CN108535227B - CdTe QD@ZIF-8纳米复合材料在检测铬离子中的应用 - Google Patents
CdTe QD@ZIF-8纳米复合材料在检测铬离子中的应用 Download PDFInfo
- Publication number
- CN108535227B CN108535227B CN201810280315.4A CN201810280315A CN108535227B CN 108535227 B CN108535227 B CN 108535227B CN 201810280315 A CN201810280315 A CN 201810280315A CN 108535227 B CN108535227 B CN 108535227B
- Authority
- CN
- China
- Prior art keywords
- zif
- cdte qds
- nanocomposites
- cdte
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910004613 CdTe Inorganic materials 0.000 title claims abstract description 47
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 35
- 229910001430 chromium ion Inorganic materials 0.000 title claims abstract description 23
- 238000001514 detection method Methods 0.000 title abstract description 18
- 239000011651 chromium Substances 0.000 claims abstract description 66
- 150000002500 ions Chemical class 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 11
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 10
- 239000007853 buffer solution Substances 0.000 claims abstract description 6
- 230000006641 stabilisation Effects 0.000 claims abstract description 4
- 238000011105 stabilization Methods 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 20
- 239000002131 composite material Substances 0.000 claims description 7
- 239000007995 HEPES buffer Substances 0.000 claims 3
- 239000002086 nanomaterial Substances 0.000 claims 1
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 230000008901 benefit Effects 0.000 abstract description 4
- 239000002096 quantum dot Substances 0.000 description 41
- 239000000523 sample Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 8
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 description 8
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 description 8
- 238000010791 quenching Methods 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000002452 interceptive effect Effects 0.000 description 5
- 239000012621 metal-organic framework Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000003760 magnetic stirring Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000673 graphite furnace atomic absorption spectrometry Methods 0.000 description 2
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000013132 MOF-5 Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- -1 electroplating Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000006101 laboratory sample Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004054 semiconductor nanocrystal Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明属于环境中样品检测技术领域,公开一种CdTe QD@ZIF‑8纳米复合材料在检测铬离子中的应用。将CdTe QDs@ZIF‑8纳米复合材料分散于HEPEs缓冲溶液中,加入不同浓度的Cr6+和Cr3+离子的标准样品,化学稳定后,利用荧光光谱仪检测荧光强度,绘制F/F0随铬离子浓度变化的标准曲线;将CdTe QDs@ZIF‑8纳米复合材料分散于HEPEs缓冲溶液中,加入不同含有铬离子的待测样品,化学稳定后,利用荧光光谱仪检测荧光强度,通过标准曲线确定待测样品中Cr6+的含量,同时根据荧光强度区分Cr6+和Cr3+。本发明直接相比于其他检测铬离子的方法,操作简单,成本低,离子抗干扰能力强,能够区分Cr3+和Cr6+,在铬离子检测中具有较大优势。
