring in the substation, improves the maintenance efficiency of power equipment faults, and further improves the intelligent level of the operation and maintenance of the substation.

基于上述目的,本发明提出了一种变电站空间局部放电定位方法,其包括步骤:Based on the above purpose, the present invention proposes a method for localizing partial discharge in a substation space, which includes the steps:

(1)在被测区域选定N个测量点,构建模拟局部放电信号强度概率分布特性矩阵Ψ(m)(1) N measurement points are selected in the tested area, and the simulated partial discharge signal intensity probability distribution characteristic matrix Ψ (m) is constructed;

(2)当局部放电实际发生时,采用q个特高频传感器采集局部放电信号并获得实测局部放电强度特性向量

Figure BDA0001629894900000021
(2) When the partial discharge actually occurs, use q UHF sensors to collect the partial discharge signal and obtain the measured partial discharge intensity characteristic vector
Figure BDA0001629894900000021

(3)基于下述模型公式获取局部放电的定位结果E:(3) Obtain the partial discharge localization result E based on the following model formula:

Figure BDA0001629894900000022
Figure BDA0001629894900000022

Figure BDA0001629894900000023
Figure BDA0001629894900000023

Figure BDA0001629894900000024
Figure BDA0001629894900000024

Figure BDA0001629894900000025
Figure BDA0001629894900000025

Figure BDA0001629894900000026
Figure BDA0001629894900000026

Figure BDA0001629894900000027
Figure BDA0001629894900000027

Figure BDA0001629894900000028
Figure BDA0001629894900000028

Figure BDA0001629894900000029
Figure BDA0001629894900000029

其中,Sk表示测量点RPk的坐标,k表示N个测量点中的某一个测量点;Sn表示测量点RPn的坐标,n=1,2,……,N;d表示rPD的维度,μk和μn分别表示测量点RPk和RPn的局部放电信号强度样本均值,Ck和Cn是协方差矩阵,

Figure BDA0001629894900000034
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第k列的向量,
Figure BDA0001629894900000035
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第n列的向量。Among them, Sk represents the coordinates of the measurement point RP k , k represents one of the N measurement points; Sn represents the coordinates of the measurement point RP n , n=1,2,...,N; d represents r PD The dimensions of , μ k and μ n represent the sample mean values of PD signal intensity at measurement points RP k and RP n , respectively, C k and C n are covariance matrices,
Figure BDA0001629894900000034
represents the vector selected from the kth column in the probability distribution characteristic matrix Ψ (m) of the simulated partial discharge signal strength,
Figure BDA0001629894900000035
Represents a vector selected from the nth column of the simulated partial discharge signal strength probability distribution characteristic matrix Ψ (m) .

需要说明的是,其中T表示向量的转置,其为本领域内的通用符号。It should be noted that T represents the transpose of a vector, which is a common symbol in the field.

进一步地,在本发明所述的变电站空间局部放电定位方法中,步骤(1)进一步包括步骤:Further, in the method for localizing partial discharge in substation space according to the present invention, step (1) further comprises the steps of:

将被测区域内的测量点记为RPj(j=1,2,……,N),使用模拟局部放电源在每一个测量点放电M次,采用q个特高频传感器测量各测量点各次的模拟局部放电信号强度,将任意一个特高频传感器记为APi(i=1,2,3,4……,q);设特高频传感器APi测得的测量点RPj处的模拟局部放电强度值为

Figure BDA0001629894900000033
则测量点RPj处的模拟局部放电强度特性向量r(m) j为:Denote the measurement points in the measured area as RP j (j=1,2,...,N), use the simulated partial discharge source to discharge M times at each measurement point, and use q UHF sensors to measure each measurement point For each simulated partial discharge signal intensity, record any UHF sensor as AP i (i=1, 2, 3, 4..., q); set the measurement point RP j measured by the UHF sensor AP i The simulated partial discharge intensity value at
Figure BDA0001629894900000033
Then the simulated partial discharge intensity characteristic vector r (m) j at the measurement point RP j is:

Figure BDA0001629894900000031
其中m表示测量次数,m=1,2,…,M;
Figure BDA0001629894900000031
Where m represents the number of measurements, m=1,2,...,M;

则所有测量点的模拟局部放电强度特性向量构成了被测区域的模拟局部放电信号强度概率分布特性矩阵Ψ(m)Then the simulated partial discharge intensity characteristic vectors of all measurement points constitute the simulated partial discharge signal intensity probability distribution characteristic matrix Ψ (m) of the measured area:

Figure BDA0001629894900000032
Figure BDA0001629894900000032

进一步地,在本发明所述的变电站空间局部放电定位方法中,所述q个特高频传感器被设置为4个特高频传感器。Further, in the method for localizing partial discharge in substation space according to the present invention, the q UHF sensors are set as 4 UHF sensors.

进一步地,在本发明所述的变电站空间局部放电定位方法中,所述特高频传感器为特高频无线传感器。Further, in the method for localizing partial discharge in substation space according to the present invention, the UHF sensor is a UHF wireless sensor.

需要说明的是,为了便于数据的传输发送,本案中优选的采用特高频无线传感器。It should be noted that, in order to facilitate data transmission and transmission, UHF wireless sensors are preferably used in this case.

相应地,本发明的另一目的在于提供一种变电站空间局部放电定位系统,该变电站空间局部放电定位系统定位快速,受空间环境和电磁环境的影响较小,降低了变电站局部放电监测的难度,提高了电力设备故障的检修效率,进而提高了变电站运维的智能化水平。Correspondingly, another object of the present invention is to provide a localization system for partial discharge in substation space. The localization system for partial discharge in substation space is fast in positioning, less affected by space environment and electromagnetic environment, and reduces the difficulty of partial discharge monitoring in substations. It improves the maintenance efficiency of power equipment failures, thereby improving the intelligent level of substation operation and maintenance.

