CN108548562A - 一种单波光纤激光自混合干涉测量方法 - Google Patents

一种单波光纤激光自混合干涉测量方法 Download PDF

Info

Publication number
CN108548562A
CN108548562A CN201810424299.1A CN201810424299A CN108548562A CN 108548562 A CN108548562 A CN 108548562A CN 201810424299 A CN201810424299 A CN 201810424299A CN 108548562 A CN108548562 A CN 108548562A
Authority
CN
China
Prior art keywords
fiber
frequency
light
laser
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810424299.1A
Other languages
English (en)
Inventor
谢芳
许珩潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Publication of CN108548562A publication Critical patent/CN108548562A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种单波光纤激光自混合干涉测量方法,属于光学测量技术领域。所述方法由泵浦光源,一个波分复用器,一段掺铒光纤,一个光纤光栅,二个光纤耦合器,一个光纤环行器,一个FC/PC接头,一个探测器,二个移频器,一个出射头,二个驱动电源,一个混频器,信号处理电路1,信号处理电路2,信号处理电路3,计算机和输出结果组成。光纤及光纤器件构成光纤激光谐振腔,掺铒光纤作为增益介质,光纤光栅作为波长选择元件,构成单波长光纤激光器。移频后的激光投射到被测物体上,经被测物体反射或散射回激光谐振腔与腔的内光产生外差自混合干涉信号,并由探测器探测。对此信号进行处理,即可对被测物体的位移、速度、振动等进行测量。

Description

一种单波光纤激光自混合干涉测量方法
技术领域
本发明涉及光学测量领域,尤其涉及一种单波光纤激光自混合干涉测量方法。
背景技术
现有的与此技术相接近的文献有以下两个:
[1]D.P.Hand,T.A.Carolan,J.S.Barton,and J.D.C.Jones.“Profilemeasurement of optically rough surfaces by fiber-optic interferometry”,Opt.Lett.,Vol.18,No.16,1993,P.1361-1363.(Optics Letters(光学快报),第18卷,第16期,P.1361-1363)
文献[1]的技术原理如图1所示。
半导体激光器发出的光经过法拉第隔离器和光纤3dB耦合器后,到达测量头,测量头是一个菲索干涉仪,一部分光被光纤端面反射作为参考光,另一部分光经过自聚焦透镜聚焦后,投射到被测表面上,由被测表面反射重新回到系统中并与参考光发生干涉,干涉信号由探测器探测,干涉信号的相位决定于被测表面被测点的纵向高度;改变该激光器的驱动电流以改变激光器的发光频率,用四种不同频率的光对同一点进行测量,得到四个干涉信号,由于入射光波频率不同,四个干涉信号的位相就不同,调节驱动电流,使相邻两个干涉信号的相位差π/2,通过以下式子,即可解调出该点的光程差D,即完成单点的测量:
In(n=1,2,3,4)是第n次干涉信号的强度,c是光速,ν是入射光频率。
步进电机再带动测量头横向扫描被测表面,即完成对被测表面的测量。
[2]Dejiao Lin,Xiangqian Jiang,Fang Xie,Wei Zhang,Lin Zhang and IanBennion.“High stability multiplexed fibre interferometer and its applicationon absolute displacement measurement and on-line surface metrology”,OpticsExpress,Vol.12,Issue 23,2004,P.5729-5734.(Optics Express(光学特快),2004年,第12卷,第23期,P.5729-5734)
文献[2]的技术原理图如图2所示。
此系统包含两个光路几乎重合的迈克尔逊干涉仪。一个迈克尔逊干涉仪是利用测量臂上的光纤光栅和参考镜作为反射镜构成,用于完成稳定工作;另一个迈克尔逊干涉仪是利用测量镜和参考镜作为反射镜构成,用于完成测量工作。因为两个干涉仪的参考臂共用一个反射镜,两个干涉仪的参考臂光路完全重合,又由于两个干涉仪的测量臂几乎重合,所以,一个干涉仪稳定了,另一个干涉仪也就稳定了。
由半导体激光器发出波长为λ0的光经过两个3dB耦合器后被分为两路,一路被光纤光栅反射,另一路被参考反射镜反射。两路反射光经过3dB耦合器后再次相遇并且发生干涉,干涉信号经过环行器后,被另一个光纤光栅反射,再次经过环行器,然后被探测器探测,此探测器探测到的信号经过伺服电路处理后驱动压电陶瓷管调节光纤干涉仪的参考臂的长度,使稳定干涉仪的两个干涉臂始终处于正交状态(相位差为π/2),从而实现稳定该干涉仪的目的。
可调谐激光器发出的波长λm可变的光经过两个光纤3dB耦合器后被分为两路,一路经过光纤自准直透镜后再由测量镜反射再次回到干涉仪中,另一路经过光纤自准直透镜后再由参考镜反射再次回到干涉仪中,两路光经过3dB耦合器后相遇,形成干涉信号,此干涉信号经过环行器及光纤光栅后,被探测器探测,再经过相位分析即测量出测量镜的位移。
上述两个现有技术存在的问题和不足是:
1、难以对低反射率的物体进行测量。
2、不能对物体的速度、振动等参量进行测量。
发明内容
本发明利用光纤及光纤器件构成光纤激光谐振腔,980nm泵浦光源(S)作为泵浦光源,掺铒光纤EDF作为增益介质,光纤光栅FBG作为波长选择元件,满足光纤激光谐振腔谐振条件且在光纤光栅FBG反射谱内波长的激光经过移频器AOM1和AOM2,以及出射头G后,投射到被测物体上并被被测物体反射或者散射回光纤激光谐振腔,与腔内的光发生外差自混合干涉,处理外差自混合干涉信号,实现对被测物体的位移、速度、振动等参量的测量。光纤激光谐振腔对反馈回腔内的光有放大作用,所以本方法能对低反射率的物体进行测量。光纤激光器既是传感器又是干涉仪,全光纤光路无需调节,结构简单紧凑,易于携带。
本发明是通过以下技术方案实现的。
一种单波光纤激光自混合干涉测量方法,由980nm泵浦光源(S),一个波分复用器WDM,一段掺铒光纤EDF,一个光纤光栅FBG,二个光纤耦合器N1、N2,一个光纤环行器C,一个FC/PC接头,一个探测器PD,二个移频器AOM1、AOM2,一个出射头G,二个驱动电源RF1、RF2,一个混频器,信号处理电路1(B1),信号处理电路2(B2),信号处理电路3(B3),计算机(B4)和输出结果(B5)组成。FC/PC接头的一个端面镀了1550nm波段的部分反射膜。980nm泵浦光源(S)发出的光经过波分复用器WDM耦合进光纤激光谐振腔,经过掺铒光纤EDF,激发出1550nm波段的荧光,此荧光到达光纤光栅FBG,满足光纤光栅FBG布拉格条件的光被光纤光栅FBG反射,反射光再次经过掺铒光纤EDF,波分复用器WDM,光纤耦合器N1,光纤环行器C,到达FC/PC接头,一部分光强被FC/PC接头反射,这部分光强沿原路返回光纤激光谐振腔;另一部分光强透过FC/PC接头,经过移频器AOM1和移频器AOM2,以及出射头G后,投射到被测物体上。被FC/PC接头反射的那部分光强沿原路返回光纤激光谐振腔,经过光纤环行器C,光纤耦合器N2,光纤耦合器N1,波分复用器WDM,掺铒光纤EDF,到达光纤光栅FBG,又经光纤光栅FBG反射,再次经过掺铒光纤EDF,波分复用器WDM,光纤耦合器N1,光纤环行器C,到达FC/PC接头。一部分光强被FC/PC接头反射,这部分光强沿原路返回光纤激光谐振腔,另一部分光强透过FC/PC接头,如此循环往复,当增益大于损耗时,从FC/PC接头出射激光。