CN108489934A - 一种检测花生油品质的方法 - Google Patents

一种检测花生油品质的方法 Download PDF

Info

Publication number
CN108489934A
CN108489934A CN201810252214.6A CN201810252214A CN108489934A CN 108489934 A CN108489934 A CN 108489934A CN 201810252214 A CN201810252214 A CN 201810252214A CN 108489934 A CN108489934 A CN 108489934A
Authority
CN
China
Prior art keywords
peanut oil
value
acid
model
oleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810252214.6A
Other languages
English (en)
Inventor
王传堂
唐月异
王秀贞
吴琪
孙全喜
王志伟
张欣
刘婷
宋国生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Peanut Research Institute
Original Assignee
Shandong Peanut Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Peanut Research Institute filed Critical Shandong Peanut Research Institute
Priority to CN201810252214.6A priority Critical patent/CN108489934A/zh
Publication of CN108489934A publication Critical patent/CN108489934A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3196Correlating located peaks in spectrum with reference data, e.g. fingerprint data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fats And Perfumes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种检测花生油品质的方法,属于光谱分析技术领域。本发明的检测花生油品质的方法,是对待测花生油进行近红外扫描,将扫描后的光谱导入构建的花生油油酸、亚油酸、过氧化值和酸值的近红外光谱模型中,经分析获得花生油品质。本发明方法建立的近红外光谱模型可以快速测定花生油油酸、亚油酸过氧化值和酸值,且测定结果误差小,准确度高,数值可靠,通过检测花生油中油酸、亚油酸过氧化值和酸值能够判断花生油的品质,进而保证食用油质量安全。