基于上述目的,本发明还提出了一种变电站空间局部放电定位系统,包括:q个特高频传感器以及与该q个特高频传感器数据连接的处理单元;其中:Based on the above purpose, the present invention also proposes a substation spatial partial discharge positioning system, including: q UHF sensors and a processing unit connected to the q UHF sensors for data; wherein:

处理单元基于q个特高频传感器传输的模拟局部放电信号构建模拟局部放电信号强度概率分布特性矩阵Ψ(m)The processing unit constructs a probability distribution characteristic matrix Ψ (m) of the simulated partial discharge signal intensity based on the simulated partial discharge signals transmitted by the q UHF sensors;

当局部放电实际发生时,采用q个特高频传感器采集局部放电信号,处理单元基于这些局部放电信号获得实测局部放电强度特性向量

Figure BDA0001629894900000041
When partial discharge actually occurs, q UHF sensors are used to collect partial discharge signals, and the processing unit obtains the measured partial discharge intensity characteristic vector based on these partial discharge signals
Figure BDA0001629894900000041

处理单元基于下述模型公式获取局部放电的定位结果E:The processing unit obtains the partial discharge localization result E based on the following model formula:

Figure BDA0001629894900000042
Figure BDA0001629894900000042

Figure BDA0001629894900000043
Figure BDA0001629894900000043

Figure BDA0001629894900000044
Figure BDA0001629894900000044

Figure BDA0001629894900000045
Figure BDA0001629894900000045

Figure BDA0001629894900000046
Figure BDA0001629894900000046

Figure BDA0001629894900000047
Figure BDA0001629894900000047

Figure BDA0001629894900000048
Figure BDA0001629894900000048

Figure BDA0001629894900000049
Figure BDA0001629894900000049

其中,Sk表示测量点RPk的坐标,k表示N个测量点中的某一个测量点;Sn表示测量点RPn的坐标,n=1,2,……,N;d表示rPD的维度,μk和μn分别表示测量点RPk和RPn的局部放电信号强度样本均值,Ck和Cn是协方差矩阵,

Figure BDA0001629894900000054
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第k列的向量,
Figure BDA0001629894900000055
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第n列的向量。Among them, Sk represents the coordinates of the measurement point RP k , k represents one of the N measurement points; Sn represents the coordinates of the measurement point RP n , n=1,2,...,N; d represents r PD The dimensions of , μ k and μ n represent the sample mean values of PD signal intensity at measurement points RP k and RP n , respectively, C k and C n are covariance matrices,
Figure BDA0001629894900000054
represents the vector selected from the kth column in the probability distribution characteristic matrix Ψ (m) of the simulated partial discharge signal strength,
Figure BDA0001629894900000055
Represents a vector selected from the nth column of the simulated partial discharge signal strength probability distribution characteristic matrix Ψ (m) .

进一步地,在本发明所述的变电站空间局部放电定位系统中,所述处理单元基于q个特高频传感器传输的模拟局部放电信号构建模拟局部放电信号强度概率分布特性矩阵Ψ(m)包括步骤:Further, in the substation space partial discharge positioning system of the present invention, the processing unit constructs the simulated partial discharge signal intensity probability distribution characteristic matrix Ψ (m) based on the simulated partial discharge signals transmitted by the q UHF sensors, including the steps of: :

将被测区域内的测量点记为RPj(j=1,2,……,N),使用模拟局部放电源在每一个测量点放电M次,采用q个特高频传感器测量各测量点各次的模拟局部放电信号强度,将任意一个特高频传感器记为APi(i=1,2,3,4……,q);设特高频传感器APi测得的测量点RPj处的模拟局部放电强度值为

Figure BDA0001629894900000053
则测量点RPj处的模拟局部放电强度特性向量r(m) j为:Denote the measurement points in the measured area as RP j (j=1,2,...,N), use the simulated partial discharge source to discharge M times at each measurement point, and use q UHF sensors to measure each measurement point For each simulated partial discharge signal intensity, record any UHF sensor as AP i (i=1, 2, 3, 4..., q); set the measurement point RP j measured by the UHF sensor AP i The simulated partial discharge intensity value at
Figure BDA0001629894900000053
Then the simulated partial discharge intensity characteristic vector r (m) j at the measurement point RP j is:

Figure BDA0001629894900000051
其中m表示测量次数,m=1,2,…,M;
Figure BDA0001629894900000051
Where m represents the number of measurements, m=1,2,...,M;

则所有测量点的模拟局部放电强度特性向量构成了被测区域的模拟局部放电信号强度概率分布特性矩阵Ψ(m)Then the simulated partial discharge intensity characteristic vectors of all measurement points constitute the simulated partial discharge signal intensity probability distribution characteristic matrix Ψ (m) of the measured area:

Figure BDA0001629894900000052
Figure BDA0001629894900000052

进一步地,在本发明所述的变电站空间局部放电定位系统中,所述q个特高频传感器被设置为4个特高频传感器。Further, in the substation space partial discharge positioning system according to the present invention, the q UHF sensors are set as 4 UHF sensors.

进一步地,在本发明所述的变电站空间局部放电定位系统中,所述特高频传感器为特高频无线传感器。Further, in the substation space partial discharge positioning system of the present invention, the UHF sensor is a UHF wireless sensor.

需要说明的是,为了便于数据的传输发送,本案中优选的采用特高频无线传感器。It should be noted that, in order to facilitate data transmission and transmission, UHF wireless sensors are preferably used in this case.

进一步地,在本发明所述的变电站空间局部放电定位系统中,所述特高频传感器与处理单元之间连接有路由器。Further, in the substation space partial discharge positioning system of the present invention, a router is connected between the UHF sensor and the processing unit.

本发明所述的变电站空间局部放电定位方法基于所构建的模拟局部放电信号强度概率分布特性,然后通过贝叶斯概率法判断局部放电发生在各区域的概率,最终通过综合分析实现局部放电的空间定位。所述的变电站空间局部放电定位方法定位快速,受空间环境和电磁环境的影响较小,降低了变电站局部放电监测的难度,提高了电力设备故障的检修效率,进而提高了变电站运维的智能化水平。The partial discharge localization method in the substation space of the present invention is based on the constructed simulated partial discharge signal intensity probability distribution characteristics, and then judges the probability of partial discharge occurring in each area through the Bayesian probability method, and finally realizes the partial discharge space through comprehensive analysis. position. The method for localizing partial discharge in space of a substation can locate quickly, and is less affected by the space environment and electromagnetic environment, which reduces the difficulty of monitoring partial discharge in the substation, improves the maintenance efficiency of power equipment faults, and further improves the intelligent operation and maintenance of the substation. Level.

此外,本发明所述的变电站空间局部放电定位系统也具有上述优点。In addition, the substation space partial discharge positioning system of the present invention also has the above advantages.

附图说明Description of drawings

图1为本发明所述的变电站空间局部放电定位方法的在一种实施方式下的流程示意图。FIG. 1 is a schematic flowchart of the method for localizing partial discharge in a substation space according to an embodiment of the present invention.

图2为本发明所述的变电站空间局部放电定位系统在一种实施方式下的示意图。FIG. 2 is a schematic diagram of the substation space partial discharge positioning system according to an embodiment of the present invention.

图3显示了本发明所述的变电站空间局部放电定位系统在一种实施方式下的排布方式。FIG. 3 shows the arrangement of the substation space partial discharge positioning system according to the present invention in one embodiment.

具体实施方式Detailed ways

下面将结合说明书附图和具体的实施例对本发明所述的变电站空间局部放电定位及系统做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。The substation space partial discharge location and system of the present invention will be further explained and described below in conjunction with the drawings and specific embodiments of the description, but the explanation and explanation do not constitute an improper limitation of the technical solution of the present invention.

图1为本发明所述的变电站空间局部放电定位方法的在一种实施方式下的流程示意图。FIG. 1 is a schematic flowchart of the method for localizing partial discharge in a substation space according to an embodiment of the present invention.

如图1所示,本实施方式中的变电站空间局部放电定位包括步骤:As shown in FIG. 1 , the localization of partial discharge in the substation space in this embodiment includes the steps:

(1)在被测区域选定N个测量点,构建模拟局部放电信号强度概率分布特性矩阵Ψ(m),其中,将被测区域内的测量点记为RPj(j=1,2,……,N),使用模拟局部放电源在每一个测量点放电M次,采用q个特高频传感器测量各测量点各次的模拟局部放电信号强度,将任意一个特高频传感器记为APi(i=1,2,3,4……,q);设特高频传感器APi测得的测量点RPj处的模拟局部放电强度值为

Figure BDA0001629894900000062
则测量点RPj处的模拟局部放电强度特性向量r(m) j为:(1) Select N measurement points in the measured area, and construct a probability distribution characteristic matrix Ψ (m) of simulated partial discharge signal strength, where the measurement points in the measured area are recorded as RP j (j=1,2, ...,N), use the analog partial discharge source to discharge M times at each measurement point, use q UHF sensors to measure the simulated partial discharge signal strength of each measurement point, and record any UHF sensor as AP i (i=1, 2, 3, 4..., q); set the simulated partial discharge intensity at the measurement point RP j measured by the UHF sensor AP i as
Figure BDA0001629894900000062
Then the simulated partial discharge intensity characteristic vector r (m) j at the measurement point RP j is:

Figure BDA0001629894900000061
其中m表示测量次数,m=1,2,…,M;需要说明的是,其中T表示向量的转置,为本领域内的通用符号。
Figure BDA0001629894900000061
where m represents the number of measurements, m=1, 2, .

则所有测量点的模拟局部放电强度特性向量构成了被测区域的模拟局部放电信号强度概率分布特性矩阵Ψ(m)Then the simulated partial discharge intensity characteristic vectors of all measurement points constitute the simulated partial discharge signal intensity probability distribution characteristic matrix Ψ (m) of the measured area:

Figure BDA0001629894900000071
Figure BDA0001629894900000071

(2)当局部放电实际发生时,采用q个特高频传感器采集局部放电信号并获得实测局部放电强度特性向量

Figure BDA0001629894900000072
(2) When the partial discharge actually occurs, use q UHF sensors to collect the partial discharge signal and obtain the measured partial discharge intensity characteristic vector
Figure BDA0001629894900000072

(3)基于下述模型公式获取局部放电的定位结果E:(3) Obtain the partial discharge localization result E based on the following model formula:

Figure BDA0001629894900000073
Figure BDA0001629894900000073

Figure BDA0001629894900000074
Figure BDA0001629894900000074

Figure BDA0001629894900000075
Figure BDA0001629894900000075

Figure BDA0001629894900000076
Figure BDA0001629894900000076

Figure BDA0001629894900000077
Figure BDA0001629894900000077

Figure BDA0001629894900000078
Figure BDA0001629894900000078

Figure BDA0001629894900000079
Figure BDA0001629894900000079

Figure BDA00016298949000000710
Figure BDA00016298949000000710

其中,Sk表示测量点RPk的坐标,k表示N个测量点中的某一个测量点;Sn表示测量点RPn的坐标,n=1,2,……,N;d表示rPD的维度,μk和μn分别表示测量点RPk和RPn的局部放电信号强度样本均值,Ck和Cn是协方差矩阵,

Figure BDA00016298949000000711
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第k列的向量,
Figure BDA00016298949000000712
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第n列的向量。Among them, Sk represents the coordinates of the measurement point RP k , k represents one of the N measurement points; Sn represents the coordinates of the measurement point RP n , n=1,2,...,N; d represents r PD The dimensions of , μ k and μ n represent the sample mean values of PD signal intensity at measurement points RP k and RP n , respectively, C k and C n are covariance matrices,
Figure BDA00016298949000000711
represents the vector selected from the kth column in the probability distribution characteristic matrix Ψ (m) of the simulated partial discharge signal strength,
Figure BDA00016298949000000712
Represents a vector selected from the nth column of the simulated partial discharge signal strength probability distribution characteristic matrix Ψ (m) .