激光经过移频器AOM1和移频器AOM2,以及出射头G后,投射到被测物体上,由被测物体反射或散射沿原路返回光纤激光谐振腔与腔内的光发生外差自混合干涉,外差自混合干涉信号经由光纤耦合器N2后达到探测器PD并被探测器PD探测。从被测物体反射或散射的光含被测物体位移、速度、振动信息,将PD探测到的信号经过信号处理电路1(B1)处理,同时,驱动电源RF1和驱动电源RF2发出的信号一方面分别加在移频器AOM1和移频器AOM2上,使移频器AOM1和移频器AOM2工作;另一方面输入混频器混频,混频器的输出信号经过信号处理电路2(B2)处理后,与信号处理电路1(B1)的输出信号同时输入信号处理电路3(B3)进行信号处理,信号处理电路3(B3)的输出信号经过计算机(B4)中的程序作数据处理后,得到测量结果,由输出结果(B5)输出。
进一步,作为优选方案,利用光纤及光纤器件构成光纤激光谐振腔,光纤光栅FBG作为波长选择元件,掺铒光纤EDF作为增益介质,产生1550nm波段单波长激光,投射到被测物体上,经被测物体反射或散射回光纤激光谐振腔,与光纤激光谐振腔内的光自混合干涉,产生自混合干涉信号。
进一步,作为优选方案,利用二个移频器对激光频率进行移频,经过移频后的激光投射到被测物体上,由被测物体反射或散射回光纤激光谐振腔,与光纤激光谐振腔内的光产生外差自混合干涉信号,经过对外差干涉信号的处理,实现对物体的位移、速度、振动等参量的测量。
本发明的有益效果主要有四个:
1.本发明利用光纤及光纤器件构成光纤激光谐振腔,光纤光栅FBG作为波长选择元件,掺铒光纤EDF作为增益介质,产生单波长激光投射到被测物体上,经被测物体反射或者散射回光纤激光谐振腔内,与光纤激光谐振腔内的光产生自混合干涉,从而实现测量。
2.本发明利用二个移频器AOM1和AOM2对激光频率进行移频,从而使产生的自混合干涉信号为外差自混合干涉信号,对外差自混合干涉信号进行处理,实现对被测物体的位移、速度、振动等参量的测量。
3.本发明利用光纤激光谐振腔中的增益介质对被测物体反射或者散射回光纤激光谐振腔内的光有放大作用,实现对低反射率物体的测量。
4.本发明中光纤激光器自身集传感器和干涉仪于一体,全光纤光路无需调节,结构简单紧凑易于携带。
附图说明
图1是现有技术文献[1]的原理图;
图2是现有技术文献[2]的原理图;
图3是本发明原理图。
具体实施方式
下面结合附图3和具体实施方式对本发明作进一步描述。
如图3所示,由980nm泵浦光源(S),一个波分复用器WDM,一段掺铒光纤EDF,一个光纤光栅FBG,二个光纤耦合器N1、N2,一个光纤环行器C,一个FC/PC接头,一个探测器PD,二个移频器AOM1、AOM2,出射头G,二个驱动电源RF1、RF2,一个混频器,信号处理电路1(B1),信号处理电路2(B2),信号处理电路3(B3),计算机(B4)和输出结果(B5)组成。
本测量方法利用光纤及光纤器件构成光纤激光谐振腔,一个光纤光栅FBG作为波长选择元件,掺铒光纤EDF作为增益介质,发出的单波长激光经过二个移频器AOM1和AOM2移频后投射到被测物体上,被被测物体反射或者散射回光纤激光谐振腔内与腔内的光产生外差自混合干涉,对此外差自混合干涉信号进行处理后得到被测物位移、速度、振动等参量的测量结果。系统中光纤光栅FBG的布拉格波长在1550nm波段。FC/PC接头的一个端面镀了1550nm波段的部分反射膜。
980nm泵浦光源(S)发出的光经过波分复用器WDM耦合进系统,980nm的光经过掺铒光纤EDF激励掺铒光纤EDF产生1550nm波段荧光,此荧光到达光纤光栅FBG,满足光纤光栅FBG布拉格条件的光被光纤光栅FBG反射,反射光再次经过掺铒光纤EDF,波分复用器WDM,光纤耦合器N1,光纤环行器C,到达FC/PC接头,到达FC/PC接头的光强一部分被反射回光纤激光谐振腔,另一部分透射。被反射回光纤激光谐振腔的光经过光纤环行器C,光纤耦合器N2,光纤耦合器N1,波分复用器WDM,到达掺铒光纤EDF,光强被掺铒光纤EDF放大,放大的光强到达光纤光栅FBG,又被光纤光栅FBG反射,再次经过掺铒光纤EDF,光强再次被掺铒光纤EDF放大,再次经过波分复用器WDM,光纤耦合器N1,光纤环行器C,到达FC/PC接头,光强又被FC/PC接头部分反射回光纤激光谐振腔,另一部分透射。如此循环往复,满足光纤激光谐振腔谐振条件且在光纤光栅FBG反射谱内的波长产生谐振,当增益大于损耗时产生激光,由FC/PC接头输出。输出的激光频率为f0。激光经过二个移频器AOM1和AOM2后,其频率将产生fY的频移,激光频率变为f0+fY,此光经过出射头G后投射到被测物体上,由被测物体反射或者散射。由于被测物体在运动,投射到被测物体上并被反射或者散射的光将产生多普勒频移fD,所以,被被测物体反射或者散射的光的频率为f0+fY±fD。此光经过出射头G后,再次经过二个移频器AOM1和AOM2,激光频率将产生fY频移,激光的频率变为f0+2fY±fD。此频率的光经过FC/PC接头,与激光器谐振腔的光相遇,产生频率为2fY±fD外差自混合干涉信号。此外差自混合干涉信号经过光纤环行器C,光纤耦合器N2后,到达探测器PD,由探测器PD探测。探测器PD探测到的外差自混合干涉信号经过信号处理电路1(B1)处理。二个驱动电源RF1和RF2发出的信号一方面分别加在移频器AOM1和AOM2上,使移频器AOM1和AOM2工作;另一方面输入混频器混频,混频器输出的信号经过信号处理电路2(B2)处理后,与信号处理电路1(B1)输出的信号同时输入信号处理电路3(B3)进行处理,然后,再经过计算机(B4)中的程序作数据处理后,得到被测物的位移、速度、振动等参量的测量结果,由输出结果(B5)输出。
为了举例说明本发明的实现,描述了上述的具体实例,但本发明的其他变化和修改,对本领域技术人员是显而易见的,在本发明无公开内容的实质和基本原则范围内的任何修改/变化或仿效变换都属于本发明的权利要求保护范围。

Claims (3)

1.一种单波光纤激光自混合干涉测量方法,其特征在于是由980nm泵浦光源(S),一个波分复用器WDM,一段掺铒光纤EDF,一个光纤光栅FBG,二个光纤耦合器N1、N2,一个光纤环行器C,一个FC/PC接头,一个探测器PD,二个移频器AOM1、AOM2,一个出射头G,二个驱动电源RF1、RF2,一个混频器,信号处理电路1(B1),信号处理电路2(B2),信号处理电路3(B3),计算机(B4)和输出结果(B5)组成;FC/PC接头的一个端面镀了1550nm波段的部分反射膜;980nm泵浦光源(S)发出的光经过波分复用器WDM耦合进光纤激光谐振腔;980nm的光经过掺铒光纤EDF激励掺铒光纤EDF产生1550nm波段荧光,此荧光到达光纤光栅FBG,满足光纤光栅FBG布拉格条件的光被光纤光栅FBG反射,反射光再次经过掺铒光纤EDF,光强被掺铒光纤EDF放大,放大的光强经过波分复用器WDM,光纤耦合器N1,光纤环行器C,到达FC/PC接头;到达FC/PC接头的光强一部分被反射回光纤激光谐振腔,另一部分透射;被反射回光纤激光谐振腔的光经过光纤环行器C,光纤耦合器N2,光纤耦合器N1,波分复用器WDM,到达掺铒光纤EDF,光强被掺铒光纤EDF放大,放大的光强到达光纤光栅FBG,又被光纤光栅FBG反射,再次经过掺铒光纤EDF,光强再次被掺铒光纤EDF放大,再次经过波分复用器WDM,光纤耦合器N1,光纤环行器C,到达FC/PC接头;光强又被FC/PC接头部分反射回光纤激光谐振腔,另一部分透射;如此循环往复,满足光纤激光谐振腔谐振条件且在光纤光栅FBG反射谱内的波长产生谐振,当增益大于损耗时产生激光,由FC/PC接头输出;输出的激光频率为f0,激光经过移频器AOM1和AOM2后,其频率将产生fY的频移,激光频率变为f0+fY,此光经过出射头G后投射到被测物体上,由被测物体反射或者散射;由于被测物体在运动,投射到被测物体上并被反射或者散射的光将产生多普勒频移fD,所以,被被测物体反射或者散射的光的频率为f0+fY±fD,此光经过出射头G后,再次经过移频器AOM1和AOM2后,激光频率将产生fY频移,激光的频率变为f0+2fY±fD;此频率的光经过FC/PC接头,光纤环行器C后与激光器谐振腔的光相遇,产生频率为2fY±fD外差自混合干涉信号;此外差自混合干涉信号经过光纤耦合器N2后,到达探测器PD,由探测器PD探测;探测器PD探测到的外差自混合干涉信号经过信号处理电路1(B1)处理;二个驱动电源RF1和RF2发出的信号一方面分别加在移频器AOM1和AOM2上,使移频器AOM1和AOM2工作;另一方面输入混频器混频,混频器输出的信号经过信号处理电路2(B2)处理后,与信号处理电路1(B1)输出的信号同时输入信号处理电路3(B3)进行处理,然后,再经过计算机(B4)中的程序作数据处理后,得到被测物的位移、速度、振动等参量的测量结果,由输出结果(B5)输出。
2.根据权利要求1所述的一种单波光纤激光自混合干涉测量方法,其特征在于:利用光纤及光纤器件构成光纤激光谐振腔,光纤光栅FBG作为波长选择元件,掺铒光纤EDF作为增益介质,产生单波长激光投射到被测物体上,经被测物体反射或者散射回光纤激光谐振腔内,与光纤激光谐振腔内的光产生自混合干涉,对自混合干涉信号进行处理,从而实现测量。
3.根据权利要求1所述的一种单波光纤激光自混合干涉测量方法,其特征在于:利用二个移频器AOM1和AOM2对激光频率进行移频,从而使产生的自混合干涉信号为外差自混合干涉信号,对外差自混合干涉信号进行处理,实现对被测物体的位移、速度、振动等参量的测量。
CN201810424299.1A 2017-08-10 2018-05-07 一种单波光纤激光自混合干涉测量方法 Pending CN108548562A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017106818686 2017-08-10
CN201710681868 2017-08-10

Publications (1)

Publication Number Publication Date
CN108548562A true CN108548562A (zh) 2018-09-18

Family

ID=63513403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810424299.1A Pending CN108548562A (zh) 2017-08-10 2018-05-07 一种单波光纤激光自混合干涉测量方法

Country Status (1)

Country Link
CN (1) CN108548562A (zh)

Similar Documents

Publication Publication Date Title
US7705992B2 (en) Optical coherence tomography system
US20080252900A1 (en) Optical tomography system
CN104634256B (zh) 一种光纤激光单波自混合干涉位移测量系统
CN101013025A (zh) 利用光纤光栅的光纤干涉型在线微位移测量系统
GB2467181A (en) Speckle removing device for a laser scanning projector
CN109387356B (zh) 一种光波导传输损耗测量方法
CN105333816B (zh) 一种基于光谱色散全场的超横向分辨率表面三维在线干涉测量系统
CN104634370B (zh) 一种基于激光器的传感器
JP2009252813A (ja) 光源および光断層画像化装置
CN104677296A (zh) 一种光纤激光拍波和单波自混合干涉融合的位移测量系统
CN108709575A (zh) 一种单波光纤激光自混合干涉测量系统
JP2009253129A (ja) 光源および光断層画像化装置
CN106441544B (zh) 一种便携式光学测量仪器
CN108548561A (zh) 一种双波光纤激光自混合干涉测量方法
CN108716928A (zh) 一种三波光纤激光自混合干涉测量系统
CN109000690A (zh) 一种双波光纤激光自混合干涉测量系统
CN109000691A (zh) 一种三波光纤激光自混合干涉测量方法
CN108548562A (zh) 一种单波光纤激光自混合干涉测量方法
JP5663824B2 (ja) 距離測定装置
CN103344184B (zh) 基于线性腔多波长光纤激光器的自混合波分复用多通道位移传感系统
US9837785B2 (en) Polarization laser sensor
JP2010085148A (ja) 微小変位測定装置、微小変位測定方法および微小変位測定用プログラム
JP2009244082A (ja) 光源および光断層画像化装置
JP3390355B2 (ja) 表面プラズモンセンサー
KR100288072B1 (ko) 집적광학소자를이용한변위측정장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180918