Description
技术领域
本发明属于环境中样品检测技术领域,具体涉及一种CdTe QDs@ZIF-8纳米复合材料在检测环境样品中铬离子的应用。
背景技术
铬是一种重要的金属元素,常见于岩石、火山灰和动植物体中,在制造不锈钢、电镀、皮革鞣制、印染等方面有广泛应用。铬在自然界中主要以六价铬(Cr6+)和三价铬(Cr3+)两种形式存在。铬的毒性与铬的价态密切相关,其中Cr3+是人体必需的微量元素,而Cr6+则对人体有害,由于其具有强氧化性和细胞渗透性,极易被人体吸收并在细胞内蓄积,产生剧毒和致癌性。Cr3+毒性较低,在某些情况下需要区分其是否被氧化成Cr6+,因此检测环境中的铬离子是非常重要的。针对环境中高毒性的铬污染,目前检测铬离子的方法主要有电感耦合等离子体质谱法(ICP-MS)、电感耦合等离子体发射光谱法(ICP-OES)、电感耦合等离子体原子发射光谱法(ICP-AES)、石墨炉原子吸收光谱法(GFAAS)、光电化学法(PEC)等,但其中大部分方法成本较高、操作复杂且无法区分铬离子价态。因此,亟需开发一种能够快速简单、成本低廉且持之有效的方法来检测环境中的铬离子含量并区分Cr6+和Cr3+。
金属有机框架(MOFs)作为一种新型的具有高比表面积、尺寸可调和较好的化学稳定性的多孔材料,已被用于化学催化、气体储存与分离、离子交换和传感器等多个领域。最近,人们通过将不同类型的纳米颗粒(NPs)以良好分散的方式并入MOFs的晶体内来构建新型的功能化NPs@MOFs复合材料,从而赋予MOFs材料新的功能。量子点(QDs)是一种尺寸范围为2-10nm的半导体纳米晶体,它具有宽吸收、窄发射、发射波长尺寸相关性等特点,已经被广泛应用于目标物的检测研究中。Buso等人合成了QD@MOF-5复合材料并将其作为MOF-5笼内分子的尺寸选择性扩散的敏感实时探针(Buso D,Jasieniak J,Lay MDH,et al.Small,2012,8,80-88)。Zhao等人合成了一种ZnO@MOF纳米复合材料并将其作为检测磷酸盐的荧光检测平台(Zhao D,Wan X,Song H,et al.Sens.Actuators,B.2014,197,50-57)。以上报道表明,该类荧光功能化复合材料在化学传感方面的可行性,因此通过合成此类制备简单、成本低廉、检测灵敏度较高的荧光功能化复合材料,极有可能解决在检测铬离子方面所遇到的环境样品组分复杂、含量较低、大型仪器检测昂贵、操作复杂,小型仪器无法快速灵敏检测的难题。
发明内容
本发明所要解决的技术问题在于为CdTe QDs@ZIF-8纳米复合材料提供一种新的应用。
解决上述技术问题所采取的技术方案是:CdTe QDs@ZIF-8纳米复合材料在检测铬离子中的应用,具体检测方案如下:
将CdTe QDs@ZIF-8纳米复合材料分散于pH=7.0的HEPEs缓冲溶液(10mM)中,其中,CdTe QDs@ZIF-8纳米复合材料的浓度为50-250mg/L;再加入不同浓度的Cr3+和Cr6+离子的标准样品,化学稳定15min后,利用荧光光谱仪检测荧光强度,绘制F0/F随Cr6+离子浓度变化的标准曲线。
将CdTe QDs@ZIF-8纳米复合材料分散于pH=7.0的HEPEs缓冲溶液(10mM)中,其中,CdTe QDs@ZIF-8纳米复合材料的浓度为50-250mg/L;再加入待测样品,化学稳定15min后,利用荧光光谱仪检测荧光强度,判断溶液中有无Cr3+和Cr6+,并根据绘制F0/F随Cr6+离子浓度变化的标准曲线读出待测样品中的Cr6+含量,因此,根据荧光强度即可区分Cr3+和Cr6+的存在。
本发明的检测原理是:由于CdTe QDs@ZIF-8保留了MOFs材料比表面积大和多孔的性质,因此其对于Cr3+和Cr6+具有差异性吸附能力,可以将金属离子吸附到CdTe QDs@ZIF-8复合材料的表面。由于荧光内滤作用的存在,Cr6+使得CdTe QDs@ZIF-8纳米复合材料内部的量子点荧光发生淬灭,从而CdTe QDs@ZIF-8纳米复合材料的荧光强度下降;而Cr3+与CdTeQDs@ZIF-8内部的量子点之间无荧光内滤作用存在,无法有效引起荧光猝灭。相关结果表明荧光强度与Cr6+浓度负相关,通过检测荧光猝灭的效率,即可检测样品中的Cr6+浓度,并判断有无Cr3+的存在。
本发明的有益效果为:直接以CdTe QDs@ZIF-8纳米复合材料作为检测试剂,利用Cr6+离子能够使纳米复合材料的荧光猝灭,并且与其浓度有明显的指数关系,而Cr3+离子则不能明显猝灭该复合材料的荧光的差异,从而利用荧光分光光度法即可区分Cr3+和Cr6+,并对Cr6+进行定量检测。其中CdTe QDs@ZIF-8纳米复合材料具有表面积大,荧光稳定性好,尺寸可调节且材料质地均匀等优点,相比于其他检测铬离子的方法,本发明检测方法具有操作简单,成本低,离子抗干扰能力强,能够区分Cr3+和Cr6+,因此在未来铬离子检测中具有较大的优势。
附图说明
图1是利用CdTe QDs@ZIF-8纳米复合材料的制备及检测铬离子的示意图。
图2是所合成CdTe QDs@ZIF-8(A)与ZIF-8(B)的透射电子显微镜(TEM)图像。
图3是所合成CdTe QDs@ZIF-8与ZIF-8的X射线衍射(XRD)图像。
图4是所合成CdTe QDs@ZIF-8对不同浓度的Cr6+的荧光响应曲线(A)以及荧光淬灭率与Cr6+浓度的拟合曲线(B);图4A中箭头方向代办浓度依次增大。
图5是所合成CdTe QDs@ZIF-8对不同浓度的Cr3+的响应;图5中箭头方向代办浓度依次增大。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
将CdTe QDs@ZIF-8纳米复合材料应用在检测溶液中的铬离子,CdTe QDs@ZIF-8纳米复合材料的制备方法为:
取干燥的CdTe QDs(根据Wu S,Dou J,Zhang J,et al.J.Mater.Chem.,2012,22,14573-14578所公开的方法制备)于50mL反应瓶中,加入六水合硝酸锌,加入超纯水溶解,避光搅拌30min;取2-甲基咪唑超声分散于去离子水中,将2-甲基咪唑溶液与反应瓶中的溶液在搅拌的条件下混合。此时合成液中各成分的摩尔比为Zn2+:2-甲基咪唑:水=1:70:1238。经过24h的恒温磁力避光搅拌之后,使用离心机(10000r/min)对溶液进行固液分离,得到的样品用超纯水洗涤多次,直至上层清液无荧光而下层固体有荧光。将洗涤后的固体在40℃下真空干燥过夜,即可得所要的CdTe QDs@ZIF-8纳米复合材料。