需要说明的是,在本实施方式中,q个特高频传感器被设置为4个特高频传感器AP1、AP2、AP3以及AP4,并且特高频传感器AP1、AP2、AP3以及AP4为特高频无线传感器。It should be noted that, in this embodiment, the q UHF sensors are set as four UHF sensors AP 1 , AP 2 , AP 3 , and AP 4 , and the UHF sensors AP 1 , AP 2 , and AP 3 and AP 4 are UHF wireless sensors.

图2为本发明所述的变电站空间局部放电定位系统在一种实施方式下的示意图。FIG. 2 is a schematic diagram of the substation space partial discharge positioning system according to an embodiment of the present invention.

如图2所示,在本实施方式中的变电站空间局部放电定位系统包括q个特高频传感器(在本实施方式中,q=4,即特高频传感器AP1、AP2、AP3以及AP4,各个特高频传感器均为特高频无线传感器)以及与各个特高频传感器数据连接的处理单元1,处理单元1通过路由器2实现数据连接。As shown in FIG. 2 , the spatial partial discharge localization system in the substation in this embodiment includes q ultra-high frequency sensors (in this embodiment, q=4, that is, the ultra-high frequency sensors AP 1 , AP 2 , AP 3 and AP 4 , each UHF sensor is a UHF wireless sensor) and a processing unit 1 that is data-connected to each UHF sensor, and the processing unit 1 realizes data connection through the router 2 .

特高频传感器AP1、AP2、AP3以及AP4分别位于测试区域4的四个边角处,当测试区域内的某一处P发生局部放电时,通过特高频传感器AP1、AP2、AP3以及AP4采集局部放电信号。The UHF sensors AP 1 , AP 2 , AP 3 and AP 4 are located at the four corners of the test area 4 respectively. When a partial discharge occurs at a certain place P in the test area, the UHF sensors AP 1 , AP 2 , AP 3 and AP 4 collect partial discharge signals.

具体过程如图3所示。图3显示了本发明所述的变电站空间局部放电定位系统在一种实施方式下的排布方式。The specific process is shown in Figure 3. FIG. 3 shows the arrangement of the substation space partial discharge positioning system according to the present invention in one embodiment.

测试时,测试区域4为24m*24m(图中L1表示正方形区域边长,L1=24m)的正方形区域内,并在正方形四个顶角处设置四个特高频传感器AP1、AP2、AP3以及AP4,为了便于表示方位,建立平面直角坐标系,AP3在坐标系中的坐标为(1,1),AP4在坐标系中的坐标为(25,1),AP1在坐标系中的坐标为(25,25),AP2在坐标系中的坐标为(1,25),并且在正方形区域内均匀分布有625个测试点,沿X轴方向或与其平行的直线方向上相邻两个测试点的间隔L2为1m,而沿Y轴方向或与其平行的直线方向上相邻两个测试点的间隔L3也为1m。During the test, the test area 4 is within a square area of 24m*24m (L1 in the figure represents the side length of the square area, L1=24m), and four UHF sensors AP 1 , AP 2 , For AP 3 and AP 4 , in order to express the orientation, a plane rectangular coordinate system is established. The coordinates of AP 3 in the coordinate system are (1,1), the coordinates of AP 4 in the coordinate system are (25, 1), and the coordinates of AP 1 are The coordinates in the coordinate system are (25, 25), the coordinates of AP 2 in the coordinate system are (1, 25), and there are 625 test points evenly distributed in the square area, along the X-axis direction or the direction of a straight line parallel to it The interval L2 between the two adjacent test points above is 1m, and the interval L3 between the two adjacent test points along the Y-axis direction or a straight line parallel thereto is also 1m.

将被测区域内的测量点记为RPj(j=1,2,……,N,在本实施方式中N=625),使用模拟局部放电源在每一个测量点放电M次,采用q个特高频传感器测量各测量点各次的模拟局部放电信号强度,将任意一个特高频传感器记为APi(i=1,2,3,4……,q);设特高频传感器APi测得的测量点RPj处的模拟局部放电强度值为

Figure BDA0001629894900000081
则测量点RPj处的模拟局部放电强度特性向量r(m) j为:
Figure BDA0001629894900000082
其中m表示测量次数,m=1,2,…,M;需要说明的是,其中T表示向量的转置,为本领域内的通用符号。Denote the measurement points in the measured area as RP j (j=1,2,...,N, in this embodiment N=625), use the simulated partial discharge source to discharge M times at each measurement point, and use A UHF sensor measures the simulated partial discharge signal intensity of each measurement point, and any UHF sensor is recorded as AP i (i=1, 2, 3, 4..., q); set the UHF sensor The simulated partial discharge intensity at measurement point RP j measured by AP i is
Figure BDA0001629894900000081
Then the simulated partial discharge intensity characteristic vector r (m) j at the measurement point RP j is:
Figure BDA0001629894900000082
where m represents the number of measurements, m=1, 2, .

