CN108494404B - 高精度逐次逼近型模数转换器的电容电压系数校准方法 - Google Patents

高精度逐次逼近型模数转换器的电容电压系数校准方法 Download PDF

Info

Publication number
CN108494404B
CN108494404B CN201810258394.9A CN201810258394A CN108494404B CN 108494404 B CN108494404 B CN 108494404B CN 201810258394 A CN201810258394 A CN 201810258394A CN 108494404 B CN108494404 B CN 108494404B
Authority
CN
China
Prior art keywords
inl
voltage coefficient
value
order
dout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810258394.9A
Other languages
English (en)
Other versions
CN108494404A (zh
Inventor
张勇
李婷
黄正波
倪亚波
付东兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Jixin Technology Co ltd
Original Assignee
CETC 24 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 24 Research Institute filed Critical CETC 24 Research Institute
Priority to CN201810258394.9A priority Critical patent/CN108494404B/zh
Priority to US16/620,879 priority patent/US10951220B2/en
Priority to PCT/CN2018/096085 priority patent/WO2019184149A1/zh
Publication of CN108494404A publication Critical patent/CN108494404A/zh
Application granted granted Critical
Publication of CN108494404B publication Critical patent/CN108494404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • H03M1/1038Calibration over the full range of the converter, e.g. for correcting differential non-linearity by storing corrected or correction values in one or more digital look-up tables
    • H03M1/1042Calibration over the full range of the converter, e.g. for correcting differential non-linearity by storing corrected or correction values in one or more digital look-up tables the look-up table containing corrected values for replacing the original digital values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0612Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic over the full range of the converter, e.g. for correcting differential non-linearity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • H03M1/0636Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the amplitude domain
    • H03M1/0639Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the amplitude domain using dither, e.g. using triangular or sawtooth waveforms
    • H03M1/0641Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the amplitude domain using dither, e.g. using triangular or sawtooth waveforms the dither being a random signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
    • H03M1/468Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本发明涉及一种高精度逐次逼近型模数转换器的电容电压系数校准方法,属于半导体集成电路领域。对电压系数进行校准;根据带电压系数的电容模型得到采样的带电电荷,再根据测试得到的INL值,首先验证INL最大值是否发生在式3所示的地方,然后根据式4得到两个非常接近的二阶电容电压系数,取其平均值为二阶电容电压系数,然后在数字域对其进行校准。本发明能够在不添加模拟校准电路的条件下,基于INL提取电容电压系数,并数字后端对电容电压系数进行校准,提高了ADC的转换精度。