上述制备方法中CdTe QDs固体的制备方法如下:取CdTe QDs溶液并加入1.2倍体积的乙醇,以8000r/min的转速离心5min,过滤,在40℃过夜真空干燥后,即可得CdTe QDs固体。
以下是CdTe QDs@ZIF-8纳米复合材料在检测铬离子中应用的具体实施例:
实施例1
在20mL(1.33mM)的CdTe QDs溶液中加入24mL的乙醇溶液,在8000r/min下离心5min,取下层固体至反应瓶中,加入200μL的超纯水复溶,加入0.01046g六水合硝酸锌,避光恒温磁力搅拌30min。然后用585μL的超纯水将0.20224g的2-甲基咪唑超声分散溶解,并加入反应瓶中。经过24h的恒温磁力避光搅拌之后,使用离心机(10000r/min)对溶液进行固液分离,得到的样品用超纯水洗涤多次,直至上清液无荧光而下层固体有荧光。将洗涤后的固体在40℃下真空干燥过夜,即可得所要的CdTe QDs@ZIF-8纳米复合材料。利用透射电子显微镜和X射线衍射仪对所合成的CdTe QDs@ZIF-8纳米复合材料进行表征,所得到的透射电子显微镜图(TEM)和X射线衍射图(XRD)分别如图2和图3所示。实验结果表明所得CdTe QDs@ZIF-8纳米复合材料尺寸约为100nm,与ZIF-8的尺寸相当,CdTe QDs均匀分布在ZIF-8的表面和内部,且未破坏ZIF-8完整的晶体结构。以上结果表明其CdTe QDs成功地嵌入到ZIF-8多孔材料中,CdTe QDs@ZIF-8纳米复合材料制备成功。
由于相关报道称,在酸性条件下,ZIF-8结构不稳定,且根据相关实验表明,在pH<6.0时,量子点溶液的荧光会发生较明显的猝灭,而在碱性条件下,重金属离子易形成固体氢氧化物,影响实验结果。故选用pH=7.0的中性HEPEs缓冲液作为反应体系,进行下一步研究。利用pH=7.0的中性HEPEs缓冲液配置标准的CdTe QDs@ZIF-8溶液和铬离子溶液,在浓度为150mg/L的CdTe QDs@ZIF-8溶液分别加入一系列浓度Cr6+溶液(0-40μM)和Cr3+溶液(0-40μM),并利用荧光光谱检测仪检测其荧光强度,具体实验结果如图4A和图5所示。
结果表明,Cr6+离子能有效引起材料荧光的猝灭,且材料荧光强度与Cr6+离子的浓度成负相关,拟合方程为:(图4B),因此可根据拟合方程计算得到未知样品中Cr6+离子的含量;而Cr3+离子并未有效引起荧光猝灭,且荧光强度与Cr3+离子的浓度无明显的相关关系,将此作为分辨Cr6+和Cr3+离子的依据。
为了确定本发明的效果,发明人进行了大量的实验室样品研究,具体试验情况如下:
1)干扰性实验
固定CdTe QDs@ZIF-8纳米复合材料浓度为150mg/L,缓冲液pH值为7等条件,保持测试溶液中Cr6+离子浓度为20μM,然后加入对不同类型(Al3+、Fe2+、Fe3+、Cr3+、MnO4 -)和不同浓度的干扰物(Cr6+:干扰物=1:5、1:1、5:1)进行荧光强度检测,将荧光淬灭效率和与Cr6+单独存在时的标准偏差列于表1中。
表1.干扰性实验结果表
由表可知,干扰物所带来的标准偏差-2.18%─+1.68%之间,表明干扰物对CdTeQDs@ZIF-8纳米复合材料的检测无任何影响。
2)实际样品分析
为了研究所合成的CdTe QDs@ZIF-8纳米复合材料在实际样品中检测铬离子的可行性,选取实际环境样品(自来水)进行加标分析,分析结果如下表2所示:
表2.自来水加标实验结果表
Cr<sup>6+</sup>加标浓度(μM) | Cr<sup>6+</sup>检测浓度(μM) | RSD | 回收率 |
7 | 6.11±0.19 | 3.18% | 87% |
18 | 15.77±0.23 | 1.51% | 88% |
32 | 27.26±0.46 | 1.70% | 85% |
将已知浓度的Cr6+加标到自来水样品中,回收率为85%-88%,说明CdTe QDs@ZIF-8纳米复合材料具有在实际样品中检测Cr6+的潜力。
以上所述实施例仅表达了本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。
Claims (3)
1.CdTe QDs@ZIF-8纳米复合材料在检测铬离子中的应用,其特征在于:将CdTe QDs@ZIF-8纳米复合材料分散于HEPEs缓冲溶液中,加入不同浓度的Cr6+和Cr3+离子的标准样品,化学稳定后,利用荧光光谱仪检测荧光强度,绘制F/F0随铬离子浓度变化的标准曲线;将CdTe QDs@ZIF-8纳米复合材料分散于HEPEs缓冲溶液中,加入不同含有铬离子的待测样品,化学稳定后,利用荧光光谱仪检测荧光强度,通过标准曲线确定待测样品中Cr6+的含量,同时根据荧光强度区分Cr6+和Cr3+。
2.根据权利要求1所述的CdTe QDs@ZIF-8纳米复合材料在检测铬离子中的应用,其特征在于:所述HEPEs缓冲液中的CdTe QDs@ZIF-8复合纳米材料的浓度为50-250mg/L。
3.根据权利要求1或2所述的CdTe QDs@ZIF-8纳米复合材料在检测铬离子中的应用,其特征在于:所述的HEPEs缓冲溶液的pH=7.0。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810280315.4A CN108535227B (zh) | 2018-04-02 | 2018-04-02 | CdTe QD@ZIF-8纳米复合材料在检测铬离子中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810280315.4A CN108535227B (zh) | 2018-04-02 | 2018-04-02 | CdTe QD@ZIF-8纳米复合材料在检测铬离子中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108535227A CN108535227A (zh) | 2018-09-14 |
CN108535227B true CN108535227B (zh) | 2020-01-17 |
Family
ID=63482177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810280315.4A Expired - Fee Related CN108535227B (zh) | 2018-04-02 | 2018-04-02 | CdTe QD@ZIF-8纳米复合材料在检测铬离子中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108535227B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109991201A (zh) * | 2019-04-11 | 2019-07-09 | 大连理工大学 | 一种定位在zif-8表面的金纳米簇用于提高其荧光强度及检测的特异选择性的方法 |
CN110849850B (zh) * | 2019-11-21 | 2022-07-22 | 河南科技大学 | 一种基于量子点-纳米通道的铜离子检测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202853927U (zh) * | 2012-10-31 | 2013-04-03 | 刘杰 | 一种夹具平台可调式岩石取芯机 |
CN103592268A (zh) * | 2013-10-31 | 2014-02-19 | 中国科学院长春光学精密机械与物理研究所 | 基于荧光内滤效应的碳纳米点的应用 |
CN106053408A (zh) * | 2016-05-17 | 2016-10-26 | 无锡市疾病预防控制中心 | 基于碳点荧光探针的高灵敏高选择性检测水中和/或环境中痕量银纳米粒子的方法 |
CN106370634A (zh) * | 2016-08-29 | 2017-02-01 | 陕西师范大学 | CdTe QD@ZIF‑8核‑壳纳米复合材料在检测氧化酶活性中的应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10370351B2 (en) * | 2016-04-25 | 2019-08-06 | The Regents Of The University Of California | Photoinduced electron transfer voltage-sensitive compounds |
US10447906B2 (en) * | 2016-05-02 | 2019-10-15 | Visionsense Ltd. | Dual path endoscope |
-
2018
- 2018-04-02 CN CN201810280315.4A patent/CN108535227B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202853927U (zh) * | 2012-10-31 | 2013-04-03 | 刘杰 | 一种夹具平台可调式岩石取芯机 |
CN103592268A (zh) * | 2013-10-31 | 2014-02-19 | 中国科学院长春光学精密机械与物理研究所 | 基于荧光内滤效应的碳纳米点的应用 |
CN106053408A (zh) * | 2016-05-17 | 2016-10-26 | 无锡市疾病预防控制中心 | 基于碳点荧光探针的高灵敏高选择性检测水中和/或环境中痕量银纳米粒子的方法 |
CN106370634A (zh) * | 2016-08-29 | 2017-02-01 | 陕西师范大学 | CdTe QD@ZIF‑8核‑壳纳米复合材料在检测氧化酶活性中的应用 |
Non-Patent Citations (2)
Title |
---|
Size-selective QD@ MOF core-shell nanocomposites fot the highly sensitive monitoring of oxidase activities;K Wang 等;《Biosensors and Bioelectronics》;20170215;第87卷(第15期);第339-344页 * |
基于量子点内滤效应荧光传感器的制备及其分析应用;张帆 等;《湖北大学》;20170607;第45-56页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108535227A (zh) | 2018-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ru et al. | GaOOH-modified metal-organic frameworks UiO-66-NH2: Selective and sensitive sensing four heavy-metal ions in real wastewater by electrochemical method | |
Maruthupandi et al. | One minute synthesis of green fluorescent copper nanocluster: The preparation of smartphone aided paper-based kit for on-site monitoring of nanomolar level mercury and sulfide ions in environmental samples | |
Utsunomiya et al. | Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment | |
Rahman et al. | Sensitive 1, 2-dichlorobenzene chemi-sensor development based on solvothermally prepared FeO/CdO nanocubes for environmental safety | |
Wang et al. | Sensitive and selective colorimetric detection of cadmium (II) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole | |
Zhou et al. | Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid | |
Xu et al. | Low-cost synthesis of carbon nanodots from natural products used as a fluorescent probe for the detection of ferrum (III) ions in lake water | |
Shahat et al. | Colorimetric determination of some toxic metal ions in post-mortem biological samples | |
Luo et al. | Fluorescent and visual detection of methyl-paraoxon by using boron-and nitrogen-doped carbon dots | |
Jiang et al. | Current methods and prospects for analysis and characterization of nanomaterials in the environment | |
Feng et al. | Hollow C@ MoS2 nanotubes with Hg2+-triggered oxidase-like catalysis: A colorimetric method for detection of Hg2+ ions in wastewater | |
Zeng et al. | A label-free SERS probe for highly sensitive detection of Hg2+ based on functionalized Au@ Ag nanoparticles | |
Wu et al. | Facile fabrication of Ag2 (bdc)@ Ag nano-composites with strong green emission and their response to sulfide anion in aqueous medium | |
Yang et al. | Sensitivity and selectivity sensing cadmium (II) using amination functionalized porous SnO2 nanowire bundles-room temperature ionic liquid nanocomposite: Combined efficient cation capture with control experimental conditions | |
Vojoudi et al. | An ultrasensitive fluorescence sensor for determination of trace levels of copper in blood samples | |
Pasakarnis et al. | FeIIaq–FeIIIoxide electron transfer and Fe exchange: effect of organic carbon | |
Hwa et al. | Influence of temperature variation on spinel-structure MgFe2O4 anchored on reduced graphene oxide for electrochemical detection of 4-cyanophenol | |
Zhou et al. | Colorimetric detection of Hg2+ by Au nanoparticles formed by H2O2 reduction of HAuCl4 using Au nanoclusters as the catalyst | |
CN103901006B (zh) | 基于ZnO量子点检测镉离子的试剂及方法 | |
Liu et al. | Carbon quantum dots derived from the extracellular polymeric substance of anaerobic ammonium oxidation granular sludge for detection of trace Mn (vii) and Cr (vi) | |
El‐Bindary et al. | Synthesis of novel fluorescent sensor based on a modified amino Al‐MOF for rapid, sensitive, and selective detection of arsenic in aqueous solution | |
Zhu et al. | Two-dimensional BCN nanosheets self-assembled with hematite nanocrystals for sensitively detecting trace toxic Pb (II) ions in natural water | |
Yi et al. | MOF-derived CeO2/Co3O4–Fe2O3@ CC nanocomposites as highly sensitive electrochemical sensor for bisphenol A detection | |
Chai et al. | A ratiometric fluorescence sensor based on carbon dots and two-dimensional porphyrinic MOFs for on-site monitoring of sulfide | |
Liu et al. | A simple and feasible fluorescent approach for rapid detection of hexavalent chromium based on gold nanoclusters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200117 |
|
CF01 | Termination of patent right due to non-payment of annual fee |