CN108493936A - 基于子空间辨识方法的电力系统低频振荡估计的改进方法 - Google Patents

基于子空间辨识方法的电力系统低频振荡估计的改进方法 Download PDF

Info

Publication number
CN108493936A
CN108493936A CN201810415751.8A CN201810415751A CN108493936A CN 108493936 A CN108493936 A CN 108493936A CN 201810415751 A CN201810415751 A CN 201810415751A CN 108493936 A CN108493936 A CN 108493936A
Authority
CN
China
Prior art keywords
matrix
low
frequency oscillation
frequency
phase angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810415751.8A
Other languages
English (en)
Inventor
李晓东
赵义博
李黎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Kyushu Quantum Information Technology Ltd By Share Ltd
Original Assignee
Zhejiang Kyushu Quantum Information Technology Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Kyushu Quantum Information Technology Ltd By Share Ltd filed Critical Zhejiang Kyushu Quantum Information Technology Ltd By Share Ltd
Priority to CN201810415751.8A priority Critical patent/CN108493936A/zh
Publication of CN108493936A publication Critical patent/CN108493936A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于子空间辨识方法的电力系统低频振荡估计的改进方法。该方法采集能观性最强的母线电压相角信号作为系统输出,通过输出矩阵与输入矩阵构建Hankel矩阵,利用奇异值分解方法不仅基于得到奇异值估计模型的阶数,同时得到估计的系统的能观性矩阵;进而得到的系统矩阵的估计值,计算得到该低频振荡模式的频率和阻尼的估计。本发明采用新的阶数确定方法并基于此方法来估计低频振荡模式,使得估计的运算量不仅大大减小了计算量且提高了估计的准确度。

Description

基于子空间辨识方法的电力系统低频振荡估计的改进方法
技术领域
本发明涉及智能电网以及信号处理领域,特别涉及互联电网低频振荡模式 估计领域。
背景技术
我国互联系统中的机电振荡限制电力输送的严重性日益明显,南方电网和 华北电网的低频振荡事故频发。与此同时,世界范围内由于低频振荡直接或间 接导致的大停电层出不穷,例如1996年的北美大停电以及2003年的美国东北部 大停电等。这些大停电事故充分显示了区间振荡潜在的破坏性。
由于基于物理模型的分析不够精确,一些辨识方法被广泛应用于电网中低 频振荡模式的分析与估计中。其中,子空间辨识方法备受青睐,其主要原因在 于:其一,子空间方法辨识出的系统模型是状态空间形式,便于估计,预测和 控制;其二,这类方法数值简单具有鲁棒性并且适用于多输入多输出的系统辨 识。文献(N Zhou,JW Pierre,RW Wies,Estimation of low-frequency electromechanical modes of power systems fromambient measurements using a subspace method,in Proceedings of the 35th NorthAmerican Power Symposium, (Rolla,2003))中,作者采用子空间辨识的方法利用类噪声数据来估计机电振荡 模式。文献(N Zhou,Dissertation,University of Wyoming,2005)中,作者利用蒙特 卡罗的方法比较了Yule-Walker方法,CVA以及N4SID等方法的估计出的频率和阻 尼,说明利用子空间辨识方法的估计结果更加准确。文献(DJ Trudnowski,JWPierre,N Zhou,JF Hauer,M Parashar,Performance of three mode-meter block-processing algorithms for automated dynamic stability assessment.IEEETransactions on Power Systems.23(2),680-690(2008))中,作者首次使用N4SID方 法对于暂态数据进行了处理。子空间辨识方法与频域分解法(FDD)等方法相 比,估计出的振型也更加准确。
然而,利用子空间辨识方法估计低频振荡模式的过程中仍有待改进之处, 尤其是在确定待辨识系统模型阶数的方法。通常,Akaike’s Information Criterion (AIC)和Bayesian Information Criterion(BIC)常被用来确定待辨识的系统模型 阶数。然而,上述两种方法的运算量非常巨大且有失准确性。有鉴于此,本专 利中将采用新的阶数确定方法并基于此方法来估计低频振荡模式。该方法不仅 大大减小了计算量且提高了估计的准确度。
发明内容
本专利提供了一种基于子空间辨识方法的电力系统低频振荡估计的改进方 法。
这种基于子空间辨识方法的电力系统低频振荡估计的改进方法,包括如下 步骤:
(1)确定需要估计的低频振荡模式,计算该低频振荡模式在每条母线电压 相角上的能观性,并确定能观性最强的母线;
(2)采集能观性最强的母线的电压相角信号,并对所述的电压相角信号进 行预处理,得到预处理后的电压相角信号;
(3)利用预处理后的电压相角信号构造Hankel矩阵;
(4)根据得到的Hankel矩阵进行奇异值分解并根据奇异值确定系统的阶 数;
(5)估计系统矩阵,并估计计算低频振荡模式的频率和阻尼。
本发明的基于子空间辨识方法的电力系统低频振荡估计的改进方法中以能 观性最强的母线电压相角信号作为系统输出,通过输出矩阵与输入矩阵构建 Hankel矩阵,利用奇异值分解方法不仅基于得到奇异值估计模型的阶数,同时 得到估计的系统的能观性矩阵;进而得到的系统矩阵的估计值,计算得到该低 频振荡模式的频率和阻尼的估计。
为提高低频振荡模式的频率和组你的估计精度,本发明还对采集到的能观 性最强的母线的电压相角信号进行预处理,滤去高频和直流信号的干扰,以预 处理后的信号为系统输出。
所述步骤(2)利用同步相量测量装置(Phasor Measurement Unit,PMU) 采集能观性最强的母线的电压相角信号。
同步相量测量装置(Phasor Measurement Unit,PMU)是用于进行同步相量 的测量和输出以及动态记录的装置,其采样频率通常为20~30sample/sec。它的 核心特征包括基于标准始终信号的同步相量测量、失去标准时钟信号的守时能 力、PMU与主站之间能够实时通信并遵循有关通信协议。本专利中利用PMU 采集能观性最强的母线的电压相角信息。
所述步骤(2)中的预处理过程如下:
(2-1)将所述的电压相角信号通过截止频率为2~2.5Hz的低通滤波器,得 到滤波后的电压相角信号;
(2-2)将滤波后的信号通过截止频率为0.1Hz的高通滤波器,得到隔直后 的电压相角信号;
(2-3)设定目标频率,对隔直后的信号进行分频处理将隔直后的信号的频 率降低为目标频率,即得到预处理后的电压相角信号。
低频振荡模式的频率通常集中在0.2~0.7Hz,预处理过程中采用截止频率为 2~2.5Hz的低通滤波器的目的在于过滤或降低信号中存在的高频段中噪声以及 其他振荡模式成分的振幅;采用频率为0.1Hz的高通滤波器。
所述目标频率为5~10Hz。这主要是出于对估计结果准确性的考虑。一方面, 根据香农采样定理,用于估计低频振荡模式频率和阻尼的信号不能过低,须为 其中最高信号频率的2倍以上。另一方面,用于低频振荡模式频率和阻尼的信 号也不能过高,过高的目标频率会影响到估计的准确性。
所述步骤(3)包括:
(3-1)根据测得的系统输出以及输入数据,构造输入矩阵和输出矩阵:
其中U和Y分别为输入矩阵,uk和yk分别为系统在第k时刻的输入和输出。N 为输入输出的总长度。f为数据横截长度,通常其取值为:
为使用AIC方法估计ARMA模型时选取的最佳系统阶数。
同时构建Z矩阵:
其中,p与f取值相同。
(3-2)根据(3-1)得到的矩阵,做输出矩阵的行空间在输入矩阵行空间上 的投影并右乘得到系统的高阶Hankel矩阵:
所述步骤(4)包括:
(4-1)对于步骤(3)中得到的高阶Hankel矩阵乘以权重矩阵后进行奇异值 分解:
其中,W1和W2为权重矩阵,其取值由不同的子空间方法而定,文献(S.J. Qin,Anoverview of subspace identification.Computer&Chemical Engineering.30(10-12),1502-1513(2006).)中给出了三个常用的子空间方 法的W1和W2的取值。U和V为正交矩阵,S为由奇异值按由大到小依 次排列构成的对角阵。
(4-2)根据(4-1)得到的奇异值选取系统阶数的估计值
其中m为系统输出个数。
其中,d(n)为带估计的系统参数个数。
(4-3)根据(4-2)确定的系统阶数,将Hankel矩阵降阶为
其中,为前个奇异值组成的对角阵,则有U和Y中对应部分组成。
所述步骤(5)包括:
(5-1)根据(4-3)中得到的 得到系统能观性矩阵Γf的估计值:
(5-2)根据(5-1),进一步计算系统矩阵A的估计值:
其中,的广义逆矩阵;
(5-3)根据(5-2)得到的系统矩阵估计值,计算低频振荡模式的频率和阻尼。 中低频振荡模式离散特征值对应的连续特征值
其中Ts为输入输出数据的采样频率。根据连续特征值计算得到低频振荡模 式的频率的估计值和阻尼的估计值为:
附图说明
图1为本实施例的新英格兰系统的单线图;
图2为本专利提出改进方法的流程图;
图3为本实施例的估计结果与真实参考值。
具体实施方式
下面将结合具体实施方式对本发明进行详细说明。
本实施例利用基于子空间辨识方法的电力系统低频振荡估计的改进方法, 应用于新英格兰系统(New England System),如图1所示,该系统由10台发电 机和39条母线组成,分别为发电机G1~G10以及母线分别为母线1~39。该系统 中存在九个低频振荡模式,我们选取其中的三个振荡模式做为所需估计的低频 振荡模式,分别为发电机G1,G8~G10与发电机G2~G7之间的振荡模式1、发电 机G1~G3G1,G8,G9与发电机G4~G7,G10之间的振荡模式2以及G1~G9与G10之 间的振荡模式3。该四机系统受到母线4上有功负荷的变化扰动。本实施例的基 于子空间辨识方法的电力系统低频振荡估计的改进方法基于仿真软件为PSAT 和PST实现。
一种基于子空间辨识的互联电网低频振荡模式估计方法,如图2所示,包 括如下步骤:
(1)选定需要估计的低频振荡模式,计算该低频振荡模式在每条母线电压 相角上的能观性,并确定能观性最强的母线。
本实施例中选定三个振荡模式为需要估计的低频振荡模式,并根据这三个 振荡模式的能观性矩阵,确定得到母线1,母线3,母线5以及母线15为能观 性最强的母线。
利用设置在母线1,母线3,母线5以及母线15处的PMU测得的母线电压 相角作为输出数据。确定的采样频率Fs=10Hz。
(2)利用在母线1,母线3,母线5以及母线15的电压相角信号,并对该 电压相角信号进行预处理,得到预处理后的电压相角信号。PMU采集在母线1, 母线3,母线5以及母线15的电压相角信号前需要PMU设置在在母线1,母线 3,母线5以及母线15,PMU的采样频率为20Hz。经过预处理后的电压相角信 号作为输出数据。
通过以下步骤对采集到的电压相角信号进行预处理:
(2-1)将采集到的电压相角信号通过截止频率为2~2.5Hz的低通滤波器, 得到滤波后的电压相角信号;
(2-2)将滤波后的信号通过截止频率为0.1Hz的高通滤波器,得到隔直后 的电压相角信号;
(2-3)设定目标频率,对隔直后的信号进行分频处理将隔直后的信号的频 率降低为目标频率,即得到预处理后的电压相角信号。
(3)利用预处理后的电压相角信号构造Hankel矩阵;
(3-1)根据测得的系统输出以及输入数据,构造输入矩阵和输出矩阵:
其中U和Y分别为输入矩阵,uk和yk分别为系统在第k时刻的输入和输出。N 为输入输出的总长度。f为数据横截长度,通常其取值为:
为使用AIC方法估计ARMA模型时选取的最佳系统阶数。
同时构建Z矩阵:
其中,p与f取值相同。
(3-2)根据(3-1)得到的矩阵,做输出矩阵的行空间在输入矩阵行空间上 的投影并右乘得到系统的高阶Hankel矩阵:
(4)根据步骤(3)得到的Hankel矩阵进行奇异值分解并根据奇异值确定系 统的阶数;
(4-1)对于步骤(3)中得到的高阶Hankel矩阵乘以权重矩阵后进行奇异值 分解:
其中,W1和W2为权重矩阵,其取值由不同的子空间方法而定,文献(S.J. Qin,Anoverview of subspace identification.Computer&Chemical Engineering.30(10-12),1502-1513(2006).)中给出了三个常用的子空间方 法的W1和W2的取值。U和V为正交矩阵,S为由奇异值按由大到小依 次排列构成的对角阵。
(4-2)根据(4-1)得到的奇异值选取系统阶数的估计值
其中m为系统输出个数。
其中,d(n)为带估计的系统参数个数。
(4-3)根据(4-2)确定的系统阶数,将Hankel矩阵降阶为
其中,为前个奇异值组成的对角阵,则有U和Y中对应部分组成。
(5)根据步骤(4)的结果,估计计算低频振荡模式的频率和阻尼。
(5-1)根据(4-3)中得到的 得到系统能观性矩阵Γf的估计值:
(5-2)根据(5-1),进一步计算系统矩阵A的估计值:
其中,的广义逆矩阵;
(5-3)根据(5-2)得到的系统矩阵估计值,计算低频振荡模式的频率和阻尼。 中低频振荡模式离散特征值对应的连续特征值
其中Ts为输入输出数据的采样频率。根据连续特征值计算得到低频振荡模 式的频率的估计值和阻尼的估计值为:
图3中列出了利用本专利中的新方法得到的低频振荡模式的频率的估计值 与利用特征值分析法得到的理论参考值。通过比较,可以发现本专利中提出的 方法非常接近于真实。

Claims (7)

1.一种基于子空间辨识方法的电力系统低频振荡估计的改进方法,其特征在于,包括如下步骤:
(1)确定需要估计的低频振荡模式,计算该低频振荡模式在每条母线电压相角上的能观性,并确定能观性最强的母线;
(2)采集能观性最强的母线的电压相角信号,并对所述的电压相角信号进行预处理,得到预处理后的电压相角信号;
(3)利用预处理后的电压相角信号构造Hankel矩阵;
(4)对得到的Hankel矩阵进行奇异值分解并根据奇异值确定系统的阶数;
(5)确定系统矩阵,估计计算低频振荡模式的频率和阻尼。
2.如权利要求1所述的基于子空间辨识方法的电力系统低频振荡估计的改进方法,其特征在于,所述步骤(2)利用同步相量测量装置采集能观性最强的母线的电压相角信号。
3.如权利要求2所述的基于子空间辨识方法的电力系统低频振荡估计的改进方法,其特征在于,所述步骤(2)中的预处理过程如下:
(2-1)将所述的电压相角信号通过截止频率为2~2.5Hz的低通滤波器,得到滤波后的电压相角信号;
(2-2)将滤波后的信号通过截止频率为0.1Hz的高通滤波器,得到隔直后的电压相角信号;
(2-3)设定目标频率,对隔直后的信号进行分频处理将隔直后的信号的频率降低为目标频率,即得到预处理后的电压相角信号。
4.如权利要求3所述的基于子空间辨识方法的电力系统低频振荡估计的改进方法,其特征在于,所述目标频率为5~10Hz。
5.如权利要求4所述的基于子空间辨识方法的电力系统低频振荡估计的改进方法,其特征在于,所述步骤(3)包括:
(3-1)根据测得的系统输出以及输入数据,构造输入矩阵和输出矩阵:
其中U和Y分别为输入矩阵,uk和yk分别为系统在第k时刻的输入和输出,N为输入输出的总长度。f为数据横截长度,通常其取值为:
为使用AIC方法估计ARMA模型时选取的最佳系统阶数,
同时构建Z矩阵:
其中,p与f取值相同,
(3-2)根据(3-1)得到的矩阵,做输出矩阵的行空间在输入矩阵行空间上的投影并右乘得到系统的高阶Hankel矩阵:
6.如权利要求5所述的基于子空间辨识方法的电力系统低频振荡估计的改进方法,其特征在于,所述步骤(4)包括:
(4-1)对于步骤(3)中得到的高阶Hankel矩阵乘以权重矩阵后进行奇异值分解:
其中,W1和W2为权重矩阵,其取值由不同的子空间方法而定,文献(S.J.Qin,Anoverview of subspace identification.Computer&Chemical Engineering.30(10-12),1502-1513(2006).)中给出了三个常用的子空间方法的W1和W2的取值,U和V为正交矩阵,S为由奇异值按由大到小依次排列构成的对角阵。
(4-2)根据(4-1)得到的奇异值选取系统阶数的估计值
其中m为系统输出个数,
其中,d(n)为带估计的系统参数个数,
(4-3)根据(4-2)确定的系统阶数,将Hankel矩阵降阶为
其中,为前个奇异值组成的对角阵,则有U和Y中对应部分组成。
7.如权利要求6所述的基于子空间辨识方法的电力系统低频振荡估计的改进方法,其特征在于,所述步骤(5)包括:
(5-1)根据(4-3)中得到的得到系统能观性矩阵Γf的估计值:
(5-2)根据(5-1),进一步计算系统矩阵A的估计值:
其中,的广义逆矩阵;
(5-3)根据(5-2)得到的系统矩阵估计值,计算低频振荡模式的频率和阻尼。中低频振荡模式离散特征值对应的连续特征值
其中Ts为输入输出数据的采样频率,根据连续特征值计算得到低频振荡模式的频率的估计值和阻尼的估计值为:
CN201810415751.8A 2018-05-03 2018-05-03 基于子空间辨识方法的电力系统低频振荡估计的改进方法 Pending CN108493936A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810415751.8A CN108493936A (zh) 2018-05-03 2018-05-03 基于子空间辨识方法的电力系统低频振荡估计的改进方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810415751.8A CN108493936A (zh) 2018-05-03 2018-05-03 基于子空间辨识方法的电力系统低频振荡估计的改进方法

Publications (1)

Publication Number Publication Date
CN108493936A true CN108493936A (zh) 2018-09-04

Family

ID=63353729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810415751.8A Pending CN108493936A (zh) 2018-05-03 2018-05-03 基于子空间辨识方法的电力系统低频振荡估计的改进方法

Country Status (1)

Country Link
CN (1) CN108493936A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109361484A (zh) * 2018-11-13 2019-02-19 上海电器科学研究所(集团)有限公司 一种电力系统时间同步数据的传输方法
CN109726490A (zh) * 2019-01-02 2019-05-07 华南理工大学 一种用于电力系统状态空间模型辨识的低频段多正弦信号设计方法
CN111541253A (zh) * 2020-04-24 2020-08-14 国网吉林省电力有限公司吉林供电公司 一种电力系统次同步振荡阻尼的辨识方法
CN113010844A (zh) * 2021-03-09 2021-06-22 东北电力大学 一种基于子空间动态模式分解的参与因子计算方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109361484A (zh) * 2018-11-13 2019-02-19 上海电器科学研究所(集团)有限公司 一种电力系统时间同步数据的传输方法
CN109726490A (zh) * 2019-01-02 2019-05-07 华南理工大学 一种用于电力系统状态空间模型辨识的低频段多正弦信号设计方法
CN111541253A (zh) * 2020-04-24 2020-08-14 国网吉林省电力有限公司吉林供电公司 一种电力系统次同步振荡阻尼的辨识方法
CN111541253B (zh) * 2020-04-24 2023-04-18 国网吉林省电力有限公司吉林供电公司 一种电力系统次同步振荡阻尼的辨识方法
CN113010844A (zh) * 2021-03-09 2021-06-22 东北电力大学 一种基于子空间动态模式分解的参与因子计算方法
CN113010844B (zh) * 2021-03-09 2022-11-11 东北电力大学 一种基于子空间动态模式分解的参与因子计算方法

Similar Documents

Publication Publication Date Title
CN108493936A (zh) 基于子空间辨识方法的电力系统低频振荡估计的改进方法
Zhang et al. Measurement and modeling of delays in wide-area closed-loop control systems
Messina et al. Extraction of dynamic patterns from wide-area measurements using empirical orthogonal functions
Xiao et al. Dynamic tracking of low-frequency oscillations with improved Prony method in wide-area measurement system
Zygarlicki et al. A reduced Prony's method in power-quality analysis—parameters selection
Ning et al. Oscillation modal analysis from ambient synchrophasor data using distributed frequency domain optimization
CA2742368C (en) Method and apparatus for correlating simulation models with physical devices based on correlation metrics
CN101561314B (zh) 随机共振-混沌微弱信号检测方法
CN107478990B (zh) 一种发电机机电暂态过程动态估计方法
CN102081359B (zh) 基于DSP Builder的变时滞超混沌数字电路设计方法及电路
CN103904693B (zh) 基于频率自适应虚拟磁链估测的电网同步方法
CN104242325A (zh) 一种电力系统低频振荡模式参数辨识方法
CN103995178A (zh) 一种基于时频聚集特性准则s变换的电压暂降检测方法
Ye et al. Efficient eigen-analysis for large delayed cyber-physical power system using explicit infinitesimal generator discretization
CN103257271A (zh) 一种基于stm32f107vct6的微电网谐波与间谐波检测装置及检测方法
CN203287435U (zh) 一种基于stm32f107vct6的微电网谐波与间谐波检测装置
CN107749621A (zh) 一种电力系统动态稳定协同辨识方法
Koyuncu et al. Calibration estimator using different distance measures in stratified random sampling
Agrawal et al. Electromechanical mode estimation in the presence of periodic forced oscillations
Peng et al. Adaptive sampling scheme for monitoring oscillations using Prony analysis
Ma et al. Distributed fusion filter for asynchronous multi-rate multi-sensor non-uniform sampling systems
CN107167657A (zh) 频率测量装置、频率测量方法和低频减载装置
Zamora et al. Multi-dimensional ringdown modal analysis by filtering
Seppänen et al. Modal analysis of power systems with eigendecomposition of multivariate autoregressive models
CN113156200B (zh) 一种电网低频振荡实时监测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180904