CN108502853A - 一种MoSe2/g-C3N4异质结构的制备方法 - Google Patents

一种MoSe2/g-C3N4异质结构的制备方法 Download PDF

Info

Publication number
CN108502853A
CN108502853A CN201810317263.3A CN201810317263A CN108502853A CN 108502853 A CN108502853 A CN 108502853A CN 201810317263 A CN201810317263 A CN 201810317263A CN 108502853 A CN108502853 A CN 108502853A
Authority
CN
China
Prior art keywords
mose
carbon nitride
phase carbon
graphite phase
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810317263.3A
Other languages
English (en)
Inventor
吴�荣
阿力木江·吾舒尔
杨茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang University
Original Assignee
Xinjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang University filed Critical Xinjiang University
Priority to CN201810317263.3A priority Critical patent/CN108502853A/zh
Publication of CN108502853A publication Critical patent/CN108502853A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明是一种复合材料MoSe2/g‑C3N4的制备方法。制备方法是:首先制备石墨相氮化碳(g‑C3N4),将三聚氰胺和乙二醇混合搅拌,均匀搅拌后中滴加硝酸溶液,得到的乳白色混合液经过洗涤,干燥,退火得到淡黄色粉末石墨相氮化碳(g‑C3N4)。其次用去离子水溶解七钼酸铵;在水合肼和亚硒酸钠混合搅拌过程中,滴加七钼酸铵的水溶液继续搅拌。最后加入一定摩尔比的石墨相氮化碳(g‑C3N4)进行混合搅拌。在温度为200℃的条件下,保持17小时,得到复合样品MoSe2/g‑C3N4。本发明成本低,操作相对简单,重复性好。

Description

一种MoSe2/g-C3N4异质结构的制备方法
技术领域
本发明属于纳米材料复合半导体制备领域,具体用溶剂热法制备MoSe2/g-C3N4异质结构的方法。
背景技术
石墨相氮化碳g-C3N4是一种非金属有机聚合物半导体。因为具有很好的化学稳定性,热稳定性,半导体性能,合适的禁带宽度(2.7eV)以及合适的导带(CB,1.3 V)和价带(VB,1.4 V )位置,所以g-C3N4被认为有潜能的可见光催化剂。到现在为止,g-C3N4己经被广泛应用于光催化生产新能源,光催化去除污染物等方面。众所周知,光催化技术的核心目标是制备廉价、高效、稳定的光催化剂。合成g-C3N4的原料和方法都比较简单,因此g-C3N4满足廉价的要求。但是,对于高效和稳定这两方面的要求,纯的g-C3N4还没有达到让人们满意的地步,这主要是因为纯的g-C3N4存在多方面的缺点。这些缺点包括:(1) g-C3N4只能吸收450nm处的蓝光,对可见光的利用效率低;(2)光生电子和空穴很容易发生复合,导致有效光生电子或空穴的数量比较少;( 3 ) g-C3N4容易被自身产生的光生空穴分解,导致g-C3N4的循环稳定性不好。为了把g-C3N4优化成为一种廉价、高效、稳定的光催化剂,研究者对此进行了大量的研究。
傅遍红等[1]报道了关于g-C3N4/TiO2复合纳米材料的制备及可见光催化性能研究。他们以三聚氰胺和工业偏钦酸为原料,采用一步热处理法制备了g-C3N4/TiO2复合催化材料。这复合材料在过滤掉紫外光的500W氙灯照射下,300min内可使10mg/L亚甲基蓝溶液降解率达到83%。
王肖杰等[2]采用浓硫酸剥离法对石墨相氮化碳g-C3N4进行剥离,得到了分散性的片状g-C3N4,最后利用固相合成法制备了Ag/g-C3N4。虽然Ag/g-C3N4拓展了可见光的响应范围,增强了响应强度,但是银作为贵金属成本较高,难以满足工业光催化的要求。
二硒化钼是过渡金属硫族化合物中代表性物质,它的禁带宽度是1.7eV到1.9eV之间,被认为是一个潜在的光催化剂。而且二硒化钼纳米材料具有工艺安全性,操作简单,廉价等优点,目前被认为新一代高性能纳米光催化材料,具有广泛应用潜能。
唐华[3]等人以钼酸钠和硒粉为钼源和硒源,硼氢化钠为还原剂,蒸馏水和无水乙醇1:1的混合液为介质,采用水热法一步合成MoSe2花状纳米结构。
宋也黎等[4]用纯度99. 9%的钼粉和99. 9%的硒粉,将两者按照化学计量比(1:3)混合,在特制的反应釜中750℃下反应,制备出长为100~500 nm厚为10~50nm的片状的MoSe2纳米粒子。
Jonathan C等[5]人用Se和MoO3作为化学气相供给,在300nm的衬底上制备出了光学可区别的、高度结晶的、单层和多层的MoSe2纳米片。
在这次实验中所用的制备方法二硒化钼(MoSe2)的方法是我们独创的,这些制备方法跟我们的方法相比,我们所用的方法简单,成本低廉,而且产品质量稳定。
关于MoSe2/g-C3N4的复合目前为止还没有发表的文章。
发明内容
本发明的目的是提供一种用溶剂热法复合二硒化钼MoSe2和石墨相氮化碳g-C3N4的方法。
溶剂热法的优点:
1.反应温度低,反应条件温和;
2.操作简单方便,安全性更高;
3.物相的形成、颗粒的大小、形貌可控;
4.耗能少。
本发明是通过以下工艺过程实现的:
制备方法包括,首先制备石墨相氮化碳(g-C3N4),将三聚氰胺和乙二醇混合搅拌,均匀搅拌后中滴加硝酸溶液,得到的乳白色混合液经过洗涤,干燥,退火得到淡黄色粉末g-C3N4。其次用去离子水溶解七钼酸铵;在水合肼和亚硒酸钠混合搅拌过程中,滴加七钼酸铵的水溶液继续搅拌。最后加入一定摩尔比的g-C3N4进行混合搅拌。在温度为200℃的条件下,保持17小时,得到复合样品MoSe2/g-C3N4
附图说明
图1为MoSe2、g-C3N4和MoSe2/g-C3N4的X射线衍射(XRD)图谱;
图2为实施例1,MoSe2的扫描电子显微镜(SEM)图;
图3为实施例2,g-C3N4的透射电子显微镜(TEM)图;
图4为实施例4,MoSe2/g-C3N4异质结构的透射电子显微镜(TEM)图;
图5为实施例4,MoSe2/g-C3N4异质结构的高倍透射电子显微镜(HRTEM)图。
具体实施方式
以下结合附图和实施例对本发明做进一步详细说明。
实施例1
水热法制备MoSe2粉体。将1.038g的亚硒酸钠溶解在20mL的水合肼中,在室温下持续磁力搅拌20分钟左右;将0.52g的七钼酸铵溶解在40mL的去离子水中,形成均匀的澄清溶液,逐滴加入到上述亚硒酸钠溶液中,保持磁力搅拌60分钟。搅拌完毕,将内衬转移至配套的高压釜中密封,并置于200℃的干燥箱中保温17小时;自然冷却至室温后,用去离子水多次洗涤离心,然后在60℃真空干燥箱中干燥8小时,并收集到黑色粉末;
所得样品的X射线衍射图如图1所示,结果显示所得产物为2H相MoSe2,其衍射峰与PDF#29-0914卡片和PDF# 20-0757卡片相符;如图2所示,为实施例1所述样品的SEM图,表明形成的是纳米片状MoSe2纳米片。
实施例2
先配置饱和的HNO3溶液,体积为60mL,浓度为0.1moL/L的HNO3。然后1g三聚氰胺加入30ml乙二醇中保持磁力搅10分钟左右,把HNO3溶液逐步滴加到上述溶液,得到一种乳白色混浊液。用酒精多次洗涤,在60℃下干燥12h,得到白色粉末。然后在450 ℃退火2个小时,升温速率10℃/min ,得到淡黄色棒状石墨相氮化碳g-C3N4
所得样品的X射线衍射图如图1所示,结果显示所得产物为石墨相氮化碳。如图3所示,为所得g-C3N4产物的TEM图,表明产物是棒状石墨相氮化碳g-C3N4
实施例3
将1.038g的亚硒酸钠溶解在20mL的水合肼中,在室温下持续磁力搅拌20分钟左右,形成A溶液;将0.52g的七钼酸铵溶解在40mL的去离子水中,形成B溶液;B溶液逐滴加入到上述A溶液中,保持磁力搅拌25分钟;再把0.034克g-C3N4加进去,保持磁力搅拌25分钟;搅拌完毕后,将内衬转移至配套的高压釜中密封,并置于200℃的干燥箱中保温17小时;冷却至室温后,用去内离子水和酒精多次洗涤,在乙醇中超声20分钟,然后在60℃真空干燥箱中干燥8小时,并收集到摩尔比是2:1的MoSe2/g-C3N4黑色粉末复合样品。
实施例4
将1.038g的亚硒酸钠溶解在20mL的水合肼中,在室温下持续磁力搅拌20分钟左右,形成A溶液;将0.52g的七钼酸铵溶解在40mL的去离子水中,形成B溶液;B溶液逐滴加入到上述A溶液中,保持磁力搅拌25分钟;再把0.009克g-C3N4加进去保持磁力搅拌25分钟,搅拌完毕,将内衬转移至配套的高压釜中密封,并置于200℃的干燥箱中保温17小时;快速冷却至室温后,用去离子水多次洗涤离心,在乙醇中超声20分钟,然后在60℃真空干燥箱中干燥8小时,并收集到摩尔比是1:2的MoSe2/g-C3N4黑色粉末复合样品;
所得样品的X射线衍射图如图1所示,结果显示所得产物为石墨相氮化碳与二硒化钼成功复合的MoSe2/g-C3N4异质结构。如图5所示,为实施例4所述样品的HRTEM图,图a能看到两边有MoSe2晶格中间有g-C3N4的晶格,这表明复合成功。图b是MoSe2纳米片的边缘部分,只显示MoSe2晶格,这表明异质结构边缘只是MoSe2纳米片。
实施例5
将1.038g的亚硒酸钠溶解在20mL的水合肼中,在室温下持续磁力搅拌20分钟左右,形成A溶液;将0.52g的七钼酸铵溶解在40mL的去离子水中,形成B溶液;B溶液逐滴加入到上述A溶液中,保持磁力搅拌25分钟;再把0.067克g-C3N4加进去保持磁力搅拌25分钟,搅拌完毕,将内衬转移至配套的高压釜中密封,并置于200℃的干燥箱中保温17小时;快速冷却至室温后,用去离子水多次洗涤离心,在乙醇中超声20分钟,然后在60℃真空干燥箱中干燥8小时,并收集到摩尔比是1:4的MoSe2/g-C3N4黑色粉末复合样品。
[1]傅遍红, 李增霞, 郭淑慧, 傅敏, 刘思齐. g-C3N4/TiO2对亚甲基蓝光催化性能研究[J]. 功能材料. 2015, 14(64):1001-9731.
[2] 王肖杰, 王秀莲, 方云霞, 张留学等. Ag/g-C3N4复合光催化剂的固相合成及光催化性能研究[J]. 中原工学院学报. 2017, 28(1): 1671-6906.
[3]黄虹. 二硒化钼及其复合材料的制备和吸附性能研究[J]. 江苏大学. 2016.
[4] 宋也黎,彭红红,李长生等. MoSe2纳米片的制备及其摩擦性能[J]. 机械工程材料,2011, 1: 83-85.
[5] SHAW J C, ZHOU H, CHEN Y, et al. Chemical Vapor Deposi-tion Growth ofMonolayer MoSe2 Nanosheets[J]. Nano Research. 2014, 7(4): 1-7.

Claims (3)

1.本发明是一种MoSe2/g-C3N4异质结构的制备方法:首先将经过硝酸和乙二醇处理的三聚氰胺煅烧以制备棒状石墨相氮化碳(g-C3N4);其次用七钼酸铵和亚硒酸钠为钼源和硒源制备二硒化钼前驱体溶液,最后加入一定摩尔比的石墨相氮化碳g-C3N4进行混合搅拌;在温度为200℃的条件下,保持17小时,得到复合样品MoSe2/g-C3N4
2.根据权利要求1所述,其特征在于,所述七钼酸铵和亚硒酸钠的摩尔比1:2。
3.根据权利要求1所述,其特征在于,所述MoSe2/g-C3N4异质结构中MoSe2与g-C3N4的比例分别为2:1,1:2和1:4。
CN201810317263.3A 2018-04-10 2018-04-10 一种MoSe2/g-C3N4异质结构的制备方法 Pending CN108502853A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810317263.3A CN108502853A (zh) 2018-04-10 2018-04-10 一种MoSe2/g-C3N4异质结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810317263.3A CN108502853A (zh) 2018-04-10 2018-04-10 一种MoSe2/g-C3N4异质结构的制备方法

Publications (1)

Publication Number Publication Date
CN108502853A true CN108502853A (zh) 2018-09-07

Family

ID=63381432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810317263.3A Pending CN108502853A (zh) 2018-04-10 2018-04-10 一种MoSe2/g-C3N4异质结构的制备方法

Country Status (1)

Country Link
CN (1) CN108502853A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075906A (zh) * 2019-06-11 2019-08-02 北华大学 一种卷曲状g-C3N4及制备方法和用途
CN117358266A (zh) * 2023-09-19 2024-01-09 华北电力大学 一种Sc单原子桥连g-C3N4/MoSe2异质结催化材料的制备方法及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075906A (zh) * 2019-06-11 2019-08-02 北华大学 一种卷曲状g-C3N4及制备方法和用途
CN117358266A (zh) * 2023-09-19 2024-01-09 华北电力大学 一种Sc单原子桥连g-C3N4/MoSe2异质结催化材料的制备方法及应用
CN117358266B (zh) * 2023-09-19 2024-03-26 华北电力大学 一种Sc单原子桥连g-C3N4/MoSe2异质结催化材料的制备方法及应用

Similar Documents

Publication Publication Date Title
Yu et al. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering
Li et al. Visible-light-driven Z-scheme rGO/Bi 2 S 3–BiOBr heterojunctions with tunable exposed BiOBr (102) facets for efficient synchronous photocatalytic degradation of 2-nitrophenol and Cr (VI) reduction
Ma et al. Effective photoinduced charge separation and photocatalytic activity of hierarchical microsphere-like C60/BiOCl
Yang et al. Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity
Song et al. Two-step hydrothermally synthesized carbon nanodots/WO 3 photocatalysts with enhanced photocatalytic performance
Sun et al. Surface engineered 2D materials for photocatalysis
Feng et al. Hydrothermal synthesis of CdS/Bi2MoO6 heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance
Sun et al. Bismuth vanadate hollow spheres: Bubble template synthesis and enhanced photocatalytic properties for photodegradation
Wu et al. In-situ construction of Bi/defective Bi4NbO8Cl for non-noble metal based Mott-Schottky photocatalysts towards organic pollutants removal
Shi et al. NaNbO 3 nanostructures: facile synthesis, characterization, and their photocatalytic properties
Liu et al. Ionic liquid-assisted hydrothermal preparation of BiOI/BiOCl heterojunctions with enhanced separation efficiency of photo-generated charge pairs and photocatalytic performance
He et al. Fabrication of novel Cu2O/Bi24O31Br10 composites and excellent photocatalytic performance
Zhang et al. Facile and green synthesis of novel porous g-C3N4/Ag3PO4 composite with enhanced visible light photocatalysis
Wang et al. Synthesis of gC 3 N 4/NiO p–n heterojunction materials with ball-flower morphology and enhanced photocatalytic performance for the removal of tetracycline and Cr 6+
Dang et al. Facile and green synthesis of titanate nanotube/graphene nanocomposites for photocatalytic H2 generation from water
Peng et al. Enhanced visible-light-driven photocatalytic activity by 0D/2D phase heterojunction of quantum dots/nanosheets on bismuth molybdates
Su et al. Enhanced visible light photocatalytic performances of few-layer MoS2@ TiO2 hollow spheres heterostructures
Du et al. Template-free synthesis of three-dimensional porous CdS/TiO2 with high stability and excellent visible photocatalytic activity
KR101954792B1 (ko) 단일 수열합성법을 이용한 금속 담지 이산화티타늄/그래핀 복합체의 제조방법 및 이에 의해 제조된 이산화티타늄/그래핀 복합체
She et al. Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation
Hu et al. Novel hierarchical Sn 3 O 4/BiOX (X= Cl, Br, I) p–n heterostructures with enhanced photocatalytic activity under simulated solar light irradiation
CN105597787B (zh) 一种单层二硫化钼/超细二氧化钛纳米带异质结构光催化剂及其制备方法
Peng et al. Synthesis, characterization and photocatalytic activity of Zn (OH) F hierarchical nanofibers prepared by a simple solution-based method
Hu et al. Synthesis of Ag-loaded SrTiO 3/TiO 2 heterostructure nanotube arrays for enhanced photocatalytic performances
Chen et al. Bi4Ti3O12/TiO2 heterostructure: Synthesis, characterization and enhanced photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180907

WD01 Invention patent application deemed withdrawn after publication