CN108511555A - 表面等离激元-半导体异质结谐振光电器件及其制备方法 - Google Patents

表面等离激元-半导体异质结谐振光电器件及其制备方法 Download PDF

Info

Publication number
CN108511555A
CN108511555A CN201810188107.1A CN201810188107A CN108511555A CN 108511555 A CN108511555 A CN 108511555A CN 201810188107 A CN201810188107 A CN 201810188107A CN 108511555 A CN108511555 A CN 108511555A
Authority
CN
China
Prior art keywords
surface plasmon
semiconductor
solution
crystal
crystal face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810188107.1A
Other languages
English (en)
Inventor
张彤
王善江
张晓阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810188107.1A priority Critical patent/CN108511555A/zh
Priority to PCT/CN2018/088734 priority patent/WO2019169746A1/zh
Priority to US16/970,638 priority patent/US10964830B2/en
Publication of CN108511555A publication Critical patent/CN108511555A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提出了一种表面等离激元‑半导体异质结谐振光电器件及其制备方法,其中,表面配体分子(2)修饰在表面等离激元纳米结构(1)上,表面等离激元晶面结构(3)绑定在表面配体分子(1)上,半导体纳米结构晶种(4)位于表面等离激元晶面结构(3)上,一维半导体纳米结构(5)位于半导体纳米结构晶种(4)上,且各部分形成紧密的接触。该类异质集成材料在界面处实现了晶格的匹配,大大降低了缺陷、晶面粗糙等带来的损耗,可实现表面等离激元模式与光模式的直接耦合,在纳米激光器、纳米热源、光电探测及光催化领域中具有极大地应用前景。

Description

表面等离激元-半导体异质结谐振光电器件及其制备方法
技术领域
本发明涉及纳米材料领域、集成光学器件领域,特别涉及一种表面等离激元-半导体异质结谐振光电器件及其制备方法。
背景技术
随着半导体理论的不断发展,在追求器件的小型化和集成化的同时,如何构造高量子效率、低成本以及可大批量制备的半导体光电器件是当前人们研究的热点方向,并开辟了一系列新的应用领域。然而,由于半导体纳米材料自身带隙的限制及光生载流子再复合等问题,使得传统的基于半导体材料的光电器件存在响应波长受限、量子效率低等缺陷,导致该类器件在实用性、可靠性以及成本等方面限制了其应用范围和进一步的工业化和市场化。随着表面等离激元学研究的兴起,为该类半导体基光电器件技术的发展提供了新的契机。表面等离激元具有显著的近场局域增强特性,可作为一种“纳米天线”,极大地促进局部的光强密度。通过改变纳米结构本身的几何形状、材质、尺寸及环境介质等因素实现紫外到中红外波段可调的谐振谱。此外,Purcell指出,可通过合理的构造特定的腔,波导结构来调控材料周围电磁场的态密度,进而控制材料的自发辐射几率,该效应称为Purcell效应。基于该效应,为了有效提高半导体材料的量子效率,高态密度和小模体积将有助于获得较大的Purcell系数。因此,如果能将等离激元效应与Purcell效应二者有效结合起来,即将半导体材料对应的辐射频率接近于等离激元的谐振频率,那么将会显著提高该半导体光电器件的量子效率,光能的利用率将大幅提高。
随着半导体加工工艺的的日渐成熟,基于表面等离激元-半导体异质集成的有源、无源光电器件的研究层出不穷,但大多数的制备工艺仅仅通过焊接、绑定、修饰以及组装等方式实现两种不同材料的异质集成。制备工艺复杂,成本高而且周期长,与此同时,以上这些技术手段难以在表面等离激元结构上实现长径比可调、密度可控以及取向可变的半导体材料。不同材料之间的晶面失配也导致形成的异质集成的光电器件存在较高的界面损耗以及诸多的不确定性,器件的实用性及稳定性也需要进一步发掘。
因此,亟需一种高质量、稳定且可大批量制备的高效异质集成光电器件,避免传统构造晶面技术手段带来的“特异性”差(导致极易生成核壳型结构而无法实现光波的传导),不可控等缺陷,从而实现表面等离激元传统与光模式的直接高效耦合。
发明内容
技术问题:本发明的目的是为了克服已有技术的不足之处,提出了一种表面等离激元-半导体异质结谐振光电器件,该方法通过化学绑定特定金属晶面,并通过复合半导体晶种及其续生长来严格实现密度、长径比、取向可控的半导体结构。通过调控该种异质集成结构工艺可实现多种有源、无源表面等离激元光电器件,在纳米材料、集成光电子器件领域具有重要应用。
技术方案:本发明的一种表面等离激元-半导体异质结谐振光电器件包括:表面等离激元纳米结构,表面配体分子,表面等离激元晶面结构,半导体纳米结构晶种和一维半导体纳米结构;其中,表面配体分子修饰在表面等离激元纳米结构上,表面等离激元晶面结构绑定在表面配体分子上,半导体纳米结构晶种位于表面等离激元晶面结构上,一维半导体纳米结构位于半导体纳米结构晶种上,且各部分形成紧密的接触。
其中,
所述的表面等离激元纳米结构,形貌为三角板、线或十面体的各向异性晶体材料,长轴尺寸为10-10000nm,或为球、对称多面体的各向同性晶体材料,尺寸为10-3000nm。
所述的表面等离激元纳米结构,供选材料为金、银、铜、铝或铂等具有表面等离激元效应的金属材料;
所述的表面配体分子,供选材料为十六烷基三甲基溴化铵CTAB、聚乙烯吡络烷酮PVP或巯基丙酸MPA。
所述的表面等离激元晶面结构,形貌为三角板、锥或立方体的各向异性材料,尺寸为1-10nm。
所述的表面等离激元晶面结构,供选材料为与表面等离激元纳米结构所用材料一致的小尺寸金属纳米结构。
所述的半导体纳米结构晶种,形貌为球、锥或棒,尺寸为1-10nm,供选材料为氧化锌、三氧化二铝或氧化亚铜。
所述的一维半导体纳米结构,形貌为棒、锥或管状的一维纳米结构,尺寸为10nm-10000nm,供选材料为与半导体纳米结构晶种所用材料一致的大尺寸金属微纳结构。
本发明的表面等离激元-半导体异质结谐振光电器件的制备方法包括以下步骤:
步骤一:特定表面等离激元晶面结构构造
取浓度为0.01-1Mol/L的表面等离激元纳米结构水溶液,多次离心水洗,将沉淀物重新分散在去离子水中,得到溶液a;
在溶液a中加入浓度为0.01-1Mol/L的表面配体分子水溶液,搅拌,由于晶面选择性,该种表面配体分子将会吸附在表面等离激元纳米结构特定的晶面上,得到溶液b;
在溶液b中加入浓度为0.001-0.1Mol/L的表面等离激元晶面结构水溶液,搅拌,使得该表面等离激元晶面结构与表面等离激元纳米结构特定晶面位置的配体分子以共价键的形式形成紧密接触,多次离心水洗,将沉淀物重新分散在去离子水中,得到溶液c;
步骤二:半导体晶种制备及续生长
取所述的溶液c,加入浓度为0.01-0.1Mol/L的半导体晶种水溶液,搅拌1-4h,使得半导体晶种附着在表面等离激元纳米结构特定晶面上;
多次离心水洗,去除溶液中过量的半导体晶种,沉淀重新分散在去离子水中,得到溶液d;
为得到一维半导体纳米结构,在溶液d中先后加入浓度为0.001-0.1Mol/L的金属盐水溶液、0.001-0.1Mol/L弱还原剂水溶液及浓度为0.01-0.1Mol/L的表面封盖剂水溶液,60℃-90℃下反应1-18h;多次离心水洗,将沉淀物重新分散在去离子水中,得到最终的表面等离激元-半导体异质结。
所述一种表面等离激元-半导体异质结谐振光电器件工作方式为:当激励光入射到表面等离激元纳米结构1表面时,基于表面等离激元效应,表面等离激元纳米结构1将光聚集在亚波长范围内形成共振增强,该种共振增强具有波长选择性,共振吸收峰的位置和波段宽度与表面等离激元纳米结构1的形貌、尺寸以及环境介质相关。紧接着,产生的表面等离激元波将激发到与表面等离激元纳米结构1紧密接触的一维半导体纳米结构5波导中,形成光信号的定向分配。该过程可逆向实现,即可将激励光照射在具有光电效应的一维半导体纳米结构5波导中,以光致发光的方式,传导并汇聚在表面等离激元纳米结构1中,激发其等离激元。最终可利用该等离激元实现基于等离激元光热效应的纳米热源、光致发光增强的纳米激光器以及基于“热电子”效应的光催化反应载体。
其中,所述的金属盐溶液,供选材料为醋酸锌、三氯化铝或硝酸铜等金属元素与半导体纳米结构晶种中金属元素所一致的金属盐;弱还原剂溶液,供选材料为抗坏血酸AA、过氧化氢水溶液H2O2或乌洛托品HMTA;表面封盖剂,供选材料为聚乙烯亚胺PEI、曲拉通X-100或二-乙基己基琥珀酸酯磺酸钠AOT等能够促使半导体纳米结构沿一维方向生长的封盖剂。
有益效果:本发明与现有的技术相比具有以下的优点:
1、本发明提出了一种大批量制造纳米谐振机制的异质结构的新方法,通过选择性构造特定金属晶面,实现长径比可控、疏密可调的半导体纳米结构生长。相比于传统的技术手段,该种非核壳型结构,可同时实现局域表面等离激元LSPR效应与光模式的直接耦合,也避免了传统工艺如焊接、组装、绑定等技术手段带来的界面损耗。通过控制晶面结构,可生长一系列不同形貌、结构、取向的异质结,可用于构造纳米天线、纳米热源及表面等离激元激光器等各种无源、有源光电器件。
2、本发明提出了一种表面等离激元-半导体异质结谐振光电器件结构,相比于传统的半导体光电器件,可在多个维度上对该结构进行设计,将单晶的、原子平的一维半导体纳米结构与表面等离激元纳米结构实现直接复合,避免了材料表面缺陷,界面粗糙等原因带来的高损耗问题,同时利用表面等离激元效应带来的近场高度局域增强特性及响应光谱可调等优势,通过优化半导体材料的结构,大大提高了器件的量子效率。该种结构可同时实现表面等离激元-光或光-表面等离激元的模式转换,实现高性能、低成本的集成纳米光学器件。
3、本发明提出了一种新型晶面构造方法,利用表面配体分子具有晶面特异性吸附的特点,实现其在特定表面等离激元纳米结构上特定晶面位置的吸附,从而进一步实现对加入的密度可控的金属晶种的绑定。相比于传统的电子束刻蚀、纳米压印等构造晶面的方法,具有工艺成本低、可大批量制备等特点。且二者以共价键的形式绑定,稳定性更高。此外,利用化学方法构造的特定晶面,也便于后续进行下一步的续生长、修饰等技术手段,工艺简单、可操控性强。是对现有在表面等离激元纳米材料上构建特定晶面工艺的突破。
附图说明
图1为表面等离激元-半导体异质结谐振光电器件生长过程示意图,
图2为表面等离激元纳米结构形貌示意图,
图3不同形貌表面等离激元-半导体异质结结构示意图,
图中有表面等离激元纳米结构1,纳米十面体11,纳米三角板12,纳米棒13,纳米球14,表面配体分子2,表面等离激元晶面结构3,半导体纳米结构晶种4,一维半导体纳米锥5,一维半导体纳米柱6。
具体实施方式
下面通过具体实施例和对比例进一步说明本发明:
实施例1:一种表面等离激元-半导体异质结谐振光电器件,结构包括:表面等离激元纳米结构为银纳米十面体,尺寸为20nm;表面配体分子为十六烷基三甲基溴化铵CTAB;表面等离激元晶面结构为银三角板,尺寸为5nm;半导体纳米结构晶种为氧化锌;一维半导体纳米结构为氧化锌纳米棒,尺寸为500nm。其位置关系为,十六烷基三甲基溴化铵CTAB修饰在银纳米十面体特定晶面上,银三角板晶面绑定在十六烷基三甲基溴化铵CTAB上,氧化锌晶种位于银三角板晶面上,氧化锌纳米棒位于氧化锌晶种上,且各部分形成紧密的接触。
制备方法按照以下步骤:
步骤一:特定表面等离激元金属晶面结构构造
取浓度为0.01Mol/L的银纳米十面体溶液,多次离心水洗,将沉淀物重新分散在去离子水中,得到溶液a;在溶液a中加入浓度为0.01Mol/L的十六烷基三甲基溴化铵CTAB,搅拌,由于晶面选择性,该分子将会吸附在银纳米十面体特定的晶面上,得到溶液b。在溶液b中加入浓度为0.01Mol/L的银三角板晶面,搅拌,使得该三角板晶面被十六烷基三甲基溴化铵CTAB绑定在银纳米十面体特定晶面位置上,多次离心水洗,将沉淀物重新分散在去离子水中,得到溶液c。
步骤二:半导体晶种制备及续生长
取一定量的溶液c,加入浓度为0.05Mol/L的氧化锌晶种溶液,搅拌1h,使得氧化锌晶种附着在银三角板晶面上。多次离心水洗,去除溶液中过量的氧化锌晶种,沉淀重新分散在去离子水中,得到溶液d。为得到一维氧化锌纳米棒结构,在溶液d中先后加入浓度为0.1Mol/L的醋酸锌溶液、0.1Mol/L抗坏血酸AA溶液及浓度为0.1Mol/L的聚乙烯亚胺PEI溶液,90℃下反应2h。多次离心水洗,将沉淀物重新分散在去离子水中,得到最终的银十面体-氧化锌纳米棒异质结。
实施例2:一种表面等离激元-半导体异质结谐振光电器件,结构包括:表面等离激元纳米结构为金纳米三角板,尺寸为60nm;表面配体分子为聚乙烯吡络烷酮PVP;表面等离激元晶面结构为金纳米棒,尺寸为10nm;半导体纳米结构晶种为氧化铜;一维半导体纳米结构为氧化铜纳米锥,尺寸为1000nm。其位置关系为,聚乙烯吡络烷酮PVP修饰在金纳米三角板的特定晶面上,金纳米棒晶面绑定在聚乙烯吡络烷酮PVP上,氧化铜晶种位于金纳米棒晶面上,氧化铜纳米锥位于氧化铜晶种上,且各部分形成紧密的接触。
制备方法按照以下步骤:
步骤一:特定表面等离激元晶面结构构造
取浓度为1Mol/L的金纳米三角板溶液,多次离心水洗,将沉淀物重新分散在去离子水中,得到溶液a;在溶液a中加入浓度为0.1Mol/L的聚乙烯吡络烷酮PVP,搅拌,由于晶面选择性,该分子将会吸附在金纳米三角板特定的晶面上,得到溶液b。在溶液b中加入浓度为0.1Mol/L的金纳米棒,搅拌,使得该金纳米棒晶面被聚乙烯吡络烷酮PVP绑定在金纳米三角板特定晶面位置上,多次离心水洗,将沉淀物重新分散在去离子水中,得到溶液c。
步骤二:半导体晶种制备及续生长
取一定量的溶液c,加入浓度为0.1Mol/L的氧化铜晶种溶液,搅拌2h,使得氧化铜晶种附着在金纳米棒晶面上。多次离心水洗,去除溶液中过量的氧化铜晶种,沉淀重新分散在去离子水中,得到溶液d。为得到一维氧化铜纳米锥结构,在溶液d中先后加入浓度为0.1Mol/L的硝酸铜溶液、0.1Mol/L过氧化氢溶液及浓度为1Mol/L的曲拉通X-100溶液,80℃下反应6h。多次离心水洗,将沉淀物重新分散在去离子水中,得到最终的金三角板-氧化铜纳米锥异质结。
实施例3:一种表面等离激元-半导体异质结谐振光电器件,结构包括:表面等离激元纳米结构为铂纳米棒,尺寸为80nm;表面配体分子为巯基丙酸MPA;表面等离激元晶面结构为铂纳米立方体,尺寸为20nm;半导体纳米结构晶种为氧化铝;一维半导体纳米结构为氧化铝纳米棒,尺寸为500nm。其位置关系为,巯基丙酸MPA修饰在铂纳米棒的特定晶面上,铂纳米立方体晶面绑定在巯基丙酸MPA上,氧化铝晶种位于铂纳米立方体晶面上,氧化铝纳米棒位于氧化铝晶种上,且各部分形成紧密的接触。
制备方法按照以下步骤:
步骤一:特定表面等离激元晶面结构构造
取浓度为0.01Mol/L的铂纳米棒溶液,多次离心水洗,将沉淀物重新分散在去离子水中,得到溶液a;在溶液a中加入浓度为0.01Mol/L的巯基丙酸MPA,搅拌,由于晶面选择性,该分子将会吸附在铂纳米棒特定的晶面上,得到溶液b。在溶液b中加入浓度为0.1Mol/L的铂纳米立方体晶面结构,搅拌,使得该铂纳米立方体晶面被巯基丙酸MPA绑定在铂纳米棒特定晶面位置上,多次离心水洗,将沉淀物重新分散在去离子水中,得到溶液c。
步骤二:半导体晶种制备及续生长
取一定量的溶液c,加入浓度为0.1Mol/L的氧化铝晶种溶液,搅拌1h,使得氧化铝晶种附着在铂纳米立方体晶面上。多次离心水洗,去除溶液中过量的氧化铝晶种,沉淀重新分散在去离子水中,得到溶液d。为得到一维氧化铝棒结构,在溶液d中先后加入浓度为0.1Mol/L的三氯化铝溶液、0.1Mol/L乌洛托品HMTA溶液及浓度为0.1Mol/L的二-乙基己基琥珀酸酯磺酸钠AOT溶液,60℃下反应15h。多次离心水洗,将沉淀物重新分散在去离子水中,得到最终的铂纳米棒-氧化铝纳米棒异质结。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (10)

1.一种表面等离激元-半导体异质结谐振光电器件,其特征在于该光电器件包括:表面等离激元纳米结构(1),表面配体分子(2),表面等离激元晶面结构(3),半导体纳米结构晶种(4)和一维半导体纳米结构(5);其中,表面配体分子(2)修饰在表面等离激元纳米结构(1)上,表面等离激元晶面结构(3)绑定在表面配体分子(1)上,半导体纳米结构晶种(4)位于表面等离激元晶面结构(3)上,一维半导体纳米结构(5)位于半导体纳米结构晶种(4)上,且各部分形成紧密的接触。
2.如权利要求1所述的一种表面等离激元-半导体异质结谐振光电器件,其特征在于,所述的表面等离激元纳米结构(1),形貌为三角板、线或十面体的各向异性晶体材料,长轴尺寸为10-10000nm,或为球、对称多面体的各向同性晶体材料,尺寸为10-3000nm。
3.如权利要求1所述的一种表面等离激元-半导体异质结谐振光电器件,其特征在于,所述的表面等离激元纳米结构(1),供选材料为金、银、铜、铝或铂等具有表面等离激元效应的金属材料。
4.如权利要求1所述的一种表面等离激元-半导体异质结谐振光电器件,其特征在于,所述的表面配体分子(2),供选材料为十六烷基三甲基溴化铵CTAB、聚乙烯吡络烷酮PVP或巯基丙酸MPA。
5.如权利要求1所述的一种表面等离激元-半导体异质结谐振光电器件,其特征在于,所述的表面等离激元晶面结构(3),形貌为三角板、锥或立方体的各向异性材料,尺寸为1-10nm。
6.如权利要求1所述的一种表面等离激元-半导体异质结谐振光电器件,其特征在于,所述的表面等离激元晶面结构(3),供选材料为与表面等离激元纳米结构(1)所用材料一致的小尺寸金属纳米结构。
7.如权利要求1所述的一种表面等离激元-半导体异质结谐振光电器件,其特征在于,所述的半导体纳米结构晶种(4),形貌为球、锥或棒,尺寸为1-10nm,供选材料为氧化锌、三氧化二铝或氧化亚铜。
8.如权利要求1或7所述的一种表面等离激元-半导体异质结谐振光电器件,其特征在于,所述的一维半导体纳米结构(5),形貌为棒、锥或管状的一维纳米结构,尺寸为10nm-10000nm,供选材料为与半导体纳米结构晶种(4)所用材料一致的大尺寸金属微纳结构。
9.一种如权利要求1所述的表面等离激元-半导体异质结谐振光电器件的制备方法,其特征在于,该制备方法按照以下步骤:
步骤一:特定表面等离激元晶面结构构造
取浓度为0.01-1Mol/L的表面等离激元纳米结构水溶液,多次离心水洗,将沉淀物重新分散在去离子水中,得到溶液a;
在溶液a中加入浓度为0.01-1Mol/L的表面配体分子水溶液,搅拌,由于晶面选择性,该种表面配体分子将会吸附在表面等离激元纳米结构特定的晶面上,得到溶液b;
在溶液b中加入浓度为0.001-0.1Mol/L的表面等离激元晶面结构水溶液,搅拌,使得该表面等离激元晶面结构与表面等离激元纳米结构特定晶面位置的配体分子以共价键的形式形成紧密接触,多次离心水洗,将沉淀物重新分散在去离子水中,得到溶液c;
步骤二:半导体晶种制备及续生长
取所述的溶液c,加入浓度为0.01-0.1Mol/L的半导体晶种水溶液,搅拌1-4h,使得半导体晶种附着在表面等离激元纳米结构特定晶面上;
多次离心水洗,去除溶液中过量的半导体晶种,沉淀重新分散在去离子水中,得到溶液d;
为得到一维半导体纳米结构,在溶液d中先后加入浓度为0.001-0.1Mol/L的金属盐水溶液、0.001-0.1Mol/L弱还原剂水溶液及浓度为0.01-0.1Mol/L的表面封盖剂水溶液,60℃-90℃下反应1-18h;多次离心水洗,将沉淀物重新分散在去离子水中,得到最终的表面等离激元-半导体异质结。
10.如权利要求9所述的一种表面等离激元-半导体异质结谐振光电器件的制备方法,其特征在于,所述的金属盐溶液,供选材料为金属元素与半导体纳米结构晶种中金属元素所一致的金属盐;弱还原剂溶液,供选材料为抗坏血酸AA、过氧化氢水溶液H2O2或乌洛托品HMTA;表面封盖剂,供选材料为聚乙烯亚胺PEI、曲拉通X-100或二-乙基己基琥珀酸酯磺酸钠AOT等能够促使半导体纳米结构沿一维方向生长的封盖剂。
CN201810188107.1A 2018-03-07 2018-03-07 表面等离激元-半导体异质结谐振光电器件及其制备方法 Withdrawn CN108511555A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810188107.1A CN108511555A (zh) 2018-03-07 2018-03-07 表面等离激元-半导体异质结谐振光电器件及其制备方法
PCT/CN2018/088734 WO2019169746A1 (zh) 2018-03-07 2018-05-28 表面等离激元-半导体异质结谐振光电器件及其制备方法
US16/970,638 US10964830B2 (en) 2018-03-07 2018-05-28 Surface plasmon-semiconductor heterojunction resonant optoelectronic device and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810188107.1A CN108511555A (zh) 2018-03-07 2018-03-07 表面等离激元-半导体异质结谐振光电器件及其制备方法

Publications (1)

Publication Number Publication Date
CN108511555A true CN108511555A (zh) 2018-09-07

Family

ID=63376239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810188107.1A Withdrawn CN108511555A (zh) 2018-03-07 2018-03-07 表面等离激元-半导体异质结谐振光电器件及其制备方法

Country Status (3)

Country Link
US (1) US10964830B2 (zh)
CN (1) CN108511555A (zh)
WO (1) WO2019169746A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116964514A (zh) * 2021-03-10 2023-10-27 富士胶片株式会社 光学调制元件、光快门及光调制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324287B2 (ja) 2009-03-30 2013-10-23 ユー・ディー・シー アイルランド リミテッド 発光素子
JPWO2013046865A1 (ja) 2011-09-27 2015-03-26 日本電気株式会社 光学素子、光源装置及び投射型表示装置
CN103022899A (zh) 2012-12-18 2013-04-03 上海电机学院 一种电流泵浦产生表面等离激元激光的方法
CN106513284A (zh) 2016-10-13 2017-03-22 中国计量大学 一种利用铜纳米颗粒增强薄膜光子吸收的方法
CN106848007A (zh) 2017-01-12 2017-06-13 东南大学 一种增强氧化锌‑氮化镓异质结构电致发光的方法
CN106876513B (zh) 2017-03-06 2018-08-21 东南大学 一种等离极化激元横向异质集成的太阳电池

Also Published As

Publication number Publication date
US20210050464A1 (en) 2021-02-18
WO2019169746A1 (zh) 2019-09-12
US10964830B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
Li et al. Nanostructured materials with localized surface plasmon resonance for photocatalysis
Liu et al. Advances in carbon dots: from the perspective of traditional quantum dots
Yang et al. Catalytic growth of silicon nanowires assisted by laser ablation
Wang et al. Controllable synthesis of ZnO nanorod and prism arrays in a large area
Wang et al. Plasmonically enabled two-dimensional material-based optoelectronic devices
Yan et al. All-dielectric materials and related nanophotonic applications
Deng et al. Additive-mediated splitting of lanthanide orthovanadate nanocrystals in water: morphological evolution from rods to sheaves and to spherulites
Ramezani et al. Hybrid semiconductor nanowire–metallic Yagi-Uda antennas
Tian et al. Nanobismuth: fabrication, optical, and plasmonic properties—emerging applications
WO2019165714A1 (zh) 一种表面等离激元纳米钉结构的规模化可控制备方法
Ghanim et al. Highly directive hybrid Yagi-Uda nanoantenna for radition emission enhancement
WO2019169747A1 (zh) 表面等离激元-光-电混合传导纳米异质结构及制备方法
KR20080069958A (ko) 나노 스케일 코메탈 구조물을 사용하는 태양 에너지 변환을위한 장치 및 방법
Gan et al. Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes
CN103337455A (zh) 一种Si纳米线阵列的制备方法
KR101264880B1 (ko) 실리콘 태양전지 및 그 제조방법
Yin et al. Large scale assembly of nanomaterials: mechanisms and applications
CN112147724B (zh) 基于Mxene的宽频和广角完美吸收体及其制备方法
CN105118887A (zh) 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法
Li et al. Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials
Zhang et al. Anisotropic gold nanostructures applied to improve solar energy conversion
Liu et al. Controllable fabrication of ZnO microspheres for whispering gallery mode microcavity
Krishnan et al. Metal derivative (MD)/g-C3N4 association in hydrogen production: A study on the fascinating chemistry behind, current trend and future direction
CN108511555A (zh) 表面等离激元-半导体异质结谐振光电器件及其制备方法
CN110993719A (zh) 一种光频响应电子隧穿结构、其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180907

WW01 Invention patent application withdrawn after publication