则所有测量点的模拟局部放电强度特性向量构成了被测区域的模拟局部放电信号强度概率分布特性矩阵Ψ(m)Then the simulated partial discharge intensity characteristic vectors of all measurement points constitute the simulated partial discharge signal intensity probability distribution characteristic matrix Ψ (m) of the measured area:

Figure BDA0001629894900000091
Figure BDA0001629894900000091

处理单元1基于特高频传感器AP1、AP2、AP3以及AP4传输的模拟局部放电信号构建模拟局部放电信号强度概率分布特性矩阵Ψ(m)The processing unit 1 constructs an analog partial discharge signal intensity probability distribution characteristic matrix Ψ (m) based on the analog partial discharge signals transmitted by the UHF sensors AP 1 , AP 2 , AP 3 and AP 4 ;

当局部放电实际发生时,采用特高频传感器AP1、AP2、AP3以及AP4采集局部放电信号,处理单元1基于这些局部放电信号获得实测局部放电强度特性向量

Figure BDA0001629894900000092
When partial discharge actually occurs, the UHF sensors AP 1 , AP 2 , AP 3 and AP 4 are used to collect partial discharge signals, and the processing unit 1 obtains the measured partial discharge intensity characteristic vector based on these partial discharge signals
Figure BDA0001629894900000092

处理单元1基于下述模型公式获取局部放电的定位结果E:The processing unit 1 obtains the partial discharge localization result E based on the following model formula:

Figure BDA0001629894900000093
Figure BDA0001629894900000093

Figure BDA0001629894900000094
Figure BDA0001629894900000094

Figure BDA0001629894900000095
Figure BDA0001629894900000095

Figure BDA0001629894900000096
Figure BDA0001629894900000096

Figure BDA0001629894900000097
Figure BDA0001629894900000097

Figure BDA0001629894900000098
Figure BDA0001629894900000098

Figure BDA0001629894900000099
Figure BDA0001629894900000099

Figure BDA00016298949000000910
Figure BDA00016298949000000910

其中,Sk表示测量点RPk的坐标,k表示N个测量点中的某一个测量点;Sn表示测量点RPn的坐标,n=1,2,……,N;d表示rPD的维度,μk和μn分别表示测量点RPk和RPn的局部放电信号强度样本均值,Ck和Cn是协方差矩阵,

Figure BDA0001629894900000101
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第k列的向量,
Figure BDA0001629894900000102
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第n列的向量。Among them, Sk represents the coordinates of the measurement point RP k , k represents one of the N measurement points; Sn represents the coordinates of the measurement point RP n , n=1,2,...,N; d represents r PD The dimensions of , μ k and μ n represent the sample mean values of PD signal intensity at measurement points RP k and RP n , respectively, C k and C n are covariance matrices,
Figure BDA0001629894900000101
represents the vector selected from the kth column in the probability distribution characteristic matrix Ψ (m) of the simulated partial discharge signal strength,
Figure BDA0001629894900000102
Represents a vector selected from the nth column of the simulated partial discharge signal strength probability distribution characteristic matrix Ψ (m) .

为了验证采用基于贝叶斯概率的变电站空间局部放电的定位效果,对测试区域中每一个测试点分别采用本案的变电站空间局部放电定位方法以及现有技术的时差法以及角度定位法进行测量,将测量所获得的数值与实际发生局部放电的坐标数据进行误差统计,结果如表1所示。In order to verify the localization effect of substation space partial discharge based on Bayesian probability, each test point in the test area is measured by the substation space partial discharge localization method of this case, the time difference method and the angle localization method of the prior art. The error statistics between the values obtained by the measurement and the coordinate data of the actual occurrence of partial discharge are carried out, and the results are shown in Table 1.

表1.Table 1.

变电站空间局部放电定位方法Localization method of partial discharge in substation space 时差法time difference 角度定位法Angle positioning method 平均定位误差(m)Average positioning error (m) 1.861.86 2.382.38 2.842.84 误差小于1m百分比(%)Error less than 1m percentage (%) 32.332.3 24.224.2 21.021.0 误差小于3m百分比(%)The error is less than 3m percentage (%) 75.275.2 70.270.2 64.264.2 误差小于5m百分比(%)The error is less than 5m percentage (%) 87.587.5 84.684.6 83.583.5 最大误差(m)Maximum error (m) 8.258.25 11.2311.23 11.7811.78

由表1可以看出,采用本案的变电站全站空间局部放电定位方法平均定位误差为1.86米,定位误差小于3米的百分比为75.2%,性能明显优于现有技术的定位方法。并且1.86米的定位误差完全满足变电站局部放电定位的精度要求。由此说明,基于所构建的模拟局部放电信号强度概率分布特性,然后通过贝叶斯概率法判断局部放电发生在各区域的概率,最终通过综合分析实现局部放电的空间定位。该变电站空间局部放电定位方法定位快速,受空间环境和电磁环境的影响较小,降低了变电站局部放电监测的难度,提高了电力设备故障的检修效率,进而提高了变电站运维的智能化水平。It can be seen from Table 1 that the average positioning error of the substation-wide partial discharge positioning method in this case is 1.86 meters, and the percentage of the positioning error less than 3 meters is 75.2%. The performance is significantly better than the existing technology. And the positioning error of 1.86 meters fully meets the accuracy requirements of partial discharge positioning in substations. This shows that based on the probability distribution characteristics of the simulated partial discharge signal intensity, the probability of partial discharge occurring in each area is judged by the Bayesian probability method, and the spatial positioning of partial discharge is finally realized through comprehensive analysis. The spatial partial discharge positioning method of the substation can locate quickly, and is less affected by the space environment and electromagnetic environment, which reduces the difficulty of partial discharge monitoring in the substation, improves the maintenance efficiency of power equipment faults, and further improves the intelligent level of the operation and maintenance of the substation.

并且,与现有技术的时差法、角度定位法相比,本案只需要测量局部放电信号强度信息,在保证了较高的定位精度的同时,显著减小了系统硬件成本,有效地提高了变电站电力设备的监测、检修效率,具有较好的实际推广应用价值。Moreover, compared with the time difference method and the angle positioning method in the prior art, this case only needs to measure the partial discharge signal strength information, which not only ensures high positioning accuracy, but also significantly reduces the cost of system hardware and effectively improves the power of the substation. The monitoring and maintenance efficiency of equipment has good practical application value.

需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。It should be noted that the prior art part in the protection scope of the present invention is not limited to the examples given in this application document, and all prior art that does not contradict the solution of the present invention, including but not limited to the prior art Patent documents, prior publications, prior publications, etc., can all be included in the protection scope of the present invention.

此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。In addition, the combination of the technical features in this case is not limited to the combination described in the claims of this case or the combination described in the specific embodiments, and all the technical features described in this case can be freely combined or combined in any way, unless conflict with each other.

还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。It should also be noted that the above-listed embodiments are only specific embodiments of the present invention. Obviously, the present invention is not limited to the above embodiments, and the similar changes or deformations made subsequently can be directly derived from the contents disclosed in the present invention or can be easily thought of by those skilled in the art, and all belong to the protection scope of the present invention. .

Claims (9)

1.一种变电站空间局部放电定位方法,其包括步骤:1. A method for localizing partial discharge in substation space, comprising the steps of: (1)在被测区域选定N个测量点,构建模拟局部放电信号强度概率分布特性矩阵Ψ(m)(1) N measurement points are selected in the tested area, and the simulated partial discharge signal intensity probability distribution characteristic matrix Ψ (m) is constructed; (2)当局部放电实际发生时,采用q个特高频传感器采集局部放电信号并获得实测局部放电强度特性向量
Figure FDA0002286896240000011
(2) When the partial discharge actually occurs, use q UHF sensors to collect the partial discharge signal and obtain the measured partial discharge intensity characteristic vector
Figure FDA0002286896240000011
(3)基于下述模型公式获取局部放电的定位结果E:(3) Obtain the partial discharge localization result E based on the following model formula:
Figure FDA0002286896240000012
Figure FDA0002286896240000012
Figure FDA0002286896240000013
Figure FDA0002286896240000013
Figure FDA0002286896240000014
Figure FDA0002286896240000014
Figure FDA0002286896240000015
Figure FDA0002286896240000015
Figure FDA0002286896240000016
Figure FDA0002286896240000016
Figure FDA0002286896240000017
Figure FDA0002286896240000017
Figure FDA0002286896240000018
Figure FDA0002286896240000018
Figure FDA0002286896240000019
Figure FDA0002286896240000019
其中,Sk表示测量点RPk的坐标,k表示N个测量点中的某一个测量点;Sn表示测量点RPn的坐标,n=1,2,……,N;d表示rPD的维度,μk和μn分别表示测量点RPk和RPn的局部放电信号强度样本均值,Ck和Cn是协方差矩阵,
Figure FDA00022868962400000110
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第k列的向量,
Figure FDA00022868962400000111
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第n列的向量,其中m表示测量次数,m=1,2,…,M。
Among them, Sk represents the coordinates of the measurement point RP k , k represents one of the N measurement points; Sn represents the coordinates of the measurement point RP n , n=1,2,...,N; d represents r PD The dimensions of , μ k and μ n represent the sample mean values of PD signal intensity at measurement points RP k and RP n , respectively, C k and C n are covariance matrices,
Figure FDA00022868962400000110
represents the vector selected from the kth column in the probability distribution characteristic matrix Ψ (m) of the simulated partial discharge signal strength,
Figure FDA00022868962400000111
Represents a vector selected from the nth column in the probability distribution characteristic matrix of simulated partial discharge signal strength Ψ (m) , where m represents the number of measurements, m=1, 2,...,M.
2.如权利要求1所述的变电站空间局部放电定位方法,其特征在于,步骤(1)进一步包括步骤:2. The method for locating partial discharge in substation space as claimed in claim 1, wherein step (1) further comprises the steps of: 将被测区域内的测量点记为RPj(j=1,2,……,N),使用模拟局部放电源在每一个测量点放电M次,采用q个特高频传感器测量各测量点各次的模拟局部放电信号强度,将任意一个特高频传感器记为APi(i=1,2,3,4……,q);设特高频传感器APi测得的测量点RPj处的模拟局部放电强度值为
Figure FDA0002286896240000021
则测量点RPj处的模拟局部放电强度特性向量r(m) j为:
Figure FDA0002286896240000022
其中m表示测量次数,m=1,2,…,M;
Denote the measurement points in the measured area as RP j (j=1,2,...,N), use the simulated partial discharge source to discharge M times at each measurement point, and use q UHF sensors to measure each measurement point For each simulated partial discharge signal intensity, record any UHF sensor as AP i (i=1, 2, 3, 4..., q); set the measurement point RP j measured by the UHF sensor AP i The simulated partial discharge intensity value at
Figure FDA0002286896240000021
Then the simulated partial discharge intensity characteristic vector r (m) j at the measurement point RP j is:
Figure FDA0002286896240000022
Where m represents the number of measurements, m=1,2,...,M;
则所有测量点的模拟局部放电强度特性向量构成了被测区域的模拟局部放电信号强度概率分布特性矩阵Ψ(m)Then the simulated partial discharge intensity characteristic vectors of all measurement points constitute the simulated partial discharge signal intensity probability distribution characteristic matrix Ψ (m) of the measured area:
Figure FDA0002286896240000023
Figure FDA0002286896240000023
3.如权利要求1所述的变电站空间局部放电定位方法,其特征在于,所述q个特高频传感器被设置为4个特高频传感器。3 . The method for localizing partial discharge in substation space according to claim 1 , wherein the q UHF sensors are set as 4 UHF sensors. 4 . 4.如权利要求1所述的变电站空间局部放电定位方法,其特征在于,所述特高频传感器为特高频无线传感器。4 . The method for localizing partial discharge in substation space according to claim 1 , wherein the UHF sensor is an UHF wireless sensor. 5 . 5.一种变电站空间局部放电定位系统,其特征在于,包括:q个特高频传感器以及与该q个特高频传感器数据连接的处理单元;其中:5. A spatial partial discharge positioning system in a substation, comprising: q UHF sensors and a processing unit data-connected to the q UHF sensors; wherein: 处理单元基于q个特高频传感器传输的模拟局部放电信号构建模拟局部放电信号强度概率分布特性矩阵Ψ(m)The processing unit constructs a probability distribution characteristic matrix Ψ (m) of the simulated partial discharge signal intensity based on the simulated partial discharge signals transmitted by the q UHF sensors; 当局部放电实际发生时,采用q个特高频传感器采集局部放电信号,处理单元基于这些局部放电信号获得实测局部放电强度特性向量
Figure FDA0002286896240000024
When partial discharge actually occurs, q UHF sensors are used to collect partial discharge signals, and the processing unit obtains the measured partial discharge intensity characteristic vector based on these partial discharge signals
Figure FDA0002286896240000024
处理单元基于下述模型公式获取局部放电的定位结果E:The processing unit obtains the partial discharge localization result E based on the following model formula:
Figure FDA0002286896240000025
Figure FDA0002286896240000025
Figure FDA0002286896240000031
Figure FDA0002286896240000031
Figure FDA0002286896240000032
Figure FDA0002286896240000032
Figure FDA0002286896240000033
Figure FDA0002286896240000033
Figure FDA0002286896240000034
Figure FDA0002286896240000034
Figure FDA0002286896240000035
Figure FDA0002286896240000035
Figure FDA0002286896240000036
Figure FDA0002286896240000036
Figure FDA0002286896240000037
Figure FDA0002286896240000037
其中,Sk表示测量点RPk的坐标,k表示N个测量点中的某一个测量点;Sn表示测量点RPn的坐标,n=1,2,……,N;d表示rPD的维度,μk和μn分别表示测量点RPk和RPn的局部放电信号强度样本均值,Ck和Cn是协方差矩阵,
Figure FDA0002286896240000038
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第k列的向量,
Figure FDA0002286896240000039
表示选取自模拟局部放电信号强度概率分布特性矩阵Ψ(m)中的第n列的向量,其中m表示测量次数,m=1,2,…,M。
Among them, Sk represents the coordinates of the measurement point RP k , k represents one of the N measurement points; Sn represents the coordinates of the measurement point RP n , n=1,2,...,N; d represents r PD The dimensions of , μ k and μ n represent the sample mean values of PD signal intensity at measurement points RP k and RP n , respectively, C k and C n are covariance matrices,
Figure FDA0002286896240000038
represents the vector selected from the kth column in the probability distribution characteristic matrix Ψ (m) of the simulated partial discharge signal strength,
Figure FDA0002286896240000039
Represents a vector selected from the nth column in the probability distribution characteristic matrix of simulated partial discharge signal strength Ψ (m) , where m represents the number of measurements, m=1, 2,...,M.
6.如权利要求5所述的变电站空间局部放电定位系统,其特征在于,所述处理单元基于q个特高频传感器传输的模拟局部放电信号构建模拟局部放电信号强度概率分布特性矩阵Ψ(m)包括步骤:6. The partial discharge positioning system in substation space as claimed in claim 5, wherein the processing unit constructs a simulated partial discharge signal intensity probability distribution characteristic matrix Ψ (m ) includes steps: 将被测区域内的测量点记为RPj(j=1,2,……,N),使用模拟局部放电源在每一个测量点放电M次,采用q个特高频传感器测量各测量点各次的模拟局部放电信号强度,将任意一个特高频传感器记为APi(i=1,2,3,4……,q);设特高频传感器APi测得的测量点RPj处的模拟局部放电强度值为
Figure FDA00022868962400000310
则测量点RPj处的模拟局部放电强度特性向量r(m) j为:
Figure FDA00022868962400000311
其中m表示测量次数,m=1,2,…,M;
Denote the measurement points in the measured area as RP j (j=1,2,...,N), use the simulated partial discharge source to discharge M times at each measurement point, and use q UHF sensors to measure each measurement point For each simulated partial discharge signal intensity, record any UHF sensor as AP i (i=1, 2, 3, 4..., q); set the measurement point RP j measured by the UHF sensor AP i The simulated partial discharge intensity value at
Figure FDA00022868962400000310
Then the simulated partial discharge intensity characteristic vector r (m) j at the measurement point RP j is:
Figure FDA00022868962400000311
Where m represents the number of measurements, m=1,2,...,M;
则所有测量点的模拟局部放电强度特性向量构成了被测区域的模拟局部放电信号强度概率分布特性矩阵Ψ(m)Then the simulated partial discharge intensity characteristic vectors of all measurement points constitute the simulated partial discharge signal intensity probability distribution characteristic matrix Ψ (m) of the measured area:
Figure FDA0002286896240000041
Figure FDA0002286896240000041
7.如权利要求5所述的变电站空间局部放电定位系统,其特征在于,所述q个特高频传感器被设置为4个特高频传感器。7 . The partial discharge localization system in substation space according to claim 5 , wherein the q UHF sensors are set as 4 UHF sensors. 8 . 8.如权利要求5所述的变电站空间局部放电定位系统,其特征在于,所述特高频传感器为特高频无线传感器。8 . The partial discharge positioning system in substation space according to claim 5 , wherein the UHF sensor is a UHF wireless sensor. 9 . 9.如权利要求5所述的变电站空间局部放电定位系统,其特征在于,所述特高频传感器与处理单元之间连接有路由器。9 . The partial discharge positioning system in substation space according to claim 5 , wherein a router is connected between the UHF sensor and the processing unit. 10 .
CN201810338375.7A 2018-04-16 2018-04-16 Transformer substation space partial discharge positioning method and system Active CN108548997B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810338375.7A CN108548997B (en) 2018-04-16 2018-04-16 Transformer substation space partial discharge positioning method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810338375.7A CN108548997B (en) 2018-04-16 2018-04-16 Transformer substation space partial discharge positioning method and system

Publications (2)

Publication Number Publication Date
CN108548997A CN108548997A (en) 2018-09-18
CN108548997B true CN108548997B (en) 2020-11-06

Family

ID=63515017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810338375.7A Active CN108548997B (en) 2018-04-16 2018-04-16 Transformer substation space partial discharge positioning method and system

Country Status (1)

Country Link
CN (1) CN108548997B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693828B (en) * 2020-05-25 2022-01-04 国网安徽省电力有限公司亳州供电公司 A system and method for localization of partial discharge in substation space based on MLE
CN112147471B (en) * 2020-09-03 2021-06-11 上海交通大学 GIL partial discharge source positioning method and system
CN114034993A (en) * 2021-11-05 2022-02-11 国网青海省电力公司检修公司 Local discharge positioning test method for switch cabinet based on TEV and ultrahigh frequency method
CN114878994B (en) * 2022-07-11 2022-09-27 杭州世创电子技术股份有限公司 Partial discharge signal detection method and system based on space ultrahigh frequency sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969559A (en) * 2014-05-15 2014-08-06 国家电网公司 Method and system for positioning local discharge space of power equipment of transformer substation
EP2187226A3 (en) * 2008-11-14 2017-05-10 Korea Electric Power Corporation Ultra-high frequency partial discharge array sensor apparatus for high-voltage power apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075501A (en) * 2001-06-22 2003-03-12 Showa Electric Wire & Cable Co Ltd Partial discharge detecting method and partial discharge detector used for it
CN102279354B (en) * 2011-07-01 2013-07-31 西安交通大学 Cruciform ultrasound array sensor and method for positioning transformer partial discharge
CN102253127B (en) * 2011-07-01 2014-01-29 西安交通大学 L-Shape Ultrasonic Array Sensor for Partial Discharge Localization in Transformer
CN102323526A (en) * 2011-08-15 2012-01-18 重庆大学 Analysis Method of Sensor Setting Based on Ultrasonic Distribution Characteristics of Partial Discharge of Large Motor
CN103995221A (en) * 2014-05-29 2014-08-20 西安交通大学 Ultrasonic receiving array orientation method for transformer partial discharge positioning
CN107656180A (en) * 2017-09-25 2018-02-02 国网黑龙江省电力有限公司电力科学研究院 A kind of shelf depreciation intelligence sensor detection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2187226A3 (en) * 2008-11-14 2017-05-10 Korea Electric Power Corporation Ultra-high frequency partial discharge array sensor apparatus for high-voltage power apparatus
CN103969559A (en) * 2014-05-15 2014-08-06 国家电网公司 Method and system for positioning local discharge space of power equipment of transformer substation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A Novel Partial Discharge Localization Method in Substation Based on aWireless UHF Sensor Array;Zhen Li 等;《Sensors》;20170818;全文 *

Also Published As

Publication number Publication date
CN108548997A (en) 2018-09-18

Similar Documents

Publication Publication Date Title
CN108548997B (en) Transformer substation space partial discharge positioning method and system
CN108490325B (en) A two-stage substation partial discharge signal localization method and system
CN102883262B (en) Wi-Fi indoor positioning method on basis of fingerprint matching
WO2016165435A1 (en) Method and device for detecting overshoot coverage of radio network, and communication system
CN107102244B (en) Discharge source location method for GIS UHF partial discharge on-line monitoring device
CN102866334A (en) Vehicle-mounted local discharge locating system for mobile substation and locating method thereof
CN106950472B (en) insulator detection method based on infrared and ultraviolet imaging
CN105277826B (en) Array Antenna Fault Diagnosis System
CN102572858A (en) Method and device for automatically detecting network weak coverage
CN105652235B (en) WLAN indoor positioning multi-user's RSS fusion methods based on linear regression algorithm
CN107656180A (en) A kind of shelf depreciation intelligence sensor detection method
CN104897995B (en) Corrosion detection system and method for substation grounding grid based on surface potential
CN102445641A (en) Mobile device for detecting local discharging of electric equipment of substation, and positioning method
CN104360240A (en) Quick detecting device and method for defective equipment of transformer substation
CN107133476B (en) A Co-optimization Method of Test Stimuli and Measuring Points Based on Response Aliasing Metric
CN202939265U (en) Vehicle-mounted transformer substation partial discharge positioning system
CN204203408U (en) Transformer station's defect equipment device for fast detecting
CN111693828B (en) A system and method for localization of partial discharge in substation space based on MLE
CN116626587A (en) Unmanned aerial vehicle positioning method integrating synchronous signal block scanning and multi-station ranging external radiation source
CN110596541A (en) A Method and System for Partial Discharge Location Based on Fingerprint
CN107179491A (en) A kind of partial discharge positioning method and system based on pattern-recognition
CN109982368B (en) Method, device, equipment and medium for checking the azimuth angle of a residential area
CN114241272A (en) Heterogeneous information fusion positioning method based on deep learning
CN113267704A (en) Lightning arrester performance detection method and device, computer equipment and storage medium
CN109298391B (en) Fixed-place information source positioning system, method and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant