CN108525696A - 一种宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法 - Google Patents

一种宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法 Download PDF

Info

Publication number
CN108525696A
CN108525696A CN201810313540.3A CN201810313540A CN108525696A CN 108525696 A CN108525696 A CN 108525696A CN 201810313540 A CN201810313540 A CN 201810313540A CN 108525696 A CN108525696 A CN 108525696A
Authority
CN
China
Prior art keywords
taon
bio
oxygen
wide spectrum
catalysis material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810313540.3A
Other languages
English (en)
Inventor
王少莽
关媛
陆武
翁彭
汪留建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaide College of Changzhou University
Original Assignee
Huaide College of Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaide College of Changzhou University filed Critical Huaide College of Changzhou University
Priority to CN201810313540.3A priority Critical patent/CN108525696A/zh
Publication of CN108525696A publication Critical patent/CN108525696A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公布了一种宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法,首先以Ta2O5为原料制备TaON,然后将TaON加入含有硝酸铋的乙二醇溶液中,磁力搅拌0.5‑1h,滴入含碘化钾的乙二醇溶液,反应后转入高压反应釜,反应后获得TaON/BiOI复合光催化材料;转入管式炉中,以5‑10℃/min的升温速率加热至350‑450℃,焙烧3‑6h,获得宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6。将TaON/BiO1.2I0.6应用于VOCs净化中,经过TaON修饰的BiO1.2I0.6光催化分解典型VOCs甲苯的效率比BiO1.2I0.6提高了约1.4倍。

