CN108546086B - 一种利用赤泥制备高强度多孔陶瓷材料的方法 - Google Patents

一种利用赤泥制备高强度多孔陶瓷材料的方法 Download PDF

Info

Publication number
CN108546086B
CN108546086B CN201810378800.5A CN201810378800A CN108546086B CN 108546086 B CN108546086 B CN 108546086B CN 201810378800 A CN201810378800 A CN 201810378800A CN 108546086 B CN108546086 B CN 108546086B
Authority
CN
China
Prior art keywords
red mud
preparing
pore
porous ceramic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810378800.5A
Other languages
English (en)
Other versions
CN108546086A (zh
Inventor
韩建鑫
杨合
薛向欣
马明龙
高宇霄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201810378800.5A priority Critical patent/CN108546086B/zh
Publication of CN108546086A publication Critical patent/CN108546086A/zh
Application granted granted Critical
Publication of CN108546086B publication Critical patent/CN108546086B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1321Waste slurries, e.g. harbour sludge, industrial muds
    • C04B33/1322Red mud
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • C04B33/323Burning methods involving melting, fusion or softening
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Abstract

一种利用赤泥制备高强度多孔陶瓷材料的方法,按以下步骤进行:(1)准备赤泥作为原料;(2)准备硅砂和粘土作为辅料;准备MgO、硼砂、Na2CO3和CaCO3作为添加剂;将原料、辅料和添加剂混合制成混合物料;(3)将混合物料用球磨机进行湿磨制成料浆;(4)喷雾造粒;(5)将粉体颗粒填充到模具内,于加热炉中进行焙烧发泡造孔;(6)随炉冷却。本发明的方法工艺流程简短,成本低,赤泥的利用率高,产品导热系数低,防火防潮性能良好。

