CN108519128A - The environment network of mercury ion content is detected based on genetic chip and gold nano grain - Google Patents

The environment network of mercury ion content is detected based on genetic chip and gold nano grain Download PDF

Info

Publication number
CN108519128A
CN108519128A CN201810567797.1A CN201810567797A CN108519128A CN 108519128 A CN108519128 A CN 108519128A CN 201810567797 A CN201810567797 A CN 201810567797A CN 108519128 A CN108519128 A CN 108519128A
Authority
CN
China
Prior art keywords
dna
solution
gold
sensor
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810567797.1A
Other languages
Chinese (zh)
Inventor
邹强
李鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810567797.1A priority Critical patent/CN108519128A/en
Publication of CN108519128A publication Critical patent/CN108519128A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The invention discloses the environment networks that mercury ion content is detected based on genetic chip and gold nano grain, including host node computer (10), it is connect for wireless signal between the host node computer (10) and multiple sensors of default type;Multiple sensors of the default type are mounted in the heat distribution pipeline (3) being laid in the underground space (100) and water supply line (6) and on the side wall of the underground space;Multiple sensors of the default type are used to acquire the detection data of the corresponding underground space.The environment network disclosed by the invention that mercury ion content is detected based on genetic chip and gold nano grain, its can the environment of safe and reliable ground-to-ground down tube net carry out comprehensive monitoring, the content of mercury ion is effectively detected in the water that can be especially transmitted to underground pipe network, the security risk of underground pipe network can be reduced, ensure the safe handling of underground pipe network, be conducive to widely apply, be of great practical significance.

Description

The environment network of mercury ion content is detected based on genetic chip and gold nano grain
Technical field
The present invention relates to Underground Space Environment monitoring technical fields, more particularly to based on genetic chip and gold nano grain Detect the environment network of mercury ion content.
Background technology
Currently, underground pipe network is the most important thing in Chinese Urbanization construction process, it is to play city function, it is ensured that city Economy, Community health, coordinated development important substance basis, be presented intricate, mutually overlapping stereoscopic features, city Lower pipe network is the important component of urban infrastructure construction, be a city energy conveying, mass transfer, information transmit, The important carrier that water drainage mitigation and waste dump.
In view of current mercury and mercuric compounds to health there are many harm, be present in mercury in environment water be even more can be with It threatens to large-scale natural environment and humans and animals.Mercury is arranged in the form of solid waste, exhaust gas and waste water respectively It is put into environment, and arranges also be recycled back to dampening to the mercury of air and soil and be included into water body, cause long-term in environment water Mercury pollution repeatedly.Mercury can be accumulated in vivo, and the mercury in water body can be entered by food chain, especially aquatic products Into the human body.The mercury of accumulation in human body is difficult to be discharged by own metabolism, and Trace Mercury can generate liver kidney and other organs Toxicity causes oral inflammation, hand tremor, nerve problems and chronic mercury poisoning.With increasing for mercury cumulant, to human body Influence becomes apparent, and shows as serious irreversible cranial nerve lesions, it might even be possible to lead to brain death.Thus, natural water In mercury content environment measuring control in be the most important thing, for ensure human health, there is an urgent need to develop it is quick, sensitive, Selected method detects mercury ion.
For current underground pipe network, the problem of being primarily present, is:It, can not since the space structure of underground pipe network is complicated Comprehensive monitoring carried out to the environment of underground pipe network, in the water that can not be especially transmitted to underground pipe network the content of mercury ion into Row effectively detection ensures the safe handling of underground pipe network to reduce the security risk of underground pipe network.
Therefore, at present there is an urgent need to develop going out a kind of technology, can the environment of safe and reliable ground-to-ground down tube net carry out Comprehensive monitoring especially can effectively detect the content of mercury ion in the water of underground pipe network transmission, can be reduced The security risk of underground pipe network ensures the safe handling of underground pipe network.
Invention content
In view of this, the object of the present invention is to provide the rings for detecting mercury ion content based on genetic chip and gold nano grain Border network, can the environment of safe and reliable ground-to-ground down tube net carry out comprehensive monitoring, especially can be to underground pipe network The content of mercury ion is effectively detected in the water of transmission, can be reduced the security risk of underground pipe network, be ensured underground pipe network Safe handling, is conducive to widely apply, be of great practical significance.
For this purpose, the present invention provides the environment network for detecting mercury ion content based on genetic chip and gold nano grain, packet Host node computer is included, is connected for wireless signal between the host node computer and multiple sensors of default type;
Multiple sensors of the default type be mounted on the underground space in be laid with heat distribution pipeline and water supply line in And on the side wall of the underground space;
Multiple sensors of the default type are used to acquire the detection data of the corresponding underground space.
Wherein, multiple sensors of the default type include:First temperature sensor, second flow sensor and surface Enhance Raman SERS water quality sensors;
First temperature sensor, second flow sensor and surface-enhanced Raman SERS water quality sensors are mounted on institute It states in water supply line, for detecting the temperature of water in the water supply line, flow and mercury ion content, is then sent to main section Point computer.
Wherein, multiple sensors of the default type further include:First pressure sensor, first flow sensor and Two temperature sensors;
The first pressure sensor, first flow sensor and second temperature sensor are mounted on the heat distribution pipeline In, pressure, flow and temperature for detecting institute's transmission medium in the heat distribution pipeline are then sent to host node computer.
Wherein, multiple sensors of the default type further include:Oxygen sensor, carbon monoxide transducer, hydrogen sulfide Sensor, Temperature Humidity Sensor and NOx sensor;
The oxygen sensor, carbon monoxide transducer, hydrogen sulfide sensor, Temperature Humidity Sensor and nitrogen oxides sensing Device is separately mounted on the side wall of the underground space, dense for collecting the oxygen gas concentration in the underground space, CO gas Degree, sulfureted hydrogen gas concentration, temperature, humidity and nitrous oxides concentration are then sent to host node computer.
Wherein, further include:First monitoring camera and the second monitoring camera;
First monitoring camera is located at the upper right side of the second monitoring camera;
First monitoring camera and the second monitoring camera are mounted on the side wall of the underground space, are respectively used to acquire The image of institute overlay area, is then sent to host node computer.
Wherein, the host node computer, including:Data memory module, data processing module and wireless data transmission mould Block, wherein:
Data memory module, the detection data of the underground space for acquiring multiple sensors of the default type, It is stored in real time;
Data processing module is connected with data memory module, for acquiring multiple sensors of the default type The underground space detection data, be compared respectively with preset, corresponding normal value range, if positioned at it is preset, Within corresponding normal value range, then corresponding data qualifier is judged, otherwise, then judge corresponding defect of data, meanwhile, Comparable situation is sent to the computer of ground base station by wireless data transfer module in real time;
Data processing module is additionally operable to, by first monitoring camera and the second monitoring camera acquired image, lead to Cross the computer that wireless data transfer module is sent to ground base station.
Wherein, further include:Crusing robot, the ground that the crusing robot is arranged between heat distribution pipeline and water supply line On face.
Wherein, the surface-enhanced Raman SERS water quality sensors include kit and detection switch, wherein:
Detection switch is mounted on the water supply line;
The kit is located at the lower section of detection switch, and the top of the kit has multiple holes;
Include inserted with surface-enhanced Raman SERS chips, the surface-enhanced Raman SER S chips in the kit Silicon dioxide substrates are arranged at intervals with multiple gold nanos modified by DNA and 2- thionaphthols in the silicon dioxide substrates Grain distributed areas;
The surface spraying of the silicon dioxide substrates has gold nanometer film, and DNA is coated on the gold nanometer film;
Each gold nano grain distributed areas by the modification of DNA and 2- thionaphthols are correspondingly arranged and are connected with a hole It is logical;
The kit is arranged above a fibre-optical probe, the fibre-optical probe by an optical fiber and one just The formula Raman detector of taking is connected;
It is provided with antenna in the portable Raman detector.
Wherein, prepare has the silica that DNA is also coated on gold nanometer film and gold nanometer film in surface spraying Substrate, specific preparation process include the following steps:
Firstly, since sulfydryl can form stable Au-S keys with nanogold, therefore nanogold is passed through into ion sputtering instrument The surface for being sprayed into silicon dioxide substrates forms gold nanometer film;
Then, the DNA solution paint point of 5 terminal modified sulfydryls is formed with to the silicon dioxide substrates of gold nanometer film to surface On surface, react 4 hours at room temperature;
Then, silicon dioxide substrates are cleaned three times with the phosphate buffer solution of a concentration of 0.1M of molal volume, is removed Go the DNA chain of wherein non-specific binding;
Finally, bovine serum albumin(BSA) (BSA) solution for being 2.5% with mass concentration wraps up spot and blocking dna on DNA On active site, then cleaned with ultra-pure water, drying box be used in combination to dry, it is final obtain surface spraying have gold nanometer film and The silicon dioxide substrates of DNA are also coated on gold nanometer film.
Wherein, the preparation of the surface-enhanced Raman SERS chips includes the following steps:
The first step, the chlorauric acid solution ebuillition of heated with vigorous stirring for being 0.01% by mass concentration, in stirring Under be rapidly added 1% trisodium citrate aqueous solution, the volume ratio of the chlorauric acid solution and trisodium citrate aqueous solution is 100:3;
Second step continues to heat and boil 15 minutes, and lurid solution is made to gradually become stable peony, then will system At liquid be cooled to room temperature, obtain gold colloid;
The 2- thionaphthols of a concentration of 0.01mM of molal volume are added to gold colloid solution mixing third step, are gently mixed 10 minutes, the gold nanoparticle separating liquid of 2- thionaphthols label is obtained, is then turned according to the centrifugation of the speed of 8000 rev/min It is 10 minutes dynamic, remove supernatant, wherein the volume ratio of the 2- thionaphthols and gold colloid solution is 1:100;
4th step uses the phosphate buffer of a concentration of 10mM of 1mL to suspend again, the gold colloid solution after being suspended, In, the volume ratio of phosphate buffer and gold colloid solution is 1:1;
Preset DNA solution is added in the gold colloid solution after suspending 5th step, reacts 12 hours, is then added The sodium chloride solution salinization of a concentration of 0.1M of molal volume 30 minutes, then be placed in 4 degrees Celsius of temperature and continue salinization 6 hours, Obtain mixture, wherein the volume ratio of 2- thionaphthols and sodium chloride solution is 1:2;
6th step centrifuges mixture 30 minutes under 8000 rpms of rotating speed, removes supernatant, is subsequently placed in and rubs It suspends in the phosphate buffer that your volumetric concentration is 10mM, the gold nano grain obtained by the modification of DNA and 2- thionaphthols is molten Liquid;
7th step will be coated in silicon dioxide substrates by the gold nano grain of DNA and 2- thionaphthols modification, then be placed in It is dried in drying box, finally forms the gold nano grain point by the modification of DNA and 2- thionaphthols in silicon dioxide substrates Cloth region prepares surface-enhanced Raman SERS chips;
In the 5th step, the specific preparation process of the preset DNA solution is as follows:
By DNA (TTTTTGTTTCTTTGTTTCTTTG) solution of a concentration of 100uM of molal volume and molal volume concentration It is mixed for three (2- carboxyethyls) phosphonium salt acid salt solutions of 10mM, wherein D NA solution and three (2- carboxyethyls) phosphonium salt acid salt solutions Volume ratio is 20:3, and the volume ratio of DNA solution and the 2- thionaphthols in third step is 1:1, room temperature stands activation 1 hour, Obtain preset DNA solution.
By the above technical solution provided by the invention as it can be seen that compared with prior art, the present invention provides based on gene Chip and gold nano grain detection mercury ion content environment network, can safe and reliable ground-to-ground down tube net environment into The comprehensive monitoring of row especially can effectively detect the content of mercury ion in the water of underground pipe network transmission, can be subtracted The security risk of few underground pipe network, ensures the safe handling of underground pipe network, is conducive to widely apply, and has great production real Trample meaning.
Description of the drawings
Fig. 1 is the knot of the environment network provided by the invention that mercury ion content is detected based on genetic chip and gold nano grain Structure schematic diagram;
Fig. 2 is that the environment network provided by the invention that mercury ion content is detected based on genetic chip and gold nano grain is based on The data transmission schematic diagram that purple honeybee ZigBee wireless communication techniques are formed;
Fig. 3 is table in the environment network provided by the invention for detecting mercury ion content based on genetic chip and gold nano grain Face enhances the cooperating state simplified schematic diagram of Raman (SERS) water quality sensor and water supply line;
Fig. 4 is table in the environment network provided by the invention for detecting mercury ion content based on genetic chip and gold nano grain Face enhances the structure schematic diagram of Raman (SERS) chip;
Fig. 5 is gold in the environment network provided by the invention for detecting mercury ion content based on genetic chip and gold nano grain Attachment structure schematic diagram between nano particle and DNA chain;
Fig. 6 is table in the environment network provided by the invention for detecting mercury ion content based on genetic chip and gold nano grain The Raman signal schematic diagram that face enhancing Raman (SERS) chip obtains when being detected to liquid;
In figure, 1 is the first monitoring camera;2 be the second monitoring camera;3 be heat distribution pipeline;4 sense for first pressure Device;5 be the first temperature sensor;6 be water supply line;7 be crusing robot;8 be first flow sensor;9 be second flow Sensor;10 be main node computer;11 be second temperature sensor;12 be surface-enhanced Raman (SERS) water quality sensor; 13 be oxygen sensor;14 be carbon monoxide transducer;15 be hydrogen sulfide sensor;16 be Temperature Humidity Sensor;17 be nitrogen oxygen Compound sensor;
18 be detection switch;19 be surface-enhanced Raman (SERS) chip;20 be kit;21 examine for portable Raman Survey instrument;22 be antenna;23 be fibre-optical probe;24 be the gold nano grain distributed areas modified by DNA and 2- thionaphthols;25 are Silicon dioxide substrates;26 be gold nano grain;27 be DNA chain.
Specific implementation mode
In order to make those skilled in the art understand the present invention program with replacing, below in conjunction with the accompanying drawings with embodiment to this Invention is described in further detail.
Referring to Fig. 1 to Fig. 6, the present invention provides the environment that mercury ion content is detected based on genetic chip and gold nano grain Network, including host node computer 10, the host node computer 10 and multiple sensors of default type (are used as partial node Point) between for wireless signal (especially by purple honeybee ZigBee wireless communication techniques) connect;
Multiple sensors of the default type are mounted on the heating power being laid in the underground space 100 (i.e. underground pipe network space) In pipeline 3 and water supply line 6 and on the side wall of the underground space;
Multiple sensors of the default type are used to acquire the detection data of the corresponding underground space, for example, temperature passes Sensor is used to detect the temperature data of institute's installation site.
In the present invention, in specific implementation, multiple sensors of the default type include:First temperature sensor 5, Two flow sensors 9 and surface-enhanced Raman SERS water quality sensors 12;
First temperature sensor 5, second flow sensor 9 and surface-enhanced Raman SERS water quality sensors 12 are installed In the water supply line 6, for detecting the temperature of water in the water supply line 6, flow and mercury ion content, then send Give host node computer 10 (especially by purple honeybee ZigBee wireless communication techniques).
In the present invention, in specific implementation, multiple sensors of the default type further include:First pressure sensor 4, First flow sensor 8 and second temperature sensor 11;
The first pressure sensor 4, first flow sensor 8 and second temperature sensor 11 are mounted on the thermal pipe In road 3, pressure, flow and temperature for detecting institute's transmission medium (such as hot water or steam) in the heat distribution pipeline 3, so After be sent to host node computer 10 (especially by purple honeybee Z igBee wireless communication techniques, such as ZigBee ad hoc network).
It should be noted that heat distribution pipeline is the transmission pipeline of high-temperature gas or high-temp liquid, for example, it is warm in city Feed channel.
In the present invention, in specific implementation, multiple sensors of the default type further include:Oxygen sensor 13, one Aoxidize carbon sensor 14, hydrogen sulfide sensor 15, Temperature Humidity Sensor 16 and NOx sensor 17;
The oxygen sensor 13, carbon monoxide transducer 14, hydrogen sulfide sensor 15, Temperature Humidity Sensor 16 and nitrogen oxygen Compound sensor 17 is separately mounted on the side wall of the underground space, is collected for the integrated environment information to the underground space, Specifically for collecting the oxygen gas concentration in the underground space, carbon monoxide gas concentration, sulfureted hydrogen gas concentration, temperature, wet Degree and nitrous oxides concentration, are then sent to host node computer 10 (especially by purple honeybee ZigBee wireless communication techniques, such as ZigBee ad hoc network).
In the present invention, in specific implementation, Underground Space Environment provided by the invention monitors network, further includes:First prison Control camera 1 and the second monitoring camera 2;
First monitoring camera is located at the upper right side of the second monitoring camera 2;
First monitoring camera, 1 and second monitoring camera 2 is mounted on the side wall of the underground space, is respectively used to adopt The image for collecting institute overlay area, is then sent to host node computer 10 (especially by purple honeybee ZigBee wireless communication techniques, such as ZigBee ad hoc network), institute overlay area is monitored in real time to realize.
In specific implementation, first monitoring camera, 1 and second monitoring camera 2 can be monitoring gunlock.
It should be noted that specific implementation on, first monitoring camera 1 can be with 15 meters of pipe network entrance located underground at Furred ceiling supports 360 degree of infrared real time monitoring.Side wall at 18 meters of second monitoring camera, 2 pipe network entrance located underground, Institute overlay area can be monitored in real time.
It should be noted that for the present invention, in multiple sensors of the default type, each sensor includes Power supply module, central control module, environment acquisition module and wireless communication module.
For the present invention, the host node computer 10, including:Data memory module, data processing module and without line number According to transmission module, wherein:
Data memory module, the underground for acquiring multiple sensors (i.e. as minor node) of the default type are empty Between detection data, stored in real time, to form database;
Data processing module is connected with data memory module, for (making multiple sensors of the default type For minor node) detection data of the underground space of acquisition, it is (such as preset with preset, corresponding normal value range respectively Temperature value range, preset humidity range) be compared, if positioned at preset, corresponding normal value range it It is interior, then judge corresponding data qualifier, otherwise, then judges corresponding defect of data, meanwhile, comparable situation is passed through into nothing in real time Line data transmission module is sent to the computer of ground base station so that the staff on ground is recognized that the underground space Every environmental parameter situation, obtains the environmental information of the underground space, realizes the real time monitoring of underground pipe network.In addition, data processing Module is additionally operable to, by 1 and second monitoring camera of the first monitoring camera, 2 acquired image, pass through wireless data transmission Module is sent to the computer of ground base station.
For the present invention, in order to which more preferably ground-to-ground down space is monitored, environment network provided by the invention further includes:It patrols Robot 7 is examined, the crusing robot 7 is arranged on the ground between heat distribution pipeline 3 and water supply line 6.
It should be noted that the crusing robot 7 is mainly used for carrying out the security information monitoring of underground utilities, collect ground The security information of underground pipelines.The bottom of the crusing robot has wheel, can be equipped with infrared thermography, visible thereon Light video camera head and laser navigation module (existing laser navigation module);
Wherein, by infrared thermography, temperature change can be detected, so as to monitor heat distribution pipeline 3 in real time and supply The leakage problem of the underground utilities such as waterpipe 6;
Visible image capturing head monitors in real time for the image to the underground space, for ensureing that pipeline performance has safely Important role.
Laser navigation module, the route planning for ensureing crusing robot 7 and intelligent detecting.
It should be noted that the crusing robot 7 is used to move and carry out the agent structure of environmental monitoring, it is existing The structure of crusing robot is not unfolded to describe herein herein similarly to the prior art.
In specific implementation, the data memory module, data processing module and wireless data transfer module are located at host node The lower part of computer 10.
It should be noted that for the present invention, the data of all minor nodes can be transmitted to master by zigbee network In node computer, data are collected, handle, compare and are retrieved by each data module of host node computer, most The environmental information that will be obtained afterwards can be transferred out by zigbee wireless communication modules.Acquired by the data of whole system, Storage, processing and transmission, realize the comprehensive utilization of underground pipe gallery information, are carried for the overall planning and integrated dispatch of the underground space For strong data supporting.
As shown in figure 3, for the present invention, surface-enhanced Raman (SERS) water quality sensor 12 includes kit 20 With detection switch 18, wherein:
Detection switch 18 is mounted on the water supply line 6;It is specifically as follows an electromagnetic switch valve;
The kit 20 is located at the lower section of detection switch 18, and the top of the kit 20 has multiple holes;
Inserted with surface-enhanced Raman (SERS) chip 19, surface-enhanced Raman (SERS) core in the kit 20 Piece 19 includes silicon dioxide substrates 25, and multiple DNA and 2- thionaphthols that pass through are arranged at intervals in the silicon dioxide substrates 25 and are repaiied The gold nano grain distributed areas 24 of decorations;
The surface spraying of the silicon dioxide substrates 25 has gold nanometer film, is coated on the gold nanometer film (specific For:Coated by point) DNA;
Each gold nano grain distributed areas 24 by the modification of DNA and 2- thionaphthols are correspondingly arranged with a hole and phase Connection, can be connected to the liquid flowed into from hole;
The kit 20 is arranged above a fibre-optical probe 23, the fibre-optical probe 23 by an optical fiber with One portable Raman detector 21 is connected;
Antenna 22 (being specifically as follows purple honeybee ZigBee antennas) is provided in the portable Raman detector 21.
In specific implementation, the portable Raman detector 21 can be a kind of existing portable Raman detector.Example Such as, it may refer to Chinese utility model patent application No. is CN201621206981.6, being announced on November 9th, 2016 Application《A kind of portable multi-function Raman detector》The portable Raman detector that prospectus is recorded.
Therefore, for the present invention, due to installing detection switch 18 below water supply line 6, when starting detection, inspection is opened Slowdown monitoring switch 18 will instill in the SERS detection chips 19 in kit 20 from the dropping liquid drop that water supply line 6 flows out, to occur Reaction, different pollutant monitorings will be instilled in different holes and are detected.The laser that fibre-optical probe 23 can send out 532nm carries out Raman detection is simultaneously handled in portable Raman detector 21, finally by 21 detected water of portable Raman detector Middle mercury ion content data radios to host node computer 10 by antenna 22.
For the present invention, it should be noted that surface-enhanced Raman (SERS) water quality sensor 12 is mainly used for mercury in water The detection of ion, the principle utilized, which is mercury ion, to form " T-Hg with the T bases in DNA2+- T " structures, it is indirect by SERS Detect the presence of mercury ion.
(it is specially to prepare to have also to be coated on gold nanometer film and gold nanometer film in surface spraying:By spot printing On) silicon dioxide substrates 25 of DNA, specific preparation process includes the following steps:
Firstly, since sulfydryl can form stable Au-S keys with nanogold, therefore nanogold is passed through into ion sputtering instrument The surface for being sprayed into silicon dioxide substrates forms gold nanometer film;
Then, by the DNA of 5 terminal modified sulfydryls (DNA sequence dna is TTTTTCTTTGTTTCTTT GTTTC) solution paint points to table Face is formed on the surface (substrate surface after processing) of the silicon dioxide substrates of gold nanometer film, reacts 4 at room temperature Hour;
Then, silicon dioxide substrates are carried out with the phosphate buffer solution (PBS) of a concentration of 0.1M of molal volume clear three times It washes, removes the DNA chain of wherein non-specific binding;
Finally, bovine serum albumin(BSA) (BSA) solution for being 2.5% with mass concentration wraps up spot and blocking dna on DNA On active site, then clean with ultra-pure water (also known as UP water), drying box is used in combination to dry, final acquisition surface spraying has Jenner It is also coated on rice film and gold nanometer film and (is specially:Coated by point) silicon dioxide substrates 25 of DNA.At this time, may be used To continue to preserve to spare in 4 degree of environment.
In order to form the gold nano grain distributed areas by the modification of DNA and 2- thionaphthols in silicon dioxide substrates 25 24, surface-enhanced Raman (SERS) chip 19 is prepared, the gold nano particle modification process specifically carried out includes the following steps:
The first step, the chlorauric acid solution ebuillition of heated with vigorous stirring for being 0.01% by mass concentration, in stirring Under be rapidly added 1% trisodium citrate aqueous solution, the volume ratio of the chlorauric acid solution and trisodium citrate aqueous solution is 100:3;
Second step continues to heat and boil 15 minutes, and lurid solution is made to gradually become stable peony, then will system At liquid be cooled to room temperature, obtain gold colloid solution.At this time, gold colloid can be stored in black bottle at 4 DEG C It is spare.
In specific implementation, when the chlorauric acid solution is 50mL, corresponding trisodium citrate aqueous solution is 1.5mL, corresponding The diameter of gold colloid solution can be 30nm.
Third step, by 2- thionaphthols (2N T) addition of a concentration of 0.01mM of molal volume (i.e. mM every liter) to gold size Liquid solution mix, be gently mixed 10 minutes, obtain 2- thionaphthols label gold nanoparticle separating liquid, then according to 8000 turns/ Speed centrifugation rotation per minute 10 minutes, removes supernatant, wherein the body of 2- thionaphthols (2NT) and gold colloid solution Product is than being 1:100;
In specific implementation, when the volume of the 2- thionaphthols (2NT) is 10uL, corresponding gold colloid solution needs 1mL.
4th step uses the phosphate buffer (i.e. PBS, pH value 7) of a concentration of 10mM of molal volume to suspend again, is hanged Gold colloid solution after floating, wherein the volume ratio of phosphate buffer and gold colloid solution is 1:1;
In specific implementation, when gold colloid solution is 1mL, selected phosphate buffer is also 1m L.
Preset DNA solution is added in the gold colloid solution after suspending 5th step, reacts 12 hours, is then added The sodium chloride solution salinization of a concentration of 0.1M of molal volume (i.e. mole every liter) 30 minutes, then it is placed in 4 degrees Celsius of temperature relaying Continuous salinization 6 hours, obtains mixture, wherein the volume ratio of 2- thionaphthols (2NT) and sodium chloride solution is 1:2;
In the 5th step, in specific implementation, when the volume of the 2- thionaphthols (2NT) is 10uL, sodium chloride solution Volume is 20uL.
In specific implementation, the specific preparation process of the preset DNA solution is as follows:
By the DNA of a concentration of 100uM of molal volume (DNA sequence dna is TTTTTGTTTCTTTGT TTCTTTG) solution with rub Three (2- carboxyethyls) phosphonium salt hydrochlorate (TC EP) solution that your volumetric concentration is 10mM mix, wherein DNA solution and three (2- carboxylic second Base) phosphonium salt hydrochlorate (TCEP) solution volume ratio be 20:3, and the body of DNA solution and the 2- thionaphthols (2NT) in third step Product is than being 1:1, then room temperature, which is stood, activates 1 hour, obtains preset DNA solution.For example, when DNA solution is 10uL, three (2- carboxyethyls) phosphonium salt hydrochlorate (TCEP) solution is 1.5uL.
6th step centrifuges mixture 30 minutes under 8000 rpms of rotating speed, removes supernatant, is subsequently placed in and rubs It suspends in the phosphate buffer (pH value 7) that your volumetric concentration is 10mM, obtains the Jenner by the modification of DNA and 2- thionaphthols Rice grain solution;
7th step will be coated in silicon dioxide substrates by the gold nano grain of DNA and 2- thionaphthols modification, then be placed in It is dried in drying box, finally forms the gold nano grain by the modification of DNA and 2- thionaphthols in silicon dioxide substrates 25 Distributed areas 24 prepare surface-enhanced Raman (SERS) chip 19.
As shown in figure 5, being prepared by the above method, any one gold nano grain 26 passes through DNA chain 27 and silica Substrate 25 is closely joined together, and the surface sprayings of the silicon dioxide substrates 25 has a gold nanometer film, on the gold nanometer film It is coated and (is specially:Coated by point) DNA.
As shown in fig. 6, abscissa is Raman shift, wave-number difference of the light relative to incident light is exactly scattered, ordinate is light Sub-count exactly scatters the intensity of light.In the presence of having mercury ion in the drop instilled, gold nano grain passes through " T-Hg2+- T " structures are adsorbed onto 19 surface of surface-enhanced Raman (SERS) chip, compared to the gold nano for not being adsorbed to chip surface Grain, will generate strong Raman signal, characteristic peak is predominantly located at 1380cm-1Place, mercury ion is obtained by the power of signal Concentration, and transmit a signal to host node 7 and handled.Therefore, the present invention realizes the high-precision of mercury ion in underground pipe network Detection, and a little in situ, special and quick detection, therefore it is particularly suitable for underground pipe network integrated digital platform, it is right Underground pipe network digital Construction is pushed to have far-reaching influence.
In conclusion compared with prior art, it is provided by the invention that mercury is detected based on genetic chip and gold nano grain The environment network of ion concentration, can the environment of safe and reliable ground-to-ground down tube net carry out comprehensive monitoring, especially can The content of mercury ion is effectively detected in the enough water transmitted to underground pipe network, can reduce the security risk of underground pipe network, is protected The safe handling for demonstrate,proving underground pipe network, is conducive to widely apply, be of great practical significance.
The above is only a preferred embodiment of the present invention, it is noted that for the ordinary skill people of the art For member, various improvements and modifications may be made without departing from the principle of the present invention, these improvements and modifications are also answered It is considered as protection scope of the present invention.

Claims (10)

1. detecting the environment network of mercury ion content based on genetic chip and gold nano grain, which is characterized in that including host node Computer (10) is connect between the host node computer (10) and multiple sensors of default type for wireless signal;
Multiple sensors of the default type are mounted on the heat distribution pipeline (3) and water supply line being laid in the underground space (100) (6) in and on the side wall of the underground space;
Multiple sensors of the default type are used to acquire the detection data of the corresponding underground space.
2. environment network as described in claim 1, which is characterized in that multiple sensors of the default type include:First Temperature sensor (5), second flow sensor (9) and surface-enhanced Raman SERS water quality sensors (12);
First temperature sensor (5), second flow sensor (9) and surface-enhanced Raman SERS water quality sensors (12) peace In the water supply line (6), for detecting the temperature of water, flow and mercury ion content in the water supply line (6), so After be sent to host node computer (10).
3. environment network as claimed in claim 2, which is characterized in that multiple sensors of the default type further include:The One pressure sensor (4), first flow sensor (8) and second temperature sensor (11);
The first pressure sensor (4), first flow sensor (8) and second temperature sensor (11) are mounted on the heating power In pipeline (3), pressure, flow and temperature for detecting institute's transmission medium in the heat distribution pipeline (3) are then sent to main section Point computer (10).
4. environment network as claimed in claim 3, which is characterized in that multiple sensors of the default type further include:Oxygen Gas sensor (13), carbon monoxide transducer (14), hydrogen sulfide sensor (15), Temperature Humidity Sensor (16) and nitrogen oxides pass Sensor (17);
The oxygen sensor (13), carbon monoxide transducer (14), hydrogen sulfide sensor (15), Temperature Humidity Sensor (16) and NOx sensor (17) is separately mounted on the side wall of the underground space, dense for collecting the oxygen gas in the underground space Degree, carbon monoxide gas concentration, sulfureted hydrogen gas concentration, temperature, humidity and nitrous oxides concentration, are then sent to host node Computer (10).
5. environment network as claimed in claim 4, which is characterized in that further include:First monitoring camera (1) and the second monitoring Camera (2);
First monitoring camera is located at the upper right side of the second monitoring camera (2);
First monitoring camera (1) and the second monitoring camera (2) are mounted on the side wall of the underground space, are respectively used to adopt The image for collecting institute overlay area, is then sent to host node computer (10).
6. environment network as claimed in claim 5, which is characterized in that the host node computer (10), including:Data store Module, data processing module and wireless data transfer module, wherein:
Data memory module, the detection data of the underground space for acquiring multiple sensors of the default type, in real time It is stored;
Data processing module is connected with data memory module, the ground for acquiring multiple sensors of the default type The detection data of down space is compared with preset, corresponding normal value range respectively, if positioned at preset, corresponding Normal value range within, then judge corresponding data qualifier, otherwise, then judge corresponding defect of data, meanwhile, in real time Comparable situation is sent to the computer of ground base station by wireless data transfer module;
Data processing module is additionally operable to first monitoring camera (1) and the second monitoring camera (2) acquired image, The computer of ground base station is sent to by wireless data transfer module.
7. such as environment network according to any one of claims 1 to 6, which is characterized in that further include:Crusing robot (7), institute It states on the ground that crusing robot (7) is arranged between heat distribution pipeline (3) and water supply line (6).
8. environment network as claimed in claim 2, which is characterized in that the surface-enhanced Raman SERS water quality sensors (12) Including kit (20) and detection switch (18), wherein:
Detection switch (18) is mounted on the water supply line (6);
The kit (20) is located at the lower section of detection switch (18), and the top of the kit (20) has multiple holes;
Inserted with surface-enhanced Raman SERS chips (19), the surface-enhanced Raman SERS chips in the kit (20) (19) include silicon dioxide substrates (25), be arranged at intervals on the silicon dioxide substrates (25) multiple by DNA and 2- naphthalene sulphur The gold nano grain distributed areas (24) of phenol modification;
The surface spraying of the silicon dioxide substrates (25) has gold nanometer film, and DNA is coated on the gold nanometer film;
Each gold nano grain distributed areas (24) by the modification of DNA and 2- thionaphthols are correspondingly arranged and are connected with a hole It is logical;
The kit (20) is arranged above a fibre-optical probe (23), and the fibre-optical probe (23) passes through an optical fiber It is connected with a portable Raman detector (21);
It is provided with antenna (22) on the portable Raman detector (21).
9. environment network as claimed in claim 8, which is characterized in that prepare has gold nanometer film and Jenner in surface spraying The silicon dioxide substrates of DNA are also coated on rice film, specific preparation process includes the following steps:
Firstly, since sulfydryl can form stable Au-S keys with nanogold, therefore nanogold is sprayed by ion sputtering instrument Gold nanometer film is formed to the surface of silicon dioxide substrates;
Then, the DNA solution paint point of 5 terminal modified sulfydryls is formed with to the surface of the silicon dioxide substrates of gold nanometer film to surface On, it reacts 4 hours at room temperature;
Then, silicon dioxide substrates are cleaned three times with the phosphate buffer solution of a concentration of 0.1M of molal volume, removes it The DNA chain of middle non-specific binding;
Finally, bovine serum albumin(BSA) (BSA) solution for being 2.5% with mass concentration wraps up on spot and blocking dna on DNA Then active site is cleaned with ultra-pure water, drying box is used in combination to dry, and the final surface spraying that obtains has gold nanometer film and Jenner The silicon dioxide substrates of DNA are also coated on rice film.
10. environment network as claimed in claim 8, which is characterized in that the preparation packet of the surface-enhanced Raman SERS chips Include following steps:
The first step, the chlorauric acid solution ebuillition of heated with vigorous stirring for being 0.01% by mass concentration, it is fast under stirring The volume ratio of the trisodium citrate aqueous solution of speed addition 1%, the chlorauric acid solution and trisodium citrate aqueous solution is 100:3;
Second step continues to heat and boil 15 minutes, and lurid solution is made to gradually become stable peony, then will be manufactured Liquid is cooled to room temperature, and obtains gold colloid;
The 2- thionaphthols of a concentration of 0.01mM of molal volume are added to gold colloid solution mixing third step, are gently mixed 10 points Clock obtains the gold nanoparticle separating liquid of 2- thionaphthols label, then according to 10 points of the speed of 8000 rev/min centrifugation rotation Clock removes supernatant, wherein the volume ratio of the 2- thionaphthols and gold colloid solution is 1:100;
4th step uses the phosphate buffer of a concentration of 10mM of 1mL to suspend again, the gold colloid solution after being suspended, wherein phosphorus The volume ratio of phthalate buffer and gold colloid solution is 1:1;
Preset DNA solution is added in the gold colloid solution after suspending 5th step, reacts 12 hours, then addition mole The sodium chloride solution salinization that volumetric concentration is 0.1M 30 minutes, then be placed in 4 degrees Celsius of temperature and continue salinization 6 hours, it obtains Mixture, wherein the volume ratio of 2- thionaphthols and sodium chloride solution is 1:2;
6th step centrifuges mixture 30 minutes under 8000 rpms of rotating speed, removes supernatant, is subsequently placed in a mole body It suspends in the phosphate buffer of a concentration of 10mM of product, obtains the gold nano grain solution by the modification of DNA and 2- thionaphthols;
7th step will be coated in silicon dioxide substrates by the gold nano grain of DNA and 2- thionaphthols modification, then be placed in drying It is dried in case, finally forms the gold nano grain distribution by the modification of DNA and 2- thionaphthols in silicon dioxide substrates 25 Region 24 prepares surface-enhanced Raman SERS chips 19;
In the 5th step, the specific preparation process of the preset DNA solution is as follows:
DNA (TTTTTGTTTCTTTGTTTCTTTG) solution and molal volume of a concentration of 100uM of molal volume is a concentration of Three (2- carboxyethyls) phosphonium salt acid salt solutions of 10mM mix, wherein the body of DNA solution and three (2- carboxyethyls) phosphonium salt acid salt solutions Product is than being 20:3, and the volume ratio of DNA solution and the 2- thionaphthols in third step is 1:1, room temperature stands activation 1 hour, obtains Obtain preset DNA solution.
CN201810567797.1A 2018-06-05 2018-06-05 The environment network of mercury ion content is detected based on genetic chip and gold nano grain Pending CN108519128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810567797.1A CN108519128A (en) 2018-06-05 2018-06-05 The environment network of mercury ion content is detected based on genetic chip and gold nano grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810567797.1A CN108519128A (en) 2018-06-05 2018-06-05 The environment network of mercury ion content is detected based on genetic chip and gold nano grain

Publications (1)

Publication Number Publication Date
CN108519128A true CN108519128A (en) 2018-09-11

Family

ID=63428145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810567797.1A Pending CN108519128A (en) 2018-06-05 2018-06-05 The environment network of mercury ion content is detected based on genetic chip and gold nano grain

Country Status (1)

Country Link
CN (1) CN108519128A (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838528A1 (en) * 1996-10-25 1998-04-29 Kyoto Daiichi Kagaku Co., Ltd. Method for measuring the concentration of polynucleotides
CN1556861A (en) * 2001-09-24 2004-12-22 ض� Nucleic acid sequencing by Raman monitoring of molecular deconstruction
CN1712928A (en) * 2005-07-01 2005-12-28 重庆工学院 MZ interference SPR chemical and biological sensor and system with fibre-optical microstructure
CN1815194A (en) * 2006-02-17 2006-08-09 湖南大学 Method for raising surface plasma resonance sensor sensitivity by using nano gold grain catalytic growing
CN101216429A (en) * 2008-01-07 2008-07-09 首都师范大学 SERS biological probe and method for making same
US7476501B2 (en) * 2002-03-26 2009-01-13 Intel Corporation Methods and device for DNA sequencing using surface enhanced raman scattering (SERS)
CN102127542A (en) * 2010-12-27 2011-07-20 江南大学 Preparation method of self-assembly material having surface-enhanced Raman activity
CN103398998A (en) * 2013-08-07 2013-11-20 上海师范大学 Raman probe used for detection of mercury ions and preparation method thereof
CN103595813A (en) * 2013-11-22 2014-02-19 锦瀚智慧管网技术有限公司 Intelligent pipe network application system and obtaining method thereof
CN104198464A (en) * 2014-09-23 2014-12-10 南京农业大学 Method for building surface enhanced Raman scattering detection system
CN104237203A (en) * 2014-09-28 2014-12-24 苏州大学 SERS sensor for quantitatively detecting concentration of mercury ions in water sample and preparation method of SERS sensor
CN104458704A (en) * 2014-12-24 2015-03-25 中国科学院合肥物质科学研究院 Method for detecting low-concentration mercury ions based on DNA modified SERS substrate
CN104568905A (en) * 2015-01-19 2015-04-29 东南大学 Three-dimensional code biological detection chip based on surface-enhanced Raman scattering (SERS) microflow platform as well as preparation method and detection method of biological detection chip
CN105019033A (en) * 2015-07-22 2015-11-04 中国科学院合肥物质科学研究院 DNA chip and detection method and production method thereof
CN105699355A (en) * 2016-01-31 2016-06-22 南京邮电大学 SERS (Surface Enhanced Raman Scattering) sensor for detecting mercury ions as well as preparation method and detection method thereof
CN205940615U (en) * 2016-05-30 2017-02-08 东莞前沿技术研究院 Wisdom city monitored control system
CN107290519A (en) * 2017-06-09 2017-10-24 浙江大学 The construction method of SERS aptamer sensors based on nanometer package assembly and application
CN107515242A (en) * 2017-08-04 2017-12-26 清华大学 A kind of silicon substrate gold nano bowl array chip and preparation method and application

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838528A1 (en) * 1996-10-25 1998-04-29 Kyoto Daiichi Kagaku Co., Ltd. Method for measuring the concentration of polynucleotides
CN1556861A (en) * 2001-09-24 2004-12-22 ض� Nucleic acid sequencing by Raman monitoring of molecular deconstruction
US7476501B2 (en) * 2002-03-26 2009-01-13 Intel Corporation Methods and device for DNA sequencing using surface enhanced raman scattering (SERS)
CN1712928A (en) * 2005-07-01 2005-12-28 重庆工学院 MZ interference SPR chemical and biological sensor and system with fibre-optical microstructure
CN1815194A (en) * 2006-02-17 2006-08-09 湖南大学 Method for raising surface plasma resonance sensor sensitivity by using nano gold grain catalytic growing
CN101216429A (en) * 2008-01-07 2008-07-09 首都师范大学 SERS biological probe and method for making same
CN102127542A (en) * 2010-12-27 2011-07-20 江南大学 Preparation method of self-assembly material having surface-enhanced Raman activity
CN103398998A (en) * 2013-08-07 2013-11-20 上海师范大学 Raman probe used for detection of mercury ions and preparation method thereof
CN103595813A (en) * 2013-11-22 2014-02-19 锦瀚智慧管网技术有限公司 Intelligent pipe network application system and obtaining method thereof
CN104198464A (en) * 2014-09-23 2014-12-10 南京农业大学 Method for building surface enhanced Raman scattering detection system
CN104237203A (en) * 2014-09-28 2014-12-24 苏州大学 SERS sensor for quantitatively detecting concentration of mercury ions in water sample and preparation method of SERS sensor
CN104458704A (en) * 2014-12-24 2015-03-25 中国科学院合肥物质科学研究院 Method for detecting low-concentration mercury ions based on DNA modified SERS substrate
CN104568905A (en) * 2015-01-19 2015-04-29 东南大学 Three-dimensional code biological detection chip based on surface-enhanced Raman scattering (SERS) microflow platform as well as preparation method and detection method of biological detection chip
CN105019033A (en) * 2015-07-22 2015-11-04 中国科学院合肥物质科学研究院 DNA chip and detection method and production method thereof
CN105699355A (en) * 2016-01-31 2016-06-22 南京邮电大学 SERS (Surface Enhanced Raman Scattering) sensor for detecting mercury ions as well as preparation method and detection method thereof
CN205940615U (en) * 2016-05-30 2017-02-08 东莞前沿技术研究院 Wisdom city monitored control system
CN107290519A (en) * 2017-06-09 2017-10-24 浙江大学 The construction method of SERS aptamer sensors based on nanometer package assembly and application
CN107515242A (en) * 2017-08-04 2017-12-26 清华大学 A kind of silicon substrate gold nano bowl array chip and preparation method and application

Similar Documents

Publication Publication Date Title
Mokrani et al. Air quality monitoring using iot: A survey
TWI659659B (en) Vehicle information and environment monitoring compound vehicle system and data processing and transmission method therein
Bonastre et al. In-line monitoring of chemical-analysis processes using Wireless Sensor Networks
Mao et al. based nanosensors to evaluate community-wide illicit drug use for wastewater-based epidemiology
CN107202821A (en) The comprehensive detection machine people that imflammable gas for underground pipe gallery is monitored
JP2003281671A (en) Multi-sensing atmospheric environment monitoring system device and monitoring method
CN102495187A (en) Detecting method of water environment pollution source based on wireless sensor networks
CN207232065U (en) The robot that imflammable gas for underground pipe gallery monitors
Liu et al. Collaborative bicycle sensing for air pollution on roadway
Poma et al. Remote monitoring of seawater temperature and pH by low cost sensors
CN108507624A (en) The environment network of silver ion content is detected based on genetic chip and gold nano grain
CN108444547A (en) The environment network of mercury ion content is detected based on genetic chip and silver nano-grain
CN104524723B (en) A kind of air-flow detection fire-fighting spraying head, spraying system of fire fighting and its detection method
CN108519128A (en) The environment network of mercury ion content is detected based on genetic chip and gold nano grain
CN108444542A (en) The environment network of silver ion content is detected based on gold silver nanometer particle
CN108444538A (en) The environment network of mercury ion content is detected based on aldehyde radical chip and gold nano grain
CN108444548A (en) The environment network of mercury ion content is detected based on gold nano grain
CN104535736B (en) Reservoir water quality on-line monitoring system
CN108444541A (en) The environment network of silver ion content is detected based on aldehyde radical chip and gold nano grain
CN108444543A (en) The environment network of mercury ion content is detected based on gold silver nanometer particle
CN108444546A (en) The environment network of silver ion content is detected based on genetic chip and silver nano-grain
CN108444544A (en) The environment network of mercury ion content is detected based on silver nano-grain
CN108444540A (en) The environment network of mercury ion content is detected based on aldehyde radical chip and silver nano-grain
CN108444539A (en) The environment network of silver ion content is detected based on silver nano-grain
CN108444545A (en) The environment network of silver ion content is detected based on aldehyde radical chip and silver nano-grain

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180911

WD01 Invention patent application deemed withdrawn after publication