Description

一种宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的 制备方法
技术领域
本发明涉及有机污染物降解催化材料技术领域,尤其是一种富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备及其在VOCs净化中的应用。
背景技术
VOCs是挥发性有机化合物(volatile organic compounds)的 英文缩写,它通常是指沸点在250℃以内、室温下饱和蒸汽压超过 133Kpa的一类有机化合物。VOCs种类较多,包括的物质超过100多 种,主要来源于石油化工、燃料燃烧、交通运输、涂料、喷漆、印 刷等行业。近年来,随着我国社会经济的高速发展,排放到大气中 的VOCs种类和浓度也在逐年增加。进入空气中的VOCs,即使在浓 度很低的情况下,其危害程度也非常之大,它被喻为人类健康的 “隐形杀手”。因此,VOCs治理将接力脱硫、脱硝、除尘。
采用半导体光催化技术净化VOCs,具有可以利用太阳能、能够在大范围内实施,反应条件温和、在常温常压下即可进行,所需设备简单,能深度破坏VOCs结构等优点,引起了研究人员广泛的关注。然而,缺少宽光谱吸收高效光催化材料是该技术治理VOCs所面临的关键技术问题。
近年来,一种宽光谱吸收的催化剂铋氧碘(BiOI),在降解有机污染物方面显示出了较高的催化活性。BiOI带隙约为1.8eV,吸收可以覆盖从紫外线到可见光的很宽的光谱范围,光生电子与空穴数较多。 BiOI晶体是由双I-离子层和[Bi2O2]2+层交替排列成的 -I-Bi-O-O-Bi-I-层状结构。这种层状结构可以使双I-离子层和 [Bi2O2]2+层之间产生内建电场,促进光生电子-空穴分离和转移,从而使得BiOI展现出较高的光催化活性。为了进一步提高BiOI的光催化活性,研究人员近来又开发出了氧富余、碘缺少的BixOyIz,如Bi7O9I3、Bi4O5I2、Bi5O7I。BiOI的价带主要由O2p和I5p轨道组成,与O2p轨道相比,I5p轨道更接近价带边,其价带边电位较高约为2.3V,具有很强的氧化能力。而氧富余、碘缺少的BixOyIz价带中O2p轨道的贡献增加,I5p轨道的贡献下降,这意味着BixOyIz价带边的位置将下移,其氧化能力得到进一步增强。此外,O2-离子半径小于I-离子半径,氧取代了少量碘,将减小O2-离子层和[Bi2O2]2+离子层间距,增强内建电场,抑制光生电子-空穴复合,这进一步增强了它的光催化活性。但是BixOyIz载流子的分离效率仍然较低,且还存在一个严重的缺点是其导带边电位较高约为0.5V,因此其还原能力较弱。
发明内容
为解决现有技术中BixOyIz载流子的分离效率低及还原能力较弱的缺陷,本发明提供一种宽光谱吸收富氧缺碘异质光催化材料 TaON/BiO1.2I0.6的制备方法。
一种宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法,包括以下步骤:
1)、以Ta2O5为原料,以50-100mL/min流量通入NH3,并以5-10℃/min的升温速率加热至700-900℃,氮化6-10h,保持同样流量持续通入NH3,冷却至室温,获得土黄色TaON;
2)、将TaON加入含有硝酸铋的乙二醇溶液中,磁力搅拌0.5-1h,
然后向上述溶液中滴入含碘化钾的乙二醇溶液,继续搅拌反应 0.5-1h后,将反应液转入高压反应釜,140-180℃反应8-12h,自然冷却至室温,过滤、洗涤、80℃干燥后获得TaON/BiOI复合光催化材料;
3)、以TaON/BiOI复合光催化材料为前驱体,并将其置于管式炉中,以5-10℃/min的升温速率加热至350-450℃,焙烧3-6h,自然冷却至室温称重,获得宽光谱吸收富氧缺碘异质光催化材料 TaON/BiO1.2I0.6
进一步的,所述步骤1)的氮化温度是850℃,氮化时间是10h,氨气流量80mL/min。
进一步的,所述步骤2)中高压反应釜内的反应温度160℃,反应时间12h。
进一步的,所述步骤3)中焙烧温度400℃,焙烧时间5h,升温速率5℃/min。
有益效果:
TaON的导带边电位约为-0.3V,还原能力较强,利用TaON修饰 BixOyIz,不仅将体系的还原能力显著增强,而且TaON的价带边电位 (约2.1V)又比BixOyIz小,可以和BixOyIz构成异质结体系。将本发明所得的TaON/BiO1.2I0.6应用于VOCs净化中,经过TaON修饰的BiO1.2I0.6光催化分解典型VOCs甲苯的效率比BiO1.2I0.6提高了约1.4倍。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为TaON、TaON/BiO1.2I0.6、BiO1.2I0.6的X射线衍射图;
图2是TaON、TaON/BiO1.2I0.6、BiO1.2I0.6紫外-可见漫反射光谱;
图3为TaON的N2吸附-脱附等温线及孔径分布曲线;
图4为5wt%TaON/BiO1.2I0.6的N2吸附-脱附等温线及孔径分布曲线;
图5为为BiO1.2I0.6的N2吸附-脱附等温线及孔径分布曲线;
图6是TaON、TaON/BiO1.2I0.6和BiO1.2I0.6光催化分解甲苯的结果;
图7为5wt%TaON/BiO1.2I0.6循环3次运行降解甲苯的结果。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1
以Ta2O5为原料,以80mL/min流量通入NH3,并以5-10℃/min的升温速率加热至850℃,氮化10h,保持同样流量持续通入NH3,冷却至室温,获得土黄色TaON;
称取0.05gTaON,将其加入40mL含1.51gBi(NO3)3·5H2O乙二醇溶液中,磁搅拌0.5h后,向其中滴入40mL含0.52gKI的乙二醇溶液,继续磁搅拌反应0.5h。接着,将其转入100mL高压反应釜并置于烘箱中,160℃反应12h。自然冷却至室温,样品经过滤、洗涤、80℃干燥后放入坩埚,并将其置于管式炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得5wt%TaON/BiO1.2I0.6
比较例1
称取0.01gTaON,将其加入40mL含1.58gBi(NO3)3·5H2O乙二醇溶液中,磁搅拌0.5h后,向其中滴入40mL含0.54gKI的乙二醇溶液,继续磁搅拌反应0.5h。接着,将其转入100mL高压反应釜并置于烘箱中,160℃反应12h。自然冷却至室温,样品经过滤、洗涤、80℃干燥后放入坩埚,并将其置于管式炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得1wt%TaON/BiO1.2I0.6
比较例2
称取0.03gTaON,将其加入40mL含1.54gBi(NO3)3·5H2O乙二醇溶液中,磁搅拌0.5h后,向其中滴入40mL含0.53gKI的乙二醇溶液,继续磁搅拌反应0.5h。接着,将其转入100mL高压反应釜并置于烘箱中,160℃反应12h。自然冷却至室温,样品经过滤、洗涤、80℃干燥后放入坩埚,并将其置于管式炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得3wt%TaON/BiO1.2I0.6
比较例3
称取0.07gTaON,将其加入40mL含1.48gBi(NO3)3·5H2O乙二醇溶液中,磁搅拌0.5h后,向其中滴入40mL含0.51gKI的乙二醇溶液,继续磁搅拌反应0.5h。接着,将其转入100mL高压反应釜并置于烘箱中,160℃反应12h。自然冷却至室温,样品经过滤、洗涤、80℃干燥后放入坩埚,并将其置于管式炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得7wt%TaON/BiO1.2I0.6
比较例4
称取0.09gTaON,将其加入40mL含1.45gBi(NO3)3·5H2O乙二醇溶液中,磁搅拌0.5h后,向其中滴入40mL含0.50gKI的乙二醇溶液,继续磁搅拌反应0.5h。接着,将其转入100mL高压反应釜并置于烘箱中,160℃反应12h。自然冷却至室温,样品经过滤、洗涤、80℃干燥后放入坩埚,并将其置于管式炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得9wt%TaON/BiO1.2I0.6
比较例5
称取1gTa2O5放入坩埚,并将其置于管式炉中,以80mL/min流量通入NH3,并以10℃/min的升温速率加热至850℃,并将温度保持在 850℃氮化10h,保持流量不变通入NH3,冷却至室温,获得土黄色TaON。
比较例6
称取1.55gBi(NO3)3·5H2O,将其加入40mL乙二醇溶液中,磁搅拌 0.5h后,向其中滴入40mL含0.55gKI的乙二醇溶液,继续磁搅拌反应0.5h。接着,将其转入100mL高压反应釜并置于烘箱中,160℃反应12h。自然冷却至室温,样品经过滤、洗涤、80℃干燥后放入坩埚,并将其置于管式炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得黄色BiO1.2I0.6
图1为TaON、TaON/BiO1.2I0.6、BiO1.2I0.6的X射线衍射图,从图1 可见BiO1.2I0.6分别在2θ为28.1°、28.8°、31.1°、33.0°、35.5°、46.0°、47.8°处出现显著的衍射峰。TaON的衍射峰与其单斜相 (PDF#70-1193)一致。对于TaON/BiO1.2I0.6,在2θ为28.8°处出现了TaON的特征衍射峰,表明TaON/BiO1.2I0.6异质材料中含有TaON。
从图2为TaON、TaON/BiO1.2I0.6、BiO1.2I0.6的紫外-可见漫反射光谱。由图2可知TaON是光吸收范围很宽的催化剂,其最大吸收波长为600nm,BiO1.2I0.6也是一种光吸收范围良好的材料,能够吸收波长小于525nm的光。TaON/BiO1.2I0.6最大光吸收范围在525nm-600nm之间,证实TaON/BiO1.2I0.6是一种宽光谱吸收的异质材料。
图3为TaON的N2吸附-脱附等温线及孔径分布曲线;图4为 5wt%TaON/BiO1.2I0.6的N2吸附-脱附等温线及孔径分布曲线;图5为为 BiO1.2I0.6的N2吸附-脱附等温线及孔径分布曲线;
由图3-5可以看出TaON、5wt%TaON/BiO1.2I0.6、BiO1.2I0.6吸附-脱附等温线与IV型等温线一致,均有明显的滞后环,说明TaON、 5wt%TaON/BiO1.2I0.6、BiO1.2I0.6为介孔材料。BJH孔径分析显示,TaON、 5wt%TaON/BiO1.2I0.6、BiO1.2I0.6的平均孔径分别为32nm、35.3nm、42.2nm,这与吸附-脱附等温线一致。BET分析显示,TaON、5wt%TaON/BiO1.2I0.6、 BiO1.2I0.6的比表面积分别为4.3m2/g、16.3m2/g、19.5m2/g。
图6为TaON、TaON/BiO1.2I0.6、BiO1.2I0.6光催化分解甲苯活性的结果。其反应器体积为250mL、光源300W氙灯、催化剂量0.2g、甲苯初始浓度3000ppm、H2O 5μL。
由图6可以看出,TaON/BiO1.2I0.6的光催化分解甲苯活性高于 BiO1.2I0.6和TaON,其中5wt%TaON/BiO1.2I0.6展示出最高的光催化活性。经过24h照射,TaON仅可将50%的甲苯降解,BiO1.2I0.6降解了54%的甲苯,而在同样的条件下,5wt%TaON/BiO1.2I0.6能够将74%的甲苯降解。
图7为5wt%TaON/BiO1.2I0.6循环3次运行降解甲苯的活性。图7 显示,5wt%TaON/BiO1.2I0.6循环使用3次,其降解甲苯的活性并没有明显下降,表明5wt%TaON/BiO1.2I0.6具有良好的稳定性。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法,其特征在于,包括以下步骤:
1)、以Ta2O5为原料,以50-100mL/min流量通入NH3,并以5-10℃/min的升温速率加热至700-900℃,氮化6-10h,保持同样流量持续通入NH3,冷却至室温,获得土黄色TaON;
2)、将TaON加入含有硝酸铋的乙二醇溶液中,磁力搅拌0.5-1h,然后向上述溶液中滴入含碘化钾的乙二醇溶液,继续搅拌反应0.5-1h后,将反应液转入高压反应釜,140-180℃反应8-12h,自然冷却至室温,过滤、洗涤、80℃干燥后获得TaON/BiOI复合光催化材料;
3)、以TaON/BiOI复合光催化材料为前驱体,并将其置于管式炉中,以5-10℃/min的升温速率加热至350-450℃,焙烧3-6h,自然冷却至室温称重,获得宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6
2.如权利要求1所述的宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法,其特征在于,所述步骤1)的氮化温度是850℃,氮化时间是10h,氨气流量80mL/min。
3.如权利要求1所述的宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法,其特征在于,所述步骤2)中高压反应釜内的反应温度160℃,反应时间12h。
4.如权利要求1所述的宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法,其特征在于,所述步骤3)中焙烧温度400℃,焙烧时间5h,升温速率5℃/min。
5.一种权利要去1所述的宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6在VOCs净化中的应用。
CN201810313540.3A 2018-04-10 2018-04-10 一种宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法 Pending CN108525696A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810313540.3A CN108525696A (zh) 2018-04-10 2018-04-10 一种宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810313540.3A CN108525696A (zh) 2018-04-10 2018-04-10 一种宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法

Publications (1)

Publication Number Publication Date
CN108525696A true CN108525696A (zh) 2018-09-14

Family

ID=63479661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810313540.3A Pending CN108525696A (zh) 2018-04-10 2018-04-10 一种宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法

Country Status (1)

Country Link
CN (1) CN108525696A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550510A (zh) * 2018-12-14 2019-04-02 西安理工大学 一种碳钽共掺杂氯氧铋粉末的制备方法
CN110280278A (zh) * 2019-06-05 2019-09-27 常州大学 一种碘空位BiO1.2I0.6/Bi2O3光催化复合材料及其制备方法
CN114832841A (zh) * 2022-04-26 2022-08-02 西安理工大学 自然光响应的卤氧化铋光催化材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990488A (zh) * 2014-06-11 2014-08-20 哈尔滨工业大学 两步法制备Cu2O/TaON复合光催化材料
CN104923277A (zh) * 2015-05-15 2015-09-23 浙江海洋学院 一种Ta3N5/Bi2WO6异质结纤维光催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990488A (zh) * 2014-06-11 2014-08-20 哈尔滨工业大学 两步法制备Cu2O/TaON复合光催化材料
CN104923277A (zh) * 2015-05-15 2015-09-23 浙江海洋学院 一种Ta3N5/Bi2WO6异质结纤维光催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHIBA P. ADHIKARI ETAL.: "Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3 composites", 《RSC ADVANCES》 *
YU LIU ETAL.: "Synthesis process and photocatalytic properties of BiOBr nanosheets for gaseous benzene", 《ENVIRON SCI POLLUT RES》 *
YUAN GUAN ETAL.: "Constructing BiO1.1Br0.8 sheet-sphere junction structure for efficient photocatalytic degradation of aniline", 《CATALYSIS COMMUNICATIONS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550510A (zh) * 2018-12-14 2019-04-02 西安理工大学 一种碳钽共掺杂氯氧铋粉末的制备方法
CN110280278A (zh) * 2019-06-05 2019-09-27 常州大学 一种碘空位BiO1.2I0.6/Bi2O3光催化复合材料及其制备方法
CN110280278B (zh) * 2019-06-05 2022-07-26 常州大学 一种碘空位BiO1.2I0.6/Bi2O3光催化复合材料及其制备方法
CN114832841A (zh) * 2022-04-26 2022-08-02 西安理工大学 自然光响应的卤氧化铋光催化材料的制备方法
CN114832841B (zh) * 2022-04-26 2024-05-14 西安理工大学 自然光响应的卤氧化铋光催化材料的制备方法

Similar Documents

Publication Publication Date Title
Hashimoto et al. Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere
Kim et al. Catalytic ozonation of toluene using Mn–M bimetallic HZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature
Lin et al. Photocatalytic Activity of Rutile Ti1− xSnxO2Solid Solutions
Jimmy et al. Enhanced photocatalytic activity of Ti1− xVxO2 solid solution on the degradation of acetone
Yin et al. Synthesis of visible-light responsive nitrogen/carbon doped titania photocatalyst by mechanochemical doping
Kamegawa et al. Design of TiO2-zeolite composites with enhanced photocatalytic performances under irradiation of UV and visible light
Buvaneswari et al. Effect of FeWO4 doping on the photocatalytic activity of ZnO under visible light irradiation
CN108525696A (zh) 一种宽光谱吸收富氧缺碘异质光催化材料TaON/BiO1.2I0.6的制备方法
JP2007216223A (ja) 半導体特性を有する光触媒物質及びその製造方法と利用方法
Nair et al. Heterogeneous catalytic oxidation of persistent chlorinated organics over cobalt substituted zinc ferrite nanoparticles at mild conditions: Reaction kinetics and catalyst reusability studies
Senthilraja et al. Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation
Shen et al. Visible-light-driven titania photocatalyst co-doped with nitrogen and ferrum
Preethi et al. Sol–gel derived cobalt doped nano-titania photocatalytic system for solar light induced degradation of crystal violet
EP1724014B1 (en) Use of a composite oxide as a visible light responsive photocatalyst and method for decomposition and removal of harmful chemical material using the same
CN108355648B (zh) 一种钛基纳米片复合催化剂的制备方法及其应用
Slimen et al. The effect of calcination atmosphere on the structure and photoactivity of TiO2 synthesized through an unconventional doping using activated carbon
Hong et al. Direct Decomposition of NO on Ba Catalysts Supported on Ce–Fe Mixed Oxides
Thiripuranthagan et al. Photocatalytic degradation of congored on silica supported Ag impregnated TiO2
Lavand et al. Visible-light photocatalytic degradation of ethidium bromide using carbon-and iron-modified TiO 2 photocatalyst
JP2008006344A (ja) 可視光応答性光触媒
Vargas et al. Characterization and photocatalytic evaluation (UV-visible) of Fe-doped TiO2 systems calcined at different temperatures
JP5356841B2 (ja) アンモニアを含む水溶液の処理方法
Hadnadjev-Kostic et al. Design and application of various visible light responsive metal oxide photocatalysts
Ramos-Ramírez et al. Effect of the Mg/Al ratio on activated sol-gel hydrotalcites for photocatalytic degradation of 2, 4, 6-trichlorophenol
Ku et al. Photocatalytic oxidation of isopropanol in aqueous solution using perovskite‐structured La2Ti2O7

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180914