Description

一种利用赤泥制备高强度多孔陶瓷材料的方法
技术领域
本发明属于建筑材料技术领域,特别涉及一种利用赤泥制备高强度多孔陶瓷材料的方法。
背景技术
随着环境问题的日益严重和自然资源的逐渐减少,人们对大宗工业固体废弃物资源化利用技术的渴望也愈发迫切。赤泥是氧化铝提取过程中产生的污染性固体废弃物,是铝工业中产生的主要废渣,按照不同的生产工艺分为拜耳法赤泥、烧结法赤泥和联合法赤泥。当前的铝土矿品位和生产技术条件下,平均每生产1吨氧化铝产生1~2吨赤泥,我国的氧化铝产量居世界之最,截止2015年,我国氧化铝产能已达6800万吨,占全球总产能的50.2%,这意味着我国的赤泥产能约为6800~13600万吨。
目前,我国的赤泥处理主要依靠露天筑坝堆存,大量的赤泥不能得到无害化处理和资源化利用,会导致如下危害:(1)容易造成严重的环境污染。赤泥作为一种强碱性(10<pH),且含有重金属的微细颗粒废渣,大量露天存放,其中的污染物随雨水渗漏,污染土壤和水体,而干燥状态下,赤泥粉尘随风飘散,造成大气污染;(2)存在安全隐患。使用大面积的土地长期堆存赤泥,不仅占用大量的土地资源,还存在着溃坝的危险,一旦赤泥尾矿溃坝,对当地生态系统的打击是灾难性的;(3)造成资源的浪费。赤泥成分与性质复杂,但其中金属氧化物含量丰富,自身颗粒的分散性好,是极具潜力的固废资源,但目前仍不能进行大规模的资源化利用;因此,探索出能够直接大量消耗赤泥,并得到高价值产品的资源化利用技术,已经十分紧迫。
发明内容
本发明的目的是提供一种利用赤泥制备高强度多孔陶瓷材料的方法,采用赤泥作为原料,使用粘土和硅砂作为辅料,添加氧化镁等添加剂,经中温焙烧发泡成型,大规模资源化利用赤泥的同时,制得高强度多孔陶瓷材料。
本发明的方法按以下步骤进行:
1、准备赤泥作为原料;
2、准备硅砂和粘土作为辅料;准备MgO、硼砂、Na2CO3和CaCO3作为添加剂;将原料、辅料和添加剂混合制成混合物料,混合物料按质量百分比赤泥占43~68%,硅砂占10~22%,粘土占13~27%,MgO占0.5~2.5%,硼砂占3~6%,Na2CO3占2~5%,CaCO3占2~5%;
3、将混合物料用球磨机进行湿磨,将物料混合均匀并制成料浆;湿磨时水、全部原料和磨球的质量比为0.8:1:4;
4、将料浆注入喷雾造粒器中进行喷雾造粒,制成粉体颗粒;
5、将粉体颗粒填充到模具内,再置于加热炉中,进行焙烧发泡造孔;焙烧发泡造孔过程中的温度制度为:炉温从室温以8~13℃/min的速率升到800~900℃,保温至少10min,然后以3.5~7.5℃/min的升温速率升到1000~1200℃,保温40~90min,完成焙烧发泡造孔;
6、焙烧发泡造孔后的物料随炉冷却至常温,获得高强度多孔陶瓷材料。
上述的赤泥按质量百分比含Fe2O3 28~29%,Al2O3 19~20%,SiO2 10~11%,CaO15~16%,Na2O 5~6%,TiO2 6~7%,MgO 0.5~0.8%,K2O 0.1~0.2%,其余为杂质。
上述的高强度多孔陶瓷材料的体积密度为0.5~0.75g/cm3,抗压强度为5~15MPa,导热系数为0.10~0.30W/(m·K)。
上述的料浆中水的重量百分比为30~40%。
上述方法中,为保证料浆各组分混合均匀并控制料浆中的水含量,将料浆从球磨机中取出后在80±5℃搅拌30~40min。
多孔陶瓷材料是骨架中存在有大量孔结构的无机非金属材料,依靠其中孔洞结构和材料本身性质来实现所需要的隔热、轻质、隔音等物理和化学性能;按孔结构,多孔陶瓷可分为开口气孔型、闭口气孔型和贯通气孔型;闭口气孔型多孔陶瓷可通过在原料中添加造孔剂,采用高温熔融发泡造孔的方式制备;造孔剂在高温下发生化学反应产生气体,在具有一定粘度的熔体中形成气孔,冷凝后保存在材料中得到孔结构,该过程需要碱金属或碱土金属元素的存在,造孔剂才能持续反应产生气体;而赤泥中恰好具有较高的碱含量,并且其主要组分与陶瓷原料的组分类似,通过配方设计,适当添加辅料,在中温炉中烧制,即可得到强度高、孔结构均匀、体积密度低、隔热性能好的多孔陶瓷材料。
本发明的方法具有以下优点:1)工艺流程简短,没有复杂的操作过程;2)所用原料赤泥、粘土、硅砂均为微细颗粒粉料,不需要破碎,球磨混匀的成本低;3)赤泥的利用率高,赤泥添加量高达43~68%;4)由于赤泥中的铁含量较高,熔体中大量碱金属和碱土金属存在,促使了铁与硅与碱金属和碱土金属反应生成铁硅酸盐,极大的提高了多孔陶瓷材料强度,同时由于材料中闭合气孔的大量存在,使得材料导热系数低,防火防潮性能良好。
通过实验验证,使用赤泥制备多孔陶瓷隔热材料的方法得到的样品本发明提供的方法得到的多孔陶瓷材料各方面性能优异,可以作为隔热材料,在工业和建筑领域得到应用。
具体实施方式
下面结合具体的实施方式对本发明的内容进一步说明和补充。
本发明实施例中的赤泥在使用前,先在80±2℃条件下烘干至少2h去除水分。
本发明实施例中采用的赤泥的干粉料粒径≤0.074mm。
本发明实施例中赤泥在适用前先筛分去除杂物,采用筛子筛分出粒径≤0.074mm的部分作为原料。
本发明实施例中采用的硅砂粒径<0.124mm。
本发明实施例中采用的粘土粒径<0.074mm。
本发明实施例中采用的MgO、硼砂(Na2B4O7·10H2O)、Na2CO3和CaCO3为市购产品。
本发明实施例中采用的模具为拼装式耐火砖窑具。
本发明实施例中采用的加热炉为中温炉。
本发明实施例中的粉体颗粒的粒径≤0.5mm。
本发明实施例中料浆中水的重量百分比为30~40%。
本发明实施例中所使用的赤泥来自广西,主要成分按质量百分比含Fe2O328.84%,Al2O319.85%,SiO2 10.65%,CaO 15.66%,Na2O 5.09%,TiO2 6.12%,MgO0.528%,K2O 0.138%,其余为杂质。
实施例1
准备赤泥作为原料;
准备硅砂和粘土作为辅料;准备MgO、硼砂、Na2CO3和CaCO3作为添加剂;将原料、辅料和添加剂混合制成混合物料,混合物料准中按质量百分比赤泥占45%,硅砂占20%,粘土占25%,MgO占1%,硼砂占4%,Na2CO3占2.5%,CaCO3占2.5%;
将全部原料用球磨机进行湿磨,将物料混合均匀并制成料浆;湿磨时水、全部原料和磨球的质量比为0.8:1:4;
将料浆注入喷雾造粒器中进行喷雾造粒,制成粉体颗粒;
将粉体颗粒填充到模具内,再置于加热炉中,进行焙烧发泡造孔;焙烧发泡造孔过程中的温度制度为:炉温从室温以10℃/min的速率升到850℃,保温10min,然后以3.5℃/min的升温速率升到1000℃,保温90min,完成焙烧发泡造孔;
焙烧发泡造孔后的物料随炉冷却至常温,获得高强度多孔陶瓷材料;高强度多孔陶瓷材料的体积密度为0.527g/cm3,抗压强度为6.5MPa,导热系数为0.17W/(m·K)。
实施例2
方法同实施例1,不同点在于:
(1)混合物料中按质量百分比赤泥占50%,硅砂占20%,粘土占20%,MgO占2.5%,硼砂占3.5%,Na2CO3占3%,CaCO3占4%;
(2)焙烧发泡造孔过程中的温度制度为:炉温从室温以8℃/min的速率升到800℃,保温15min,;以4℃/min的速率升到1050℃,保温80min;
(3)高强度多孔陶瓷材料的体积密度为0.603g/cm3,抗压强度为7.2MPa,导热系数为0.20W/(m·K)。
实施例3
方法同实施例1,不同点在于:
(1)混合物料中按质量百分比赤泥占62%,硅砂占13%,粘土占14%,MgO占0.5%,硼砂占4.5%,Na2CO3占2.5%,CaCO3占3.5%;
(2)焙烧发泡造孔过程中的温度制度为:炉温从室温以13℃/min的速率升到900℃,保温20min,;以4.5℃/min的速率升到1100℃,保温70min;
(3)高强度多孔陶瓷材料的体积密度为0.722g/cm3,抗压强度为10.6MPa,导热系数为0.28W/(m·K)。
实施例4
方法同实施例1,不同点在于:
(1)混合物料中按质量百分比赤泥占43%,硅砂占22%,粘土占27%,MgO占1%,硼砂占3%,Na2CO3占2%,CaCO3占2%;
(2)料浆从球磨机中取出后在80±5℃搅拌35min
(3)焙烧发泡造孔过程中的温度制度为:炉温从室温以9℃/min的速率升到850℃,保温15min,;以5℃/min的速率升到1150℃,保温60min;
(4)高强度多孔陶瓷材料的体积密度为0.63g/cm3,抗压强度为12.5MPa,导热系数为0.14W/(m·K)。
实施例5
方法同实施例1,不同点在于:
(1)混合物料中按质量百分比赤泥占68%,硅砂占10%,粘土占13%,MgO占1.5%,硼砂占3.5%,Na2CO3占2%,CaCO3占2%;
(2)料浆从球磨机中取出后在80±5℃搅拌30min
(3)焙烧发泡造孔过程中的温度制度为:炉温从室温以12℃/min的速率升到900℃,保温15min,;以6℃/min的速率升到1150℃,保温50min;
(4)高强度多孔陶瓷材料的体积密度为0.71g/cm3,抗压强度为6.9MPa,导热系数为0.26W/(m·K)。
实施例6
方法同实施例1,不同点在于:
(1)混合物料中按质量百分比赤泥占52%,硅砂占14%,粘土占16%,MgO占2%,硼砂占6%,Na2CO3占5%,CaCO3占5%;
(2)料浆从球磨机中取出后在80±5℃搅拌40min
(3)焙烧发泡造孔过程中的温度制度为:炉温从室温以11℃/min的速率升到880℃,保温15min,;以7.5℃/min的速率升到1200℃,保温40min;
(4)高强度多孔陶瓷材料的体积密度为0.65g/cm3,抗压强度为8.3MPa,导热系数为0.29W/(m·K)。

Claims (2)

1.一种利用赤泥制备高强度多孔陶瓷材料的方法,其特征在于按以下步骤进行:
(1)准备赤泥作为原料;所述的赤泥按质量百分比含Fe2O3 28~29%,Al2O3 19~20%,SiO2 10~11%,CaO 15~16%,Na2O 5~6%,TiO2 6~7%,MgO 0.5~0.8%,K2O 0.1~0.2%,其余为杂质;
(2)准备硅砂和粘土作为辅料;准备MgO、硼砂、Na2CO3和CaCO3作为添加剂;将原料、辅料和添加剂混合制成混合物料,混合物料按质量百分比赤泥占43~68%,硅砂占10~22%,粘土占13~27%,MgO占0.5~2.5%,硼砂占3~6%,Na2CO3占2~5%,CaCO3占2~5%;
(3)将混合物料用球磨机进行湿磨,将物料混合均匀并制成料浆;湿磨时水、全部原料和磨球的质量比为0.8:1:4;
(4)将料浆注入喷雾造粒器中进行喷雾造粒,制成粉体颗粒;
(5)将粉体颗粒填充到模具内,再置于加热炉中,进行焙烧发泡造孔;焙烧发泡造孔过程中的温度制度为:炉温从室温以8~13℃/min的速率升到800~900℃,保温至少10min,然后以3.5~7.5℃/min的升温速率升到1000~1200℃,保温40~90min,完成焙烧发泡造孔;
(6)焙烧发泡造孔后的物料随炉冷却至常温,获得高强度多孔陶瓷材料,其体积密度为0.5~0.75g/cm3,抗压强度为5~15MPa,导热系数为0.10~0.30W/(m·K)。
2.根据权利要求1所述的一种利用赤泥制备高强度多孔陶瓷材料的方法,其特征在于步骤(3)中,为保证料浆各组分混合均匀并控制料浆中的水含量,将料浆从球磨机中取出后在80±5℃搅拌30~40min。
CN201810378800.5A 2018-04-25 2018-04-25 一种利用赤泥制备高强度多孔陶瓷材料的方法 Active CN108546086B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810378800.5A CN108546086B (zh) 2018-04-25 2018-04-25 一种利用赤泥制备高强度多孔陶瓷材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810378800.5A CN108546086B (zh) 2018-04-25 2018-04-25 一种利用赤泥制备高强度多孔陶瓷材料的方法

Publications (2)

Publication Number Publication Date
CN108546086A CN108546086A (zh) 2018-09-18
CN108546086B true CN108546086B (zh) 2021-06-08

Family

ID=63512509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810378800.5A Active CN108546086B (zh) 2018-04-25 2018-04-25 一种利用赤泥制备高强度多孔陶瓷材料的方法

Country Status (1)

Country Link
CN (1) CN108546086B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521180A (zh) * 2020-12-24 2021-03-19 深圳市宏通新材料有限公司 赤泥陶瓷产品的制作方法
CN112960965A (zh) * 2021-02-24 2021-06-15 中骥新材料有限公司 一种工业赤泥废料粉体的利用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424537A (zh) * 2011-09-06 2012-04-25 浙江大学 一种以粘土矿物为原料制备磷酸铝复合结合剂的方法
CN105777185A (zh) * 2016-03-16 2016-07-20 河南科技大学 一种赤泥质多孔陶瓷隔热材料及其制造工艺
CN107417067A (zh) * 2017-08-04 2017-12-01 江苏省冶金设计院有限公司 一种综合处理赤泥的系统和工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10300170B9 (de) * 2003-01-08 2005-04-21 Aluminium-Salzschlacke Aufbereitungs Gmbh Verfahren zur Herstellung von hochtonerdehaltigem Rohstoff
CN102633528B (zh) * 2012-04-28 2014-02-19 武汉理工大学 轻质多孔陶瓷及其制备方法
CN105198481B (zh) * 2015-09-24 2017-06-13 武汉理工大学 一种利用黄河泥沙和赤泥制备发泡陶瓷隔热保温板的方法
CN105693210A (zh) * 2016-01-28 2016-06-22 北京科技大学 一种利用赤泥生产的陶瓷材料及其制备方法
CN106977225A (zh) * 2017-04-18 2017-07-25 武汉科技大学 铁尾矿烧结多孔材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424537A (zh) * 2011-09-06 2012-04-25 浙江大学 一种以粘土矿物为原料制备磷酸铝复合结合剂的方法
CN105777185A (zh) * 2016-03-16 2016-07-20 河南科技大学 一种赤泥质多孔陶瓷隔热材料及其制造工艺
CN107417067A (zh) * 2017-08-04 2017-12-01 江苏省冶金设计院有限公司 一种综合处理赤泥的系统和工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Liu Taoyong等.Low-cost and environment-friendly ceramic foams made from lead-zinc mine tailings and red mud: Foaming mechanism, physical, mechanical and chemical properties.《CERAMICS INTERNATIONAL》.2016,第1733-1739页. *
多孔陶瓷的应用、制备及进展;张淑会等;《材料导报》;20041231;全文 *
用粉煤灰和赤泥为原料制备多孔陶瓷的研究;吴庆波等;《粉煤灰综合利用》;20131122;全文 *

Also Published As

Publication number Publication date
CN108546086A (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
CN108503371B (zh) 一种利用高炉渣和高铝粉煤灰制备发泡陶瓷材料的方法
CN108840710B (zh) 利用锂尾矿及钢渣尾矿生产发泡陶瓷建筑保温材料的方法
CN105294142A (zh) 一种赤泥基烧结轻集料及其制备方法
CN106542843B (zh) 一种利用固体废弃物制备轻质保温墙体材料的方法
WO2020056470A1 (en) Sintered geopolymer compositions and articles
CN107098683B (zh) 烧结煤矸石保温砖及其制备方法
CN108821621B (zh) 一种轻质高强陶粒及制备方法
CN111470790B (zh) 一种吸音陶粒及其制备方法和应用
CN104072193A (zh) 基于含硅铝固废的发泡陶瓷材料及制备防火保温板的方法
CN102060444A (zh) 泡沫微晶玻璃及其制备方法
CN104529518B (zh) 一种铅锌矿尾矿-赤泥-粉煤灰基泡沫陶瓷及其制备方法
CN112521174A (zh) 煤矸石陶粒的制备方法、煤矸石陶粒自保温墙体及其制备方法
CN108706962B (zh) 一种煤矸石-粉煤灰-脱硫石膏体系的高强度陶瓷砖及其制备方法
CN108503338B (zh) 一种利用粉煤灰制备高强度发泡陶瓷材料的方法
CN108546086B (zh) 一种利用赤泥制备高强度多孔陶瓷材料的方法
CN107353032B (zh) 一种以工业无机危险废物和耐火粘土尾矿为原料的发泡陶瓷保温板及制备方法
CN112028649A (zh) 一种节能环保的耐火砖及其制备方法
CN108424120B (zh) 一种利用页岩废渣制备发泡陶瓷墙体材料的方法
CN104446363A (zh) 一种碳酸锰渣制备陶粒的方法
CN110526719B (zh) 一种低导热发泡陶瓷及其制备方法
CN107459338A (zh) 废弃陶瓷基建筑外墙用保温发泡材料及其制备方法
CN106747620A (zh) 一种低能耗烧结渗水砖及其制造方法
CN110981432A (zh) 一种镍渣保温陶瓷砖制备方法
CN107793132B (zh) 基于陶瓷抛光渣的陶瓷砖及其制备方法
US20210363057A1 (en) Novel method of producing improved lightweight ceramic sand and uses thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant