CN108492283B - 一种基于带约束稀疏表示的高光谱图像异常检测方法 - Google Patents
一种基于带约束稀疏表示的高光谱图像异常检测方法 Download PDFInfo
- Publication number
- CN108492283B CN108492283B CN201810194560.3A CN201810194560A CN108492283B CN 108492283 B CN108492283 B CN 108492283B CN 201810194560 A CN201810194560 A CN 201810194560A CN 108492283 B CN108492283 B CN 108492283B
- Authority
- CN
- China
- Prior art keywords
- model
- hyperspectral image
- background dictionary
- sparse representation
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 48
- 230000002159 abnormal effect Effects 0.000 claims abstract description 28
- 238000012360 testing method Methods 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims description 30
- 239000013598 vector Substances 0.000 claims description 15
- 238000012549 training Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 7
- 230000003595 spectral effect Effects 0.000 claims description 7
- 230000005856 abnormality Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 2
- 238000001228 spectrum Methods 0.000 description 6
- 230000002547 anomalous effect Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
- G06T2207/10036—Multispectral image; Hyperspectral image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/513—Sparse representations
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810194560.3A CN108492283B (zh) | 2018-03-09 | 2018-03-09 | 一种基于带约束稀疏表示的高光谱图像异常检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810194560.3A CN108492283B (zh) | 2018-03-09 | 2018-03-09 | 一种基于带约束稀疏表示的高光谱图像异常检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108492283A CN108492283A (zh) | 2018-09-04 |
CN108492283B true CN108492283B (zh) | 2021-01-26 |
Family
ID=63338293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810194560.3A Active CN108492283B (zh) | 2018-03-09 | 2018-03-09 | 一种基于带约束稀疏表示的高光谱图像异常检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108492283B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111126463B (zh) * | 2019-12-12 | 2022-07-05 | 武汉大学 | 基于局部信息约束和稀疏表示的光谱图像分类方法及系统 |
CN112733865B (zh) * | 2021-01-25 | 2022-09-06 | 清华大学 | 一种基于稀疏表示与固定原子迭代的光谱目标检测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102789639A (zh) * | 2012-07-16 | 2012-11-21 | 中国科学院自动化研究所 | 基于非负矩阵分解的高光谱图像和可见光图像融合方法 |
CN105825200A (zh) * | 2016-03-31 | 2016-08-03 | 西北工业大学 | 基于背景字典学习和结构稀疏表示的高光谱异常目标检测方法 |
-
2018
- 2018-03-09 CN CN201810194560.3A patent/CN108492283B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102789639A (zh) * | 2012-07-16 | 2012-11-21 | 中国科学院自动化研究所 | 基于非负矩阵分解的高光谱图像和可见光图像融合方法 |
CN105825200A (zh) * | 2016-03-31 | 2016-08-03 | 西北工业大学 | 基于背景字典学习和结构稀疏表示的高光谱异常目标检测方法 |
Non-Patent Citations (1)
Title |
---|
空谱联合先验的高光谱图像解混与分类方法;孙乐;《中国博士学位论文全文数据库 信息科技辑》;20160415(第04期);第I140-40页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108492283A (zh) | 2018-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | Exploiting embedding manifold of autoencoders for hyperspectral anomaly detection | |
Sun et al. | Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery | |
WO2021088101A1 (zh) | 基于改进的条件生成对抗网络的绝缘子分割方法 | |
CN110232419A (zh) | 一种边坡岩石类别自动识别的方法 | |
CN111046800B (zh) | 一种基于低秩与稀疏分解的高光谱图像异常目标检测方法 | |
CN110991493B (zh) | 一种协同表示和异常剔除的高光谱异常检测方法 | |
CN112884721B (zh) | 一种异常检测方法、系统及计算机可读存储介质 | |
CN111915007B (zh) | 一种基于神经网络的磁共振谱降噪方法 | |
CN113688830A (zh) | 基于中心点回归的深度学习目标检测方法 | |
CN107368802B (zh) | 基于kcf和人脑记忆机制的运动目标跟踪方法 | |
CN108492283B (zh) | 一种基于带约束稀疏表示的高光谱图像异常检测方法 | |
CN110135479A (zh) | 基于随机森林测度学习的高光谱图像目标探测方法及系统 | |
CN110503631B (zh) | 一种遥感图像变化检测方法 | |
CN113066036A (zh) | 一种基于模糊熵和稀疏表示的x射线图像融合方法及装置 | |
CN107895361A (zh) | 一种基于局部密度纯化背景的高光谱异常检测方法 | |
CN113435243B (zh) | 一种高光谱真实下采样模糊核估计方法 | |
CN117893915A (zh) | 基于改进的DeeplabV3+神经网络的遥感图像云检测方法 | |
CN117372407A (zh) | 基于即插即用张量低秩近似的高光谱异常检测方法和系统 | |
CN114882007B (zh) | 一种基于记忆网络的图像异常检测方法 | |
Wang et al. | Transferred tensor decomposition-based deep learning for hyperspectral anomaly detection | |
Xiao | Application of SSD core detection algorithm in intelligent visual monitoring of examination room | |
CN105184275B (zh) | 基于二值决策树的红外局部人脸关键点获取方法 | |
CN113947712A (zh) | 一种基于胶囊微分对抗网络的高光谱异常检测方法与系统 | |
Zhang et al. | Laplacian matrix graph for anomaly target detection in hyperspectral images | |
Hu et al. | Nonnegative collaborative representation for hyperspectral anomaly detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Lin Zaiping Inventor after: Ling Qiang Inventor after: An Wei Inventor after: Sheng Weidong Inventor after: Li Jun Inventor after: Zeng Yaoyuan Inventor before: Lin Zaiping Inventor before: Ling Qiang Inventor before: An Wei Inventor before: Sheng Weidong Inventor before: Li Jun Inventor before: Zeng Yaoyuan |
|
GR01 | Patent grant | ||
GR01 | Patent grant |