Description

高精度逐次逼近型模数转换器的电容电压系数校准方法
技术领域
本发明属于半导体集成电路领域,涉及高精度逐次逼近型模数转换器的电容电压系数校准方法。
背景技术
传统的逐次逼近型模数转换器(SARADC)的电路结构如图1所示,一个N位的SARADC包含N个二进制权重电容,在采样相时,开关S1中与输入信号Vip,Vin相连的开关导通,开关S2导通,电容上极板接输入信号,下极板接共模电平,如果电容具有电压系数,采样得到的电荷同样具有非线性;采样完成以后进入转换相,开关S1中与输入信号Vip,Vin相连的开关断开,开关S2断开,电容下极板浮空,根据比较器的比较结果,逐次逼近逻辑从高位到低位逐位决定电容的上极板接入的电平,电荷完成重分布,如果电容具有电压系数,那么就有非线性电荷参与重分布,转换结果就会产生非线性,降低转换器的转换精度,目前的校准方法是基于添加模拟电路从而测得电容电压系数再加以校准,这增加了电路复杂度。
发明内容
有鉴于此,本发明的目的在于提供一种高精度逐次逼近型模数转换器的电容电压系数校准方法,基于INL提取电容电压系数,在数字后端对电容电压系数进行校准,不需要添加模拟校准电路的,提高ADC的转换精度。
为达到上述目的,本发明提供如下技术方案:
高精度逐次逼近型模数转换器的电容电压系数校准方法,包括以下步骤:
对电压系数进行校准;带电压系数的电容模型如式1所示:
C=C0*(1+α1*V+α2*V2+·····) (1)
C为电容实际值,C0电容两端电压差为0时的标称值,α1为一阶电容电压系数,V为电容两端电压差,α2为二阶电容电压系数
采样得带电电荷为:
Q=C0*(V+0.5*α1*V2+1/3*α2*V3+·····) (2)
由于ADC(Analog-to-Digital Converter,模数转换器)采用差分结构,一阶电压系数相关项0.5*α1*V2在采样时会被抵消;如果忽略高阶电容电压系数,那么二阶电容电压系数相关项1/3*α2*V3就成为非线性的主导因素,根据ADC的INL(Integral nonlinearity,积分非线性)曲线来提取二阶电容电压系数并予以校准;INL曲线的形状由二阶电压系数决定,发生最大INL的数字码如式3所示:
Figure BDA0001609583450000021
Dout为ADC的输出数字码,在Dout的负值区间内出现INL最小值处的值设为Dout1,在Dout的正值区间内出现INL最大值处的值设为Dout2,min(Dout)表示取Dout的最小值,max(Dout)表示取Dout的最大值
最大的INL的值为如式4所示:
Figure BDA0001609583450000022
max(INL)表示INL的最大值,min(INL)表示INL的最小值,α21表示由INL极大值推导得到的二阶电压系数值,α22表示由INL极小值处推导得到的二阶电压系数值,
根据测试得到的INL值,首先验证INL最大值是否发生在式3所示的地方,然后根据式4得到两个非常接近的二阶电容电压系数,取其平均值为二阶电容电压系数,如式5所示
Figure BDA0001609583450000023
然后在数字域对其进行校准,校准公式如式6所式:
Dout_cal=Dout-1/3*α2*Dout3 (6)
Dout_cal为校准后的ADC数字输出码。
本发明的有益效果在于:本发明能够在不添加模拟校准电路的条件下,基于INL提取电容电压系数,并数字后端对电容电压系数进行校准,提高了ADC的转换精度。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为一个N位逐次逼近型ADC;
图2为逐次逼近型ADC输入输出特性;
图3为电容电压系数引入的INL曲线图;
图4为电容电压系数校准流程。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
如图1所示,电容电压系数会影响信号的采样精度,由此约束了逐次逼近型ADC的线性度,想要得到更高的信噪比,必须对电压系数进行校准。带电压系数的电容模型如式1所示:
C=C0*(1+α1*V+α2*V2+·····) (1)
采样得带电电荷为:
Q=C0*(V+0.5*α1*V2+1/3*α2*V3+·····) (2)
由于ADC采用差分结构,一阶电压系数相关项0.5*α1*V2在采样时会被抵消;如果忽略高阶电容电压系数,那么二阶电容电压系数相关项1/3*α2*V3就成为非线性的主导因素,本发明根据ADC的INL曲线来提取二阶电容电压系数并予以校准。图2是ADC的输入输出特性曲线,如果ADC是一个理想器件,那么其传输特性如虚线f1所示,但如果ADC中的电容带有电压系数,在采样时会对大幅度的输入信号引入很大的误差,其传输曲线如实线f2所示,出现非线性,虚线f3表示两端拟合后的理想转换曲线,INL由f2与f3相减得到,其形状如图3所示,可见INL曲线的形状由二阶电压系数决定,发生最大INL的数字码如式3所示:
Figure BDA0001609583450000031
最大的INL的值为如式4所示:
Figure BDA0001609583450000032
根据测试得到的INL值,首先验证INL最大值是否发生在式3所示的地方,然后根据式4可以得到两个非常接近的二阶电容电压系数,取其平均值为二阶电容电压系数,如式5所示
Figure BDA0001609583450000033
然后在数字域对其进行校准,校准公式如式6所式:
Dout_cal=Dout-1/3*α2*Dout3 (6)
本发明根据INL测试曲线提取电容电压系数,这要求INL曲线能完全代表电容电压系数的信息,因此在进行电压系数校准之前,必须进行电容权重校准,排除掉电容失配的误差,校准流程如图4所示。第一步采集ADC的原码信息,第二步根据采集到的原码,完成电容失配校准,第三步测试校准失配后的INL曲线,最后一步根据测试得到的INL曲线得到二阶电容电压系数,并在数字域进行校准。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (1)

1.高精度逐次逼近型模数转换器的电容电压系数校准方法,其特征在于:该方法包括以下步骤:
对电压系数进行校准;带电压系数的电容模型如式1所示:
C=C0*(1+α1*V+α2*V2+·····) (1)
C为电容实际值,C0电容两端电压差为0时的标称值,α1为一阶电容电压系数,V为电容两端电压差,α2为二阶电容电压系数
采样得带电电荷为:
Q=C0*(V+0.5*α1*V2+1/3*α2*V3+·····) (2)
由于模数转换器ADC采用差分结构,一阶电压系数相关项0.5*α1*V2在采样时会被抵消;如果忽略高阶电容电压系数,那么二阶电容电压系数相关项1/3*α2*V3就成为非线性的主导因素,根据ADC的积分非线性INL曲线来提取二阶电容电压系数并予以校准;INL曲线的形状由二阶电压系数决定,发生最大INL的数字码如式3所示:
Figure FDA0002410638700000011
Dout为ADC的输出数字码,在Dout的负值区间内出现INL最小值处的值设为Dout1,在Dout的正值区间内出现INL最大值处的值设为Dout2,min(Dout)表示取Dout的最小值,max(Dout)表示取Dout的最大值
最大的INL的值为如式4所示:
Figure FDA0002410638700000013
max(INL)表示INL的最大值,min(INL)表示INL的最小值,α21表示由INL极大值推导得到的二阶电压系数值,α22表示由INL极小值处推导得到的二阶电压系数值,
根据测试得到的INL值,首先验证INL最大值是否发生在式3所示的地方,然后根据式4得到两个二阶电容电压系数,取其平均值为二阶电容电压系数,如式5所示
Figure FDA0002410638700000012
然后在数字域对其进行校准,校准公式如式6所式:
Dout_cal=Dout-1/3*α2*Dout3 (6)
Dout_cal为校准后的ADC数字输出码。
CN201810258394.9A 2018-03-27 2018-03-27 高精度逐次逼近型模数转换器的电容电压系数校准方法 Active CN108494404B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810258394.9A CN108494404B (zh) 2018-03-27 2018-03-27 高精度逐次逼近型模数转换器的电容电压系数校准方法
US16/620,879 US10951220B2 (en) 2018-03-27 2018-07-18 Method for calibrating capacitor voltage coefficient of high-precision successive approximation analog-to-digital converter
PCT/CN2018/096085 WO2019184149A1 (zh) 2018-03-27 2018-07-18 高精度逐次逼近型模数转换器的电容电压系数校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810258394.9A CN108494404B (zh) 2018-03-27 2018-03-27 高精度逐次逼近型模数转换器的电容电压系数校准方法

Publications (2)

Publication Number Publication Date
CN108494404A CN108494404A (zh) 2018-09-04
CN108494404B true CN108494404B (zh) 2020-06-02

Family

ID=63337792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810258394.9A Active CN108494404B (zh) 2018-03-27 2018-03-27 高精度逐次逼近型模数转换器的电容电压系数校准方法

Country Status (3)

Country Link
US (1) US10951220B2 (zh)
CN (1) CN108494404B (zh)
WO (1) WO2019184149A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109408970B (zh) * 2018-10-29 2019-10-11 合肥本源量子计算科技有限责任公司 一种模数转换方法、装置及一种模数转换器
CN109660255B (zh) * 2018-12-14 2023-05-16 江苏芯云电子科技有限公司 模数转换器非线性校准方法
CN112217519B (zh) * 2020-10-10 2024-03-12 北京博瑞微电子科技有限公司 一种用于斜波发生器的斜波非线性失真校正方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977058A (zh) * 2010-10-28 2011-02-16 电子科技大学 带数字校正的逐次逼近模数转换器及其处理方法
CN102045067A (zh) * 2011-01-13 2011-05-04 东南大学 提高逐次逼近adc输出信噪比的转换和校准算法及adc
US8421658B1 (en) * 2011-11-24 2013-04-16 Hong Kong Applied Science & Technology Research Institute Company, Ltd. Parallel pipelined calculation of two calibration values during the prior conversion cycle in a successive-approximation-register analog-to-digital converter (SAR-ADC)
US8674862B1 (en) * 2012-09-05 2014-03-18 Altera Corporation Systems and methods for digital calibration of successive-approximation-register analog-to-digital converter
CN103873059A (zh) * 2014-03-10 2014-06-18 天津大学 一种应用于高精度逐次逼近模数转换器的数字校准方法
CN104168020A (zh) * 2014-08-19 2014-11-26 复旦大学 一种逐位逼近型模数转换器的电容非线性校准电路及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594353B (zh) 2011-01-13 2015-04-01 中兴通讯股份有限公司 一种数模转换器及逐次逼近存储转换器
CN105245231B (zh) 2015-10-08 2018-07-27 电子科技大学 一种流水线型逐次逼近模数转换器的前后级交换方法
US10061272B2 (en) 2016-06-12 2018-08-28 Board Of Regents, The University Of Texas System Pipelined SAR ADC using comparator as a voltage-to-time converter with multi-bit second stage
US10009036B2 (en) * 2016-09-09 2018-06-26 Samsung Electronics Co., Ltd System and method of calibrating input signal to successive approximation register (SAR) analog-to-digital converter (ADC) in ADC-assisted time-to-digital converter (TDC)
CN107769784B (zh) 2017-11-29 2023-07-28 四川知微传感技术有限公司 一种过采样式Pipeline SAR-ADC系统
US10523228B1 (en) * 2018-12-18 2019-12-31 Ipgreat Incorporated Method of capacitive DAC calibration for SAR ADC
US10804919B1 (en) * 2019-09-24 2020-10-13 Microsoft Technology Licensing, Llc Dynamic sequential approximation register (SAR) analog-to-digital converter (ADC) (SAR-ADC) clock delay calibration systems and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977058A (zh) * 2010-10-28 2011-02-16 电子科技大学 带数字校正的逐次逼近模数转换器及其处理方法
CN102045067A (zh) * 2011-01-13 2011-05-04 东南大学 提高逐次逼近adc输出信噪比的转换和校准算法及adc
US8421658B1 (en) * 2011-11-24 2013-04-16 Hong Kong Applied Science & Technology Research Institute Company, Ltd. Parallel pipelined calculation of two calibration values during the prior conversion cycle in a successive-approximation-register analog-to-digital converter (SAR-ADC)
US8674862B1 (en) * 2012-09-05 2014-03-18 Altera Corporation Systems and methods for digital calibration of successive-approximation-register analog-to-digital converter
US9054721B1 (en) * 2012-09-05 2015-06-09 Altera Corporation Systems and methods for digital calibration of successive-approximation-register analog-to-digital converter
CN103873059A (zh) * 2014-03-10 2014-06-18 天津大学 一种应用于高精度逐次逼近模数转换器的数字校准方法
CN104168020A (zh) * 2014-08-19 2014-11-26 复旦大学 一种逐位逼近型模数转换器的电容非线性校准电路及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"A 14-bit successive-approximation AD converter with digital calibration algorithm";He Yong等;《2009 IEEE 8th International Conference on ASIC》;20091211;第234页到第237页 *
"适用于两级流水线逐次逼近型模数转换器的LMS校准算法";郭东东等;《固体电子学研究与进展》;20150630;第35卷(第3期);第277页到第283页 *
"逐次逼近型模数转换器中的失配校准技术";王沛等;《半导体学报》;20070930;第28卷(第9期);第1369页到第1374页 *
"逐次逼近型模数转换器数字校准技术研究与实现";闫传平;《中国优秀硕士学位论文全文数据库•信息科技辑》;20140115;第2014年卷(第1期);I135-589 *

Also Published As

Publication number Publication date
WO2019184149A1 (zh) 2019-10-03
US20210013896A1 (en) 2021-01-14
CN108494404A (zh) 2018-09-04
US10951220B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
CN108494404B (zh) 高精度逐次逼近型模数转换器的电容电压系数校准方法
CN109347477B (zh) 一种逐次逼近型模数转换器权重校准方法
US8368430B2 (en) Sample and hold circuit and A/D converter apparatus
WO2018053788A1 (zh) 一种dac电容阵列、sar型模数转换器及降低功耗的方法
US10886933B1 (en) Analog-to-digital converter
US20170077803A1 (en) Precharge switch-capacitor circuit and method
WO2016056889A1 (en) A successive approximation analog to digital converter and method for calibrating thereof
EP3567720A1 (en) Mismatch and reference common-mode offset insensitive single-ended switched capacitor gain stage
US7405681B2 (en) A/D converter calibration test sequence insertion
CN108599766B (zh) 一种sar-adc高位电容阵列的计算、校准方法
Bonfini et al. An ultralow-power switched opamp-based 10-B integrated ADC for implantable biomedical applications
CN102801423B (zh) 基于两阶段阈值检测器的电路
EP2953265B1 (en) Method and circuit for bandwidth mismatch estimation in an a/d converter
CN113162625A (zh) 基于电荷注入补偿的逐次逼近模数转换器
US10454491B1 (en) Successive approximation register (SAR) analog to digital converter (ADC) with partial loop-unrolling
KR101586407B1 (ko) Sar adc에서 캐패시터의 미스매치를 보정하는 방법
CN112583406B (zh) 模拟数字转换器装置与模拟数字转换器电路系统
Rogi et al. A novel architecture for a Capacitive-to-Digital Converter using time-encoding and noise shaping
Dai et al. A self-calibration method for capacitance mismatch in SAR ADC with split-capacitor DAC
Liu et al. An Offset Calibration Technique in a SAR ADC for Biomedical Applications
Yuan et al. A 50 MS/s 12-bit CMOS pipeline A/D converter with nonlinear background calibration
CN116455395B (zh) 逐次逼近型模数转换电路、模拟数字转换器以及电子设备
CN110324043B (zh) 伪差分模数转换器
US11283461B2 (en) Successive approximation AD converter
Zhang et al. The Design of A 12-Bit Two-Step Single Slope ADC For Carbon Based Image Sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221214

Address after: No.23 Xiyong Avenue, Shapingba District, Chongqing 401332

Patentee after: CETC Chip Technology (Group) Co.,Ltd.

Address before: 400060 Chongqing Nanping Nan'an District No. 14 Huayuan Road

Patentee before: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY Group Corp.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230419

Address after: Room 2-2, No. 2, Linxie Family Courtyard Group, Zaojeshu Village, Fenghuang Town, Shapingba District, Chongqing, 401334

Patentee after: Chongqing Jixin Technology Co.,Ltd.

Address before: No.23 Xiyong Avenue, Shapingba District, Chongqing 401332

Patentee before: CETC Chip Technology (Group) Co.,Ltd.

TR01 Transfer of patent right