Description

一种检测花生油品质的方法
技术领域
本发明属于光谱分析技术领域,具体涉及一种检测花生油品质的方法。
背景技术
花生是世界上主要的油料作物,也是优质植物油和高消化率蛋白质的重要来源。随着人民生活水平的提高,开始注重食用油的“口感、营养、健康和方便”。
与普通花生相比,高油酸花生更加有益人体健康,高油酸花生食用油和食品能够保持花生良好的风味经久不衰,货架期显著延长,因此深受消费者和加工商欢迎,世界范围内掀起了选育、推广种植和应用高油酸花生的热潮。
按美国育种家的说法,高油酸花生油亚比应不低于9。一般认为高油酸花生油酸含量应不低于72%、亚油酸含量不高于7.7%。花生油脂肪酸测定常用色谱法,不仅需要消耗化学试剂,而且耗时长。近红外法测定完整花生子仁脂肪酸含量已有报道,如需测定液体则需专门仪器并配备相应模型。
此外,与其他植物油一样,花生油在加工、流通和保存期间被氧化会导致风味、颜色和质地的劣变,产生的氧化脂质会危害人体健康。过氧化值(PV)和酸值(AV)是两项衡量食用油是否合格的重要指标。过氧化物是油脂在氧化酸败过程中生成的不稳定的中间产物,可分解成较短碳链的醛、酮、酸等,对过氧化值的测定可衡量油脂氧化酸败的程度。食用油过氧化值过高,即油脂氧化过程中产生的中间产物(过氧化物)含量过高。食用高过氧化物油脂可引起呕吐、腹泻等中毒症状。因此食用油中过氧化物含量高低直接影响油的品质。
对花生油的油酸、亚油酸、过氧化值和酸值进行检测有助于评判花生油品质的好坏。
发明内容
本发明目的是建立一种检测花生油品质的方法,对花生油的油酸、亚油酸、过氧化值和酸值进行准确分析。
为了实现上述目的,本发明的技术方案如下:
一种检测花生油品质的方法,对待测花生油进行近红外扫描,将扫描后的光谱导入构建的花生油油酸、亚油酸、过氧化值和酸值的近红外光谱模型中,经分析获得花生油品质。
在上述方案的基础上,所述花生油油酸、亚油酸、过氧化值和酸值近红外光谱模型由以下方法构建而成:
(1)调兑不同油酸、亚油酸含量的花生油和不同新陈程度的花生油;
(2)对上述花生油样品进行近红外光谱测定,收集近红外光谱信息;
(3)检测调兑的不同油酸、亚油酸含量花生油样品的油酸、亚油酸值的化学值和调兑的不同新陈程度花生油样品的过氧化值、酸值的化学值;
(4)分别对花生油样品的油酸、亚油酸、过氧化值和酸值的化学值和(2)中采集的近红外光谱数据进行拟合光谱处理,用偏最小二乘法优化建立模型,反复采用内部交叉验证剔除奇异点,通过比较样品预测值与化学值的R2和RMSECV衡量模型质量,筛选最佳模型;
(5)验证模型的准确性。
在上述方案的基础上,所述近红外光谱扫描参数为:扫描谱区范围4000~12000cm-1,扫描次数64次,分辨率8cm-1
在上述方案的基础上,不同油酸、亚油酸含量的花生油的调兑方式及油酸亚油酸含量的化学值为:
所述不同油酸、亚油酸含量的花生油的近红外光谱预测值为:
高油酸花生油(mL) 普通花生油(mL) 油酸/% 亚油酸/%
4200 0 82.12 5.87
4060 140 80.45 6.48
3920 280 79.77 7.52
3570 630 77.13 10.01
3430 770 75.26 10.84
3360 840 72.81 12.55
3080 1120 70.46 13.40
2800 1400 69.54 14.45
2520 1680 66.59 17.93
2380 1820 64.87 17.57
2100 2100 63.58 19.75
1820 2380 60.24 21.51
1400 2800 61.25 22.90
980 3220 56.33 26.37
630 3570 53.45 29.92
280 3920 51.03 31.25
0 4200 46.89 33.94
在上述方案的基础上,
所述花生油油酸含量模型的最佳光谱预处理方法为“一阶导数+MSC”,谱区范围为6102~4597.7cm-1(厘米波数),维数为6,模型的R2为96.14,RMSECV为2.13;
所述花生油亚油酸含量模型的最佳光谱预处理方法为“一阶导数+MSC”,谱区范围为7506~4242.8cm-1(厘米波数),维数为8,模型的R2为98.07,RMSECV为1.26。
在上述方案的基础上,所述不同新陈程度的花生油的勾兑方式及过氧化值、酸值的化学值为:
新油(mL) 陈油(mL) 过氧化值mmol/kg 酸值mg/g
70 0 2.5800 0.4601
68 2 2.7892 0.4773
66 4 3.2668 0.5012
64 6 3.4683 0.5544
62 8 3.7030 0.5607
58 12 7.1251 0.618
56 14 7.7818 0.6423
54 16 9.2412 0.6679
52 18 10.6129 0.7033
50 20 11.0852 0.7104
48 22 12.6037 0.7272
46 24 12.7568 0.7753
44 26 12.9505 0.7756
42 28 13.3439 0.7847
40 30 13.4396 0.8022
38 32 15.3918 0.8236
36 24 15.6912 0.8381
32 38 16.2579 0.8589
30 40 16.4974 0.904
28 42 16.6081 0.9342
26 44 16.6881 1.0046
24 46 17.1134 1.0826
20 50 17.432 1.1785
18 52 17.6761 1.2171
16 54 18.6511 1.2327
14 56 18.9033 1.279
10 60 20.1452 1.2922
8 62 20.9424 1.32
6 64 21.1418 1.3327
4 66 21.7543 1.3763
2 68 24.0902 1.399
0 70 24.507 1.4133
所述不同新陈程度的花生油的勾兑方式及过氧化值、酸值的预测值为:
新油(mL) 陈油(mL) 过氧化值mmol/kg 酸值mg/g
70 0 ------------------------------ 0.4550
68 2 ------------------------------ 0.4670
66 4 ------------------------------ 0.5305
64 6 ------------------------------ 0.5590
62 8 ------------------------------ 0.5798
58 12 8.1810 0.6093
56 14 10.5400 0.6443
54 16 11.0100 0.6529
52 18 11.7350 0.6866
50 20 11.7667 0.7133
48 22 12.2600 0.7466
46 24 12.5367 0.8137
44 26 12.8500 0.8661
42 28 13.5233 0.8702
40 30 14.1267 0.8865
38 32 14.9467 0.9068
36 24 15.3867 0.9213
32 38 16.7500 0.9335
30 40 16.7667 0.9770
28 42 16.8600 0.9773
26 44 16.9933 1.0577
24 46 17.3050 1.1133
20 50 17.9400 1.1967
18 52 18.3700 1.2477
16 54 18.5167 1.2737
14 56 18.6567 1.2897
10 60 18.7900 1.3037
8 62 21.1467 1.3373
6 64 22.0533 1.3433
4 66 22.2267 1.3700
2 68 23.4567 1.3820
0 70 23.7950 1.3837
在上述方案的基础上,所述花生油过氧化值模型的最佳光谱预处理方法为“一阶导数+矢量归一化”,谱区范围为7506~6094.3cm-1,维数为6,模型的R2为91.93,RMSECV为1.23;
所述花生油酸值模型的最佳光谱预处理方法为“矢量归一化”,谱区范围为7506~6094.3cm-1,维数为7,模型的R2为93.88,RMSECV为0.074。
在上述方案的基础上,所述近红外光谱扫描,每个样品4mL,重复扫描3次。
本发明的有益效果:
