CN108538619A - 一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法 - Google Patents

一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法 Download PDF

Info

Publication number
CN108538619A
CN108538619A CN201810344021.3A CN201810344021A CN108538619A CN 108538619 A CN108538619 A CN 108538619A CN 201810344021 A CN201810344021 A CN 201810344021A CN 108538619 A CN108538619 A CN 108538619A
Authority
CN
China
Prior art keywords
activated carbon
polypyrrole
graphene
compound electrode
flexible compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810344021.3A
Other languages
English (en)
Inventor
金小娟
许兰淑
崔琳琳
贾梦颖
李月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Forestry University
Original Assignee
Beijing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Forestry University filed Critical Beijing Forestry University
Priority to CN201810344021.3A priority Critical patent/CN108538619A/zh
Publication of CN108538619A publication Critical patent/CN108538619A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法,首先将活性炭和石墨烯的混合均匀抽滤成柔性薄膜,活性炭夹杂在石墨烯片层之间,可扩大石墨烯层间距,防止其絮聚,并可作为柔性基体电沉积聚吡咯纳米颗粒,得到柔性、自支撑、无胶黏剂的石墨烯/活性炭/聚吡咯复合电极。通过采用不同电沉积方法和参数设置来合成具有不同微观形貌和优异电化学性能的柔性薄膜电极。本发明利用废弃纤维板制备活性炭粉末,将其应用在柔性电极材料的制备中,具有安全、低价、环保等优点,同时电沉积聚吡咯,提高了赝电容性能,获得的电极材料在柔性储能装置中具有广阔的应用前景。

Description

一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法
技术领域
本发明涉及一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法,属于电子材料技术领域。
背景技术
随着人们生活水平的不断提高,人们对柔性可穿戴及便携式电子产品(如柔性可折叠显示器、电子书、平板电脑及超薄智能手机等)的需求与日俱增。超级电容器作为一种新型绿色储能器件,具有较大的容量,比能量或能力密度,较宽的工作温度范围和极长的使用寿命,已经成为解决世界所面临的能源、资源和环境等重大问题的最有潜力的电化学储能装置之一。因此,开发具有柔性、轻质、低成本且高性能的超级电容器成为当今储能研究领域的重点及热点。
而作为电容器主要电极材料的活性炭,因其呈粉末状不易被直接加工成柔性电极材料,且活性炭结构复杂,孔利用率低,导电性差,充电慢。并且在传统的超级电容器中,电极材料通常需要胶黏剂粘结在导电集流体上。集流体一般采用导电性良好的金属材料(如泡沫镍,不锈钢网,钛箔等)。但金属材料本身质硬,屈服强度高,易疲劳损伤且质量笨重(密度大)。此外长期浸泡在电解液中很容易被腐蚀,从而影响电极的使用范围和寿命。因此,用它们作为柔性轻质的超级电容器集流体存在着极大的缺点。纵观各种材料,石墨烯因其具有良好的导电性,优异的机械性能和柔韧性,超薄及轻盈的质量(密度小),成为制备柔性超级电容器电极材料的首选。但石墨烯片层之间由于π-π相互作用和范德华力,极易形成絮聚或堆叠,从而导致电化学性能的下降。因此,石墨烯的组装和调控是影响电化学性能的至关因素。
近年来,大多数研究者们已将重点集中在石墨烯基复合材料上,包括石墨烯与聚合物、无机纳米粒子或其他碳材料(活性炭、碳纳米管等)的复合。石墨烯充当导电剂和粘结剂,将粉末状的活性炭粘结在一起,活性炭颗粒穿插在石墨烯层间,扩大了层间距,阻止石墨烯片层之间的堆积,增大其比表面积,有利于电解液的扩散。石墨烯/活性炭复合薄膜具有优异的机械柔韧性,可作为集流体或自支撑的电极材料。
聚吡咯常被人们制作成为超级电容器的重要电极材料。与传统电极材料比较而言,聚吡咯具有易于制备(氧化电位低),价格低廉,循环可靠,电化学性能好,结构稳定性好,生物毒性低,对环境友好等优点,因此是超级电容器电极材料的优秀备选材料。并且聚吡咯可以与不同的材料相复合具有更多优秀的物理化学性能,如提高其力学强度,或是在增加大电流充电条件下依然具有良好电容量的性能。通过电沉积法可制备出分散性好且不同形貌的纳米尺寸聚吡咯电活性材料,其电化学储能能力无疑得到大幅度提高,从而达到工业生产的要求。
发明内容
本发明针对现有技术存在的不足,提供一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法。
本发明通过以下技术方案予以实现:
(1)利用废弃的纤维板,在400-600℃下炭化,700-900℃活化后制备活性炭粉末;
(2)按照1:10-5:1的质量比,将活性炭和氧化石墨烯粉末分散在水和N,N-二甲基甲酰胺中,水和N, N-二甲基甲酰胺的体积比为1:9,超声1-3h至均匀;
(3)滴加微量的还原剂于上述混合溶液中,在恒温水浴锅80-95℃下反应2-5h,量取50-100mL在溶剂抽滤器上抽滤成膜;
(4)将上述柔性石墨烯/活性炭薄膜裁剪成规定形状,配制0.05-0.3M的吡咯和0.2-1.5M的硫酸溶液混合溶液,在三电极体系下电沉积聚吡咯,得到石墨烯/活性炭/聚吡咯柔性复合电极。
作为优选方案,步骤(3)所述的还原剂为水合肼,氢碘酸,硼氢化钠,抗坏血酸等中的任意一种或多种,加入量为10-100μL。
作为优选方案,步骤(4)所述的规则形状为长方形,正方形,圆形等任意形状。
作为优选方案,步骤(4)所述的电沉积方法包括恒电流,恒电位,循环伏安,阶跃电势等中的任意一种或多种。
本发明的显著有点在于:(1)将废弃纤维板制备的活性炭穿插在石墨烯层间,制备了柔性、自支撑、无胶黏剂的薄膜,可直接作为集流体。(2)采用不同电沉积方法和参数设置,在柔性石墨烯/活性炭薄膜上沉积获得不同微观形貌的聚吡咯,大大提高了电极材料的电化学性能。
具体实施方式
以下实施例具体说明本发明一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法。本发明提供优选实施例,但不应该被认为局限于在此阐述的实施例。
本发明实施例所提供的一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法包括下列步骤:
第一步,利用废弃的纤维板,在500℃下保温1h进行炭化,750℃活化后1h得到活性炭粉末。
第二步,按照1:1的质量比,将活性炭和氧化石墨烯粉末分散在水和N,N-二甲基甲酰胺中,水和N,N- 二甲基甲酰胺的体积比为1:9,超声2h至均匀。
第三步,滴加17μL的水合肼于上述混合溶液中,在恒温水浴锅95℃下反应3h,量取50mL在溶剂抽滤器上抽滤成膜。
第四步,将上述柔性石墨烯/活性炭薄膜裁剪成2cm x 1cm的矩形,配制0.1M的吡咯和0.5M的硫酸溶液混合溶液,在三电极体系下利用恒电流沉积法沉积聚吡咯,沉积电流密度为15mA/cm2,沉积时间为200s,得到石墨烯/活性炭/聚吡咯柔性复合电极。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,对于所属领域的普通技术人员来说,本发明可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的实施例被视为示意性的而非限制性的,在不脱离如所附权利要求所定义的本发明精神及范围的情况下,本发明可能做出其他不同形式的变化或变动。凡是属于本发明技术方案所引申的显而易见的变化或变动,仍处于本发明的保护范围系列。

Claims (8)

1.一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法,其特征在于,该制备方法包括以下操作步骤:
(1)利用废弃的纤维板,经过炭化、活化制备活性炭粉末;
(2)按照一定的质量比,将活性炭和氧化石墨烯粉末分散在水和N,N-二甲基甲酰胺中,超声1-3h至均匀;
(3)滴加微量的还原剂于上述混合溶液中,在恒温水浴锅80-95℃下反应2-5h,量取50-100mL在溶剂抽滤器上抽滤成膜;
(4)将上述柔性石墨烯/活性炭薄膜裁剪成规则形状,配制吡咯电解质溶液,在三电极体系下电沉积聚吡咯,得到石墨烯/活性炭/聚吡咯柔性复合电极。
2.根据权利要求1所述的一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法,其特征在于,步骤一所述的活性炭制备过程中的炭化温度为400-600℃,活化温度为700-900℃。
3.根据权利要求1所述的一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法,其特征在于,步骤二所述的活性炭和氧化石墨烯质量比为1:10-5:1。
4.根据权利要求1所述的一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法,其特征在于,步骤二所述的水和N,N-二甲基甲酰胺的体积比为1:9。
5.根据权利要求1所述的一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法,其特征在于,步骤三所述的还原剂为水合肼,氢碘酸,硼氢化钠,抗坏血酸等中的任意一种或多种,加入量为10-100μL。
6.根据权利要求1所述的一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法,其特征在于,步骤四所述的规则形状为长方形,正方形,圆形等任意形状。
7.根据权利要求1所述的一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法,其特征在于,步骤四所述的吡咯电解质溶液为0.05-0.3M的吡咯和0.2-1.5M的硫酸溶液混合均匀而成。
8.根据权利要求1所述的一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法,其特征在于,步骤四所述的电沉积方法包括恒电流,恒电位,循环伏安,阶跃电势等中的任意一种或多种。
CN201810344021.3A 2018-04-17 2018-04-17 一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法 Pending CN108538619A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810344021.3A CN108538619A (zh) 2018-04-17 2018-04-17 一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810344021.3A CN108538619A (zh) 2018-04-17 2018-04-17 一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法

Publications (1)

Publication Number Publication Date
CN108538619A true CN108538619A (zh) 2018-09-14

Family

ID=63481064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810344021.3A Pending CN108538619A (zh) 2018-04-17 2018-04-17 一种制备石墨烯/活性炭/聚吡咯柔性复合电极的方法

Country Status (1)

Country Link
CN (1) CN108538619A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276335A (zh) * 2020-02-17 2020-06-12 南京理工大学 芳纶纳米纤维/石墨烯/导电聚合物柔性复合电极及其制备方法
WO2023070856A1 (zh) * 2021-10-28 2023-05-04 中国科学院深圳先进技术研究院 柔性复合电极及其制备方法、柔性储能器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276335A (zh) * 2020-02-17 2020-06-12 南京理工大学 芳纶纳米纤维/石墨烯/导电聚合物柔性复合电极及其制备方法
WO2023070856A1 (zh) * 2021-10-28 2023-05-04 中国科学院深圳先进技术研究院 柔性复合电极及其制备方法、柔性储能器件

Similar Documents

Publication Publication Date Title
Wang et al. A high‐performance, tailorable, wearable, and foldable solid‐state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface
Yu et al. Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance
Wang et al. Co3O4@ MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors
Hu et al. Hierarchical manganese dioxide/poly (3, 4-ethylenedioxythiophene) core–shell nanoflakes on ramie-derived carbon fiber for high-performance flexible all-solid-state supercapacitor
Bai et al. Flexible solid-state supercapacitors derived from biomass konjac/polyacrylonitrile-based nitrogen-doped porous carbon
Cui et al. Growth of NiCo2O4@ MnMoO4 nanocolumn arrays with superior pseudocapacitor properties
Qin et al. Free-standing porous carbon nanofiber/ultrathin graphite hybrid for flexible solid-state supercapacitors
Wu et al. Hierarchical mesoporous zinc–nickel–cobalt ternary oxide nanowire arrays on nickel foam as high-performance electrodes for supercapacitors
Sarkar et al. High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core–shell nanowire heterostructure arrays
Xu et al. Nanofoaming to boost the electrochemical performance of Ni@ Ni (OH) 2 nanowires for ultrahigh volumetric supercapacitors
Yuan et al. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure
Yang et al. All-solid-state high-energy asymmetric supercapacitors enabled by three-dimensional mixed-valent MnO x nanospike and graphene electrodes
Park et al. Large-area and 3D polyaniline nanoweb film for flexible supercapacitors with high rate capability and long cycle life
Dhibar et al. Morphological modulation of conducting polymer nanocomposites with nickel cobaltite/reduced graphene oxide and their subtle effects on the capacitive behaviors
Foo et al. High-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materials
CN104466134B (zh) 自支撑石墨烯/碳纳米管杂化物泡沫负载氨基蒽醌类聚合物的制备方法
Li et al. Observably boosted electrochemical performances of roughened graphite sheet/polyaniline electrodes for use in flexible supercapacitors
CN110148534A (zh) 一种纳米金属氧化物/碳基柔性电极材料的制备方法
CN106169379B (zh) 一种制备石墨纸/碳纳米管-石墨烯/聚苯胺柔性复合电极的方法
Xiao et al. A highly compressible, nitrogen doped carbon foam based all pseudo-capacitance asymmetric supercapacitors
Wang et al. A wearable supercapacitor engaged with gold leaf gilding cloth toward enhanced practicability
CN101409336A (zh) 一种复合电极及其制备方法
Deng et al. Yolk–shell structured nickel cobalt sulfide and carbon nanotube composite for high-performance hybrid supercapacitors
CN106847523A (zh) 一种柔性超级电容器电极材料及其应用
Wang et al. Unlocking zinc-ion energy storage performance of onion-like carbon by promoting heteroatom doping strategy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180914

WD01 Invention patent application deemed withdrawn after publication