本发明方法建立的近红外光谱模型可以快速测定花生油油酸、亚油酸过氧化值和酸值,且测定结果误差小,准确度高,数值可靠,通过检测花生油中油酸、亚油酸过氧化值和酸值能够判断花生油的品质,进而保证食用油质量安全。
附图说明
图1花生油样品的近红外扫描光谱图,其中横坐标代表波数(cm-1),纵坐标代表吸光度;
图2花生油油酸含量的近红外模型,其中横坐标代表化学值,纵坐标代表预测值;
图3花生油亚油酸含量的近红外模型其中横坐标代表化学值,纵坐标代表预测值;
图4花生油过氧化值的近红外模型其中横坐标代表化学值,纵坐标代表预测值;
图5花生油酸值的近红外模型其中横坐标代表化学值,纵坐标代表预测值。
具体实施方式
在本发明中所使用的术语,除非有另外说明,一般具有本领域普通技术人员通常理解的含义。
下面结合具体实施例,并参照数据进一步详细的描述本发明。以下实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。
实施例
一、花生油油酸、亚油酸含量近红外光谱模型的建立
(1)用近红外光谱仪收集建模所需花生油的光谱
采用高油酸花生油和普通花生油合理勾兑出不同油酸和亚油酸含量的花生油样品;
本发明建模采用的光谱数据由德国布鲁克光谱仪器公司生产的Matrix-Ⅰ型傅立叶变换近红外光谱仪采集。
将勾兑好的花生油样品4mL分别放入方形石英比色皿中,加样时避免产生气泡。
将比色皿加盖并用胶带封固后横置于近红外光源上,使与比色皿盖下沿齐平的透光面对准光源,不使用原设备的旋转样品杯并取消旋转功能。
设置光谱仪扫描谱区范围为4000~12000cm-1(厘米波数),扫描次数为64次,分辨率为8cm-1(厘米波数)。开机预热30min后检测样品。
每个样品需扫描三次并且第二次和第三次扫描时要将比色皿旋转以得到同一样品的多个近红外光谱。
表1不同油酸、亚油酸含量的花生油的预测值
高油酸花生油(mL) 普通花生油(mL) 油酸/% 亚油酸/%
4200 0 82.12 5.87
4060 140 80.45 6.48
3920 280 79.77 7.52
3570 630 77.13 10.01
3430 770 75.26 10.84
3360 840 72.81 12.55
3080 1120 70.46 13.40
2800 1400 69.54 14.45
2520 1680 66.59 17.93
2380 1820 64.87 17.57
2100 2100 63.58 19.75
1820 2380 60.24 21.51
1400 2800 61.25 22.90
980 3220 56.33 26.37
630 3570 53.45 29.92
280 3920 51.03 31.25
0 4200 46.89 33.94
(2)花生油样品化学值的获取
采用HPLC法测定上述花生油样品的油酸和亚油酸含量如表2所示:
表2不同油酸、亚油酸含量的花生油的化学值
高油酸花生油(mL) 普通花生油(mL) 油酸/% 亚油酸/%
4200 0 80.48 5.57
4060 140 79.44 6.29
3920 280 78.37 7.26
3570 630 75.41 9.69
3430 770 74.17 10.64
3360 840 72.12 12.42
3080 1120 70.86 13.47
2800 1400 69.65 14.47
2520 1680 65.58 17.74
2380 1820 65.76 17.73
2100 2100 63.30 19.70
1820 2380 61.07 21.66
1400 2800 59.81 22.63
980 3220 55.49 26.21
630 3570 51.43 29.55
280 3920 49.63 30.99
0 4200 46.47 33.86
高油酸花生油为鲁花公司生产的高油酸花生油,普通花生油指超市中购买的普通油酸含量的花生油。
(3)模型构建与优化
光谱处理和模型构建采用德国布鲁克Matrix-Ⅰ型近红外光谱仪的OPUS 5.5软件,用NIR选项进行优化。用偏最小二乘法(PLS法)优化建立模型,采用内部交叉验证剔除奇异点(outlier)。选择最佳光谱预处理办法、最佳谱区、维数,并作进一步验证。通过比较样品预测值与化学值的决定系数(R2)和根均方差(RMSECV)衡量模型质量。
经优化,所述花生油油酸含量模型的最佳光谱预处理方法为“一阶导数+MSC”,谱区范围为6102~4597.7cm-1(厘米波数),维数为6,模型的R2为96.14,RMSECV为2.13;
所述花生油亚油酸含量模型的最佳光谱预处理方法为“一阶导数+MSC”,谱区范围为7506~4242.8cm-1(厘米波数),维数为8,模型的R2为98.07,RMSECV为1.26。
(4)预测效果
另取4份花生油样品,检验模型预测效果,油酸预测结果如表3所示,亚油酸预测结果如表4所示。油酸偏差为-0.87~0.23%,预测偏差较低。预测值与化学值成对数据t测验结果表明:两组数据的均值差为-0.11,自由度为3,t检验值为0.727<t0.05=3.182,两组数据差异不显著;亚油酸偏差为-0.18~0.12%,预测偏差较低。预测值与化学值成对数据t测验结果表明:两组数据的均值差为-0.0275,自由度为3,t检验值为0.702<t0.05=3.182,两组数据差异不显著。
表3花生油样品油酸含量化学值与预测值比较
油样(mL) 化学值 预测值 偏差
高油酸花生油4080普通花生油120 79.68 80.55 -0.87
高油酸花生油3400普通花生油800 73.85 73.62 0.23
高油酸花生油2550普通花生油1650 66.04 66.26 -0.22
高油酸花生油950普通花生油3250 54.85 54.43 0.42
表4花生油样品亚油酸含量化学值与预测值比较
油样(mL) 化学值 预测值 偏差
高油酸花生油4080普通花生油120 5.95 6.13 -0.18
高油酸花生油3400普通花生油800 11.18 11.15 0.03
高油酸花生油2550普通花生油1650 17.75 17.63 0.12
高油酸花生油950普通花生油3250 27.83 27.91 -0.08
二、花生油酸值、过氧化值含量近红外光谱模型的建立
(1)用近红外光谱仪收集建模所需花生油的光谱
本研究建模采用的光谱数据由德国布鲁克光谱仪器公司生产的Matrix-Ⅰ型傅立叶变换近红外光谱仪采集。光谱仪扫描谱区范围为4000~12000cm-1(厘米波数),扫描次数为64次,分辨率为8cm-1。开机预热30min后检测样品。采集光谱所用花生油样品,每份材料约4mL,重复扫描3次。
表5不同新陈程度的花生油过氧化值、酸值的预测值
新油(mL) 陈油(mL) 过氧化值mmol/kg 酸值mg/g
70 0 ------------------------------ 0.4550
68 2 ------------------------------ 0.4670
66 4 ------------------------------ 0.5305
64 6 ------------------------------ 0.5590
62 8 ------------------------------ 0.5798
58 12 8.1810 0.6093
56 14 10.5400 0.6443
54 16 11.0100 0.6529
52 18 11.7350 0.6866
50 20 11.7667 0.7133
48 22 12.2600 0.7466
46 24 12.5367 0.8137
44 26 12.8500 0.8661
42 28 13.5233 0.8702
40 30 14.1267 0.8865
38 32 14.9467 0.9068
36 24 15.3867 0.9213
32 38 16.7500 0.9335
30 40 16.7667 0.9770
28 42 16.8600 0.9773
26 44 16.9933 1.0577
24 46 17.3050 1.1133
20 50 17.9400 1.1967
18 52 18.3700 1.2477
16 54 18.5167 1.2737
14 56 18.6567 1.2897
10 60 18.7900 1.3037
8 62 21.1467 1.3373
6 64 22.0533 1.3433
4 66 22.2267 1.3700
2 68 23.4567 1.3820
0 70 23.7950 1.3837
注:1)上表中“---”标记为离异值,在模型构建中剔除;
2)所述的新油是自出厂日期到用于测定实验一个月内,陈油是自生产出在自然条件下存放两年。
(2)花生油样品化学值的获取
酸值按国标(GB5009.229—2016)方法测定。过氧化值按国标(GB5009.227—2016)方法测定。
表6不同新陈程度的花生油过氧化值、酸值的化学值
新油(mL) 陈油(mL) 过氧化值mmol/kg 酸值mg/g
70 0 2.5800 0.4601
68 2 2.7892 0.4773
66 4 3.2668 0.5012
64 6 3.4683 0.5544
62 8 3.7030 0.5607
58 12 7.1251 0.618
56 14 7.7818 0.6423
54 16 9.2412 0.6679
52 18 10.6129 0.7033
50 20 11.0852 0.7104
48 22 12.6037 0.7272
46 24 12.7568 0.7753
44 26 12.9505 0.7756
42 28 13.3439 0.7847
40 30 13.4396 0.8022
38 32 15.3918 0.8236
36 24 15.6912 0.8381
32 38 16.2579 0.8589
30 40 16.4974 0.904
28 42 16.6081 0.9342
26 44 16.6881 1.0046
24 46 17.1134 1.0826
20 50 17.432 1.1785
18 52 17.6761 1.2171
16 54 18.6511 1.2327
14 56 18.9033 1.279
10 60 20.1452 1.2922
8 62 20.9424 1.32
6 64 21.1418 1.3327
4 66 21.7543 1.3763
2 68 24.0902 1.399
0 70 24.507 1.4133
采用滴定法测定32份花生油样品过氧化值和酸值,样品化学值相关参数见表7。过氧化值均值为14.49mmol/Kg,最大、最小值分别为24.51mmol/Kg、2.58mmol/Kg;酸值均值为0.91mg/g,最大、最小值分别为1.41mg/g、0.46mg/g。表明建模花生油过氧化值和酸值变幅较大,可用于近红外光谱模型构建。
表7花生油过氧化值和酸值化学值相关统计参数
(3)模型构建与优化
光谱处理和模型构建采用德国布鲁克Matrix-Ⅰ型近红外光谱仪自带OPUS 5.5软件,用NIR选项自动寻优。采用内部交叉验证剔除奇异点。选择最佳光谱预处理办法、最佳谱区、维数,并作进一步验证。通过比较样品预测值与化学值的决定系数(R2)和根均方差(RMSECV)衡量模型质量。
经优化,花生油过氧化值最佳光谱预处理方法为“一阶导数+矢量归一化”。谱区范围为7506~6094.3cm-1(厘米波数),维数为6,模型的决定系数(R2)为91.93,根均方差(RMSECV)为1.23(图4);花生油酸值的最佳光谱预处理方法为“矢量归一化”。谱区范围为7506~6094.3cm-1,维数为7,模型的决定系数(R2)为93.88,根均方差(RMSECV)为0.074(图5)。
(4)预测效果
另取4份花生油样品,检验模型预测效果,过氧化值预测结果如表8所示,酸值预测结果如表9所示。过氧化值偏差为-2.66~0.75mmol/Kg,预测偏差较低。预测值与化学值成对数据t测验结果表明:两组数据的均值差为0.98,自由度为3,t检验值为0.993<t0.05=3.182,两组数据差异不显著;酸值偏差为-0.05~0.08mg/g,预测偏差较低。预测值与化学值成对数据t测验结果表明:两组数据的均值差为0.05,自由度为3,t检验值为1.031<t0.05=3.182,两组数据差异不显著。
表8花生油样品过氧化值含量化学值与预测值比较
表9花生油样品酸值含量化学值与预测值比较
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (8)

1.一种检测花生油品质的方法,其特征在于:对待测花生油进行近红外扫描,将扫描后的光谱导入构建的花生油油酸、亚油酸、过氧化值和酸值的近红外光谱模型中,经分析获得花生油品质。
2.根据权利要求1所述检测花生油品质的方法,其特征在于:所述花生油油酸、亚油酸、过氧化值和酸值近红外光谱模型由以下方法构建而成:
(1)调兑不同油酸、亚油酸含量的花生油和不同新陈程度的花生油;
(2)对上述花生油样品进行近红外光谱测定,收集近红外光谱信息;
(3)检测调兑的不同油酸、亚油酸含量花生油样品的油酸、亚油酸值的化学值和调兑的不同新陈程度花生油样品的过氧化值、酸值的化学值;
(4)分别对花生油样品的油酸、亚油酸、过氧化值和酸值的化学值和(2)中采集的近红外光谱数据进行拟合光谱处理,用偏最小二乘法优化建立模型,反复采用内部交叉验证剔除奇异点,通过比较样品预测值与化学值的R2和RMSECV衡量模型质量,筛选最佳模型;
(5)验证模型的准确性。
3.根据权利要求1或2所述检测花生油品质的方法,其特征在于:
所述近红外光谱扫描参数为:扫描谱区范围4000~12000cm-1,扫描次数64次,分辨率8cm-1
4.根据权利要求2或3所述检测花生油品质的方法,其特征在于:不同油酸、亚油酸含量的花生油的调兑方式及油酸亚油酸含量的化学值为:
所述不同油酸、亚油酸含量的花生油的预测值为:
高油酸花生油(mL) 普通花生油(mL) 油酸/% 亚油酸/% 4200 0 82.12 5.87 4060 140 80.45 6.48 3920 280 79.77 7.52 3570 630 77.13 10.01 3430 770 75.26 10.84 3360 840 72.81 12.55 3080 1120 70.46 13.40 2800 1400 69.54 14.45 2520 1680 66.59 17.93 2380 1820 64.87 17.57 2100 2100 63.58 19.75 1820 2380 60.24 21.51 1400 2800 61.25 22.90 980 3220 56.33 26.37 630 3570 53.45 29.92 280 3920 51.03 31.25 0 4200 46.89 33.94
5.根据权利要求4所述检测花生油品质的方法,其特征在于:
所述花生油油酸含量模型的最佳光谱预处理方法为“一阶导数+MSC”,谱区范围为6102~4597.7cm-1(厘米波数),维数为6,模型的R2为96.14,RMSECV为2.13;
所述花生油亚油酸含量模型的最佳光谱预处理方法为“一阶导数+MSC”,谱区范围为7506~4242.8cm-1(厘米波数),维数为8,模型的R2为98.07,RMSECV为1.26。
6.根据权利要求2或3所述检测花生油品质的方法,其特征在于:
所述不同新陈程度的花生油的勾兑方式及过氧化值、酸值的化学值为: 新油(mL) 陈油(mL) 过氧化值mmol/kg 酸值mg/g 70 0 2.5800 0.4601 68 2 2.7892 0.4773 66 4 3.2668 0.5012 64 6 3.4683 0.5544 62 8 3.7030 0.5607 58 12 7.1251 0.618 56 14 7.7818 0.6423 54 16 9.2412 0.6679 52 18 10.6129 0.7033 50 20 11.0852 0.7104 48 22 12.6037 0.7272 46 24 12.7568 0.7753 44 26 12.9505 0.7756 42 28 13.3439 0.7847 40 30 13.4396 0.8022 38 32 15.3918 0.8236 36 24 15.6912 0.8381 32 38 16.2579 0.8589 30 40 16.4974 0.904 28 42 16.6081 0.9342 26 44 16.6881 1.0046 24 46 17.1134 1.0826 20 50 17.432 1.1785 18 52 17.6761 1.2171 16 54 18.6511 1.2327 14 56 18.9033 1.279 10 60 20.1452 1.2922 8 62 20.9424 1.32 6 64 21.1418 1.3327 4 66 21.7543 1.3763 2 68 24.0902 1.399 0 70 24.507 1.4133
所述不同新陈程度的花生油的勾兑方式及过氧化值、酸值的预测值为: 新油(mL) 陈油(mL) 过氧化值mmol/kg 酸值mg/g 70 0 ------------------------------ 0.4550 68 2 ------------------------------ 0.4670 66 4 ------------------------------ 0.5305 64 6 ------------------------------ 0.5590 62 8 ------------------------------ 0.5798 58 12 8.1810 0.6093 56 14 10.5400 0.6443 54 16 11.0100 0.6529 52 18 11.7350 0.6866 50 20 11.7667 0.7133 48 22 12.2600 0.7466 46 24 12.5367 0.8137 44 26 12.8500 0.8661 42 28 13.5233 0.8702 40 30 14.1267 0.8865 38 32 14.9467 0.9068 36 24 15.3867 0.9213 32 38 16.7500 0.9335 30 40 16.7667 0.9770 28 42 16.8600 0.9773 26 44 16.9933 1.0577 24 46 17.3050 1.1133 20 50 17.9400 1.1967 18 52 18.3700 1.2477 16 54 18.5167 1.2737 14 56 18.6567 1.2897 10 60 18.7900 1.3037 8 62 21.1467 1.3373 6 64 22.0533 1.3433 4 66 22.2267 1.3700 2 68 23.4567 1.3820 0 70 23.7950 1.3837
7.根据权利要求6所述检测花生油品质的方法,其特征在于:
所述花生油过氧化值模型的最佳光谱预处理方法为“一阶导数+矢量归一化”,谱区范围为7506~6094.3cm-1,维数为6,模型的R2为91.93,RMSECV为1.23;
所述花生油酸值模型的最佳光谱预处理方法为“矢量归一化”,谱区范围为7506~6094.3cm-1,维数为7,模型的R2为93.88,RMSECV为0.074。
8.根据权利要求1~7任一项所述检测花生油品质的方法,其特征在于:所述近红外光谱扫描,每个样品4mL,重复扫描3次。
CN201810252214.6A 2018-03-26 2018-03-26 一种检测花生油品质的方法 Pending CN108489934A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810252214.6A CN108489934A (zh) 2018-03-26 2018-03-26 一种检测花生油品质的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810252214.6A CN108489934A (zh) 2018-03-26 2018-03-26 一种检测花生油品质的方法

Publications (1)

Publication Number Publication Date
CN108489934A true CN108489934A (zh) 2018-09-04

Family

ID=63337704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810252214.6A Pending CN108489934A (zh) 2018-03-26 2018-03-26 一种检测花生油品质的方法

Country Status (1)

Country Link
CN (1) CN108489934A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738390A (zh) * 2019-01-16 2019-05-10 中国农业科学院油料作物研究所 一种基于近红外光谱检测单粒花生中油酸、亚油酸和棕榈酸含量的方法
CN113092405A (zh) * 2021-04-08 2021-07-09 晨光生物科技集团股份有限公司 一种快速预判植物油常温条件下诱导期的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080049A1 (en) * 2007-12-21 2009-07-02 Dma Sorption Aps Monitoring oil condition and/or quality, on-line or at-line, based on chemometric data analysis of flourescence and/or near infrared spectra
CN101504363A (zh) * 2009-03-18 2009-08-12 哈尔滨商业大学 一种基于近红外光谱分析的食用油脂酸价检测方法
CN103245628A (zh) * 2012-02-13 2013-08-14 辽宁省分析科学研究院 食用植物油品质的快速检测方法
CN105181641A (zh) * 2015-10-12 2015-12-23 华中农业大学 一种菜籽油品质的近红外检测方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080049A1 (en) * 2007-12-21 2009-07-02 Dma Sorption Aps Monitoring oil condition and/or quality, on-line or at-line, based on chemometric data analysis of flourescence and/or near infrared spectra
CN101504363A (zh) * 2009-03-18 2009-08-12 哈尔滨商业大学 一种基于近红外光谱分析的食用油脂酸价检测方法
CN103245628A (zh) * 2012-02-13 2013-08-14 辽宁省分析科学研究院 食用植物油品质的快速检测方法
CN105181641A (zh) * 2015-10-12 2015-12-23 华中农业大学 一种菜籽油品质的近红外检测方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
毕艳兰等: "利用傅里叶近红外技术快速测定食用植物油的过氧化值", 《中国油脂》 *
王晶等: "基于近红外光谱技术的花生酸败特性检测研究", 《中国粮油学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738390A (zh) * 2019-01-16 2019-05-10 中国农业科学院油料作物研究所 一种基于近红外光谱检测单粒花生中油酸、亚油酸和棕榈酸含量的方法
CN113092405A (zh) * 2021-04-08 2021-07-09 晨光生物科技集团股份有限公司 一种快速预判植物油常温条件下诱导期的方法

Similar Documents

Publication Publication Date Title
Cortés et al. Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review
Li et al. Review of NIR spectroscopy methods for nondestructive quality analysis of oilseeds and edible oils
Li et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testing methods based on visible-near infrared hyperspectral imaging
Jiang et al. Analysis of protein, starch and oil content of single intact kernels by near infrared reflectance spectroscopy (NIRS) in maize (Zea mays L.)
CN102818777A (zh) 一种基于光谱和颜色测量的水果成熟度评价方法
CN107515203A (zh) 近红外技术定量分析水稻单籽粒直链淀粉含量的研究
CN106841083A (zh) 基于近红外光谱技术的芝麻油品质检测方法
CN106092962A (zh) 一种用近红外光谱法快速检测谷子粗蛋白含量的方法
Yuan et al. Non-invasive measurements of ‘Yunhe’pears by vis-NIRS technology coupled with deviation fusion modeling approach
CN110487746A (zh) 一种基于近红外光谱检测娃娃菜品质的方法
Melado-Herreros et al. Postharvest ripeness assessment of ‘Hass’ avocado based on development of a new ripening index and Vis-NIR spectroscopy
Saad et al. Quality analysis prediction and discriminating strawberry maturity with a hand-held Vis–NIR spectrometer
CN108489934A (zh) 一种检测花生油品质的方法
CN108613943A (zh) 一种基于光谱形态转移的近红外单籽粒作物成分检测方法
Sun et al. Non-destructive detection of blackheart and soluble solids content of intact pear by online NIR spectroscopy
CN105675538B (zh) 一种胡麻饼养分的检测方法
CN110231302A (zh) 一种快速测定奇亚籽粗脂肪含量的方法
CN107121408A (zh) 食用植物油品种的快速无损鉴别方法
Wang et al. Origin identification of foxtail millet (Setaria italica) by using green spectral imaging coupled with chemometrics
CN112485216B (zh) 一种多源信息融合的泰国茉莉香米掺伪鉴别方法
CN106483095A (zh) 一种快速、准确定量四元调和油中各组分油含量的方法
CN109540837A (zh) 近红外快速检测苎麻叶片木质纤维素含量的方法
Meghar et al. Hyperspectral imaging for the determination of relevant cooking quality traits of boiled cassava
CN108732128A (zh) 一种检测花生仁食用感官品质的方法
Violino et al. A ready-to-use portable VIS–NIR spectroscopy device to assess superior EVOO quality

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination