CN108487335B - A single pile vertical cyclic loading test device and method for simulating high-speed rail load - Google Patents
A single pile vertical cyclic loading test device and method for simulating high-speed rail load Download PDFInfo
- Publication number
- CN108487335B CN108487335B CN201810349983.8A CN201810349983A CN108487335B CN 108487335 B CN108487335 B CN 108487335B CN 201810349983 A CN201810349983 A CN 201810349983A CN 108487335 B CN108487335 B CN 108487335B
- Authority
- CN
- China
- Prior art keywords
- pile
- test
- load
- vibration
- displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 108
- 125000004122 cyclic group Chemical group 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000006073 displacement reaction Methods 0.000 claims abstract description 35
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 14
- 239000010959 steel Substances 0.000 claims abstract description 14
- 238000004364 calculation method Methods 0.000 claims abstract description 5
- 239000002689 soil Substances 0.000 claims description 39
- 238000003825 pressing Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 6
- 238000011160 research Methods 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 5
- 238000007596 consolidation process Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 238000010998 test method Methods 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 2
- 230000005520 electrodynamics Effects 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 230000009471 action Effects 0.000 abstract description 5
- 238000013461 design Methods 0.000 abstract description 3
- 230000009897 systematic effect Effects 0.000 abstract description 2
- 230000007774 longterm Effects 0.000 abstract 1
- 230000008859 change Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D33/00—Testing foundations or foundation structures
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D2600/00—Miscellaneous
- E02D2600/10—Miscellaneous comprising sensor means
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明涉及一种模拟高铁荷载的单桩竖向循环加载试验装置及方法,该装置包括试验箱、试验桩、反力架、上刚性梁、固定杆及上部加载单元,试验箱为方形钢架,上部加载单元主要部件为电动式激振器,利用上刚性梁悬吊于试验箱上方。激振器的动力幅值,加载频率,加载波形等由信号控制器控制。试验桩桩顶设有位移传感器,沿桩身方向设有电阻应变片。该装置可以模拟桩基基础受到的振动荷载的工况,能够调节动荷载的振动幅值和振动频率,且能够测量并自动记录桩顶所受激振力、位移以及桩身应力分布。装置结构简单,能够实现对长期竖向循环荷载作用下的单桩承载力及变形特性的系统研究,对桩基础工程设计中桩基承载力及其变形的计算具有重要意义。
The invention relates to a single pile vertical cyclic loading test device and method for simulating the load of a high-speed railway. The device comprises a test box, a test pile, a reaction force frame, an upper rigid beam, a fixed rod and an upper loading unit, and the test box is a square steel frame , The main component of the upper loading unit is an electric vibration exciter, which is suspended above the test box by the upper rigid beam. The dynamic amplitude, loading frequency and loading waveform of the exciter are controlled by the signal controller. A displacement sensor is arranged on the top of the test pile, and a resistance strain gauge is arranged along the direction of the pile body. The device can simulate the working conditions of the vibration load on the pile foundation, adjust the vibration amplitude and vibration frequency of the dynamic load, and can measure and automatically record the excited vibration force, displacement and pile body stress distribution on the top of the pile. The device has a simple structure and can realize a systematic study on the bearing capacity and deformation characteristics of a single pile under the action of a long-term vertical cyclic load, which is of great significance to the calculation of the bearing capacity and deformation of the pile foundation in the engineering design of the pile foundation.
Description
技术领域technical field
本发明属于岩土工程、地质工程土工测试技术领域,具体涉及一种模拟高铁荷载的单桩竖向循环加载试验装置及方法。The invention belongs to the technical field of geotechnical engineering and geotechnical engineering testing, and in particular relates to a single pile vertical cyclic loading test device and method for simulating the load of a high-speed rail.
背景技术Background technique
桩基础作为一种常用的基础形式,被大量用于工程建设中,尤其适用于对沉降控制和承载力有严格要求的工程项目。随着风力发电、海洋工程、新型能源及高速铁路的新建与发展,桩基越来越多承受循环荷载的作用。在循环荷载作用下,桩基承载及变形特性不同于静荷载情况。循环荷载作用下单桩承载及变形特性是非常复杂的桩土相互作用问题,作用机理复杂,影响因素众多。As a common foundation form, pile foundation is widely used in engineering construction, especially for engineering projects with strict requirements on settlement control and bearing capacity. With the new construction and development of wind power generation, marine engineering, new energy and high-speed railways, pile foundations are increasingly subjected to cyclic loads. Under the action of cyclic load, the bearing and deformation characteristics of pile foundation are different from those of static load. The bearing and deformation characteristics of a single pile under cyclic loading are very complex pile-soil interaction problems, the mechanism of action is complex, and there are many influencing factors.
目前,国内外学者采用物理模型实验、理论分析及数值分析等方法对循环荷载作用下桩的力学特性进行研究。大多数试验仅对桩顶荷载和位移进行了量测,而对桩身轴力、端阻力、桩土界面孔压及土压力等关键物理量的循环变化规律缺乏系统试验研究,无法对循环荷载作用下的桩土相互作用特性进行深入了解,对其发生机理更难以给出合理解释。而在沿海地区,因深厚软土的存在,桩基的承载力主要靠桩侧摩阻力提供,桩侧摩阻力在循环荷载作用下会发生变化,从而影响桩基承载力和变形,这将对桩基的工程性质产生不利影响。At present, scholars at home and abroad use physical model experiments, theoretical analysis and numerical analysis to study the mechanical properties of piles under cyclic loads. Most of the tests only measure the load and displacement at the top of the pile, while the cyclic variation laws of key physical quantities such as the axial force of the pile body, the end resistance, the pore pressure of the pile-soil interface, and the earth pressure are lacking in systematic experimental research, so the effect of the cyclic load cannot be measured. It is more difficult to give a reasonable explanation for the occurrence mechanism of pile-soil interaction characteristics. In coastal areas, due to the existence of deep soft soil, the bearing capacity of the pile foundation is mainly provided by the pile side friction resistance. The pile side friction resistance will change under the action of cyclic loads, thereby affecting the bearing capacity and deformation of the pile foundation. The engineering properties of the pile foundation are adversely affected.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷,提供一种模拟高铁荷载的单桩竖向循环加载试验装置及方法,以获得振动荷载作用下,单桩桩身不同位置处的应力分布情况,通过获取桩顶、桩身、桩端三处位置的数据,进而分析在不同动荷载振幅和频率的作用下,桩体的承载力和变形特征,同时评估单桩的动承载力大小。The purpose of the present invention is to overcome the above-mentioned defects in the prior art, and to provide a single pile vertical cyclic loading test device and method for simulating high-speed rail loads, so as to obtain the stress distribution at different positions of the single pile body under the action of the vibration load. By obtaining the data of three positions of pile top, pile body and pile end, the bearing capacity and deformation characteristics of the pile body under the action of different dynamic load amplitudes and frequencies are analyzed, and the dynamic bearing capacity of a single pile is evaluated at the same time.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
一种模拟高铁荷载的单桩竖向循环加载试验装置,包括用于装填试验土样的试验箱、设于试验箱内的试验桩、设于试验箱外部的反力架、设于反力架上端的上刚性梁、设于上刚性梁上的固定杆及上部加载单元,所述上部加载单元包括依次连接的激振器、功率放大器和信号发生器,所述激振器安装在所述固定杆的下端,并位于试验桩的上方,所述激振器下端的激振头处设有用于记录激振力大小及波形的拉压传感器,所述试验桩上部的桩头处设有用于测量桩顶位移的位移传感器,所述试验桩下部的桩端处设有用于测量桩端阻力的土压力传感器,所述试验桩的桩身自上而下设有多个用于测试桩身应力分布的电阻应变片,所述拉压传感器、位移传感器、土压力传感器以及电阻应变片均连接动态数据采集仪,并传输至计算机进行显示和处理。A single pile vertical cyclic loading test device simulating high-speed rail load, including a test box for filling test soil samples, a test pile arranged in the test box, a reaction force frame arranged outside the test box, and a reaction force frame arranged in the reaction force frame The upper rigid beam at the upper end, the fixed rod arranged on the upper rigid beam, and the upper loading unit, the upper loading unit includes a vibration exciter, a power amplifier and a signal generator connected in sequence, and the vibration exciter is installed on the fixed The lower end of the rod is located above the test pile, the excitation head at the lower end of the vibration exciter is provided with a tension and pressure sensor for recording the magnitude and waveform of the excitation force, and the pile head on the upper part of the test pile is provided with a measurement A displacement sensor for the displacement of the top of the pile, the pile end at the lower part of the test pile is provided with an earth pressure sensor for measuring the resistance of the pile end, and the pile body of the test pile is provided with a plurality of test piles from top to bottom for testing the stress distribution of the pile body The resistance strain gauge is connected to the dynamic data acquisition instrument, and the tension and pressure sensor, displacement sensor, earth pressure sensor and resistance strain gauge are connected to the computer for display and processing.
进一步地,是由四根角钢和若干扁钢焊连成的方形钢架,试验箱的四周及底部为与方形钢架焊接的钢板,试验箱的内表面光滑。Further, it is a square steel frame formed by welding four angle steels and several flat steels. The surrounding and bottom of the test box are steel plates welded with the square steel frame, and the inner surface of the test box is smooth.
进一步地,所述试验箱的底端设有排水阀。Further, the bottom end of the test box is provided with a drain valve.
进一步地,所述试验箱的两侧设有底座,所述底座上设有用于固定反力架的卡槽,所述反力架通过螺栓固定于底座上,可通过螺纹杆调整高度。Further, the two sides of the test box are provided with a base, and the base is provided with a slot for fixing a reaction force frame, the reaction force frame is fixed on the base by bolts, and the height can be adjusted by a threaded rod.
进一步地,所述上刚性梁通过两侧的上刚性梁卡口设在反力架上,并通过螺纹栓固定。Further, the upper rigid beam is set on the reaction frame through the upper rigid beam bayonet on both sides, and is fixed by threaded bolts.
进一步地,所述上刚性梁的中部设有若干内螺纹孔,所述固定杆穿过内螺纹孔,并通过螺纹栓固定,所述固定杆位置通过不同的内螺纹孔可进行左右移动,实现激振器的横向移动。Further, the middle part of the upper rigid beam is provided with a number of internal threaded holes, the fixing rod passes through the internal threaded holes and is fixed by threaded bolts, and the position of the fixed rod can be moved left and right through different internal threaded holes to achieve Lateral movement of the shaker.
进一步地,所述的激振器为电动式激振器。Further, the vibration exciter is an electric vibration exciter.
进一步地,所述的信号发生器可连续地输出任意波形的函数信号。Further, the signal generator can continuously output function signals of arbitrary waveforms.
一种模拟高铁荷载的单桩竖向循环加载试验方法,包括以下步骤:A single pile vertical cyclic loading test method for simulating high-speed rail load, comprising the following steps:
(a)根据研究目标,确定试样土样,并测定试验土样的含水率、密度,并将试验土样填入试验箱内至所需高度,并分层压实,填筑完毕后,需要对试验土样进行预压固结;(a) According to the research objectives, determine the sample soil sample, measure the moisture content and density of the test soil sample, fill the test soil sample into the test box to the required height, and compact it in layers. The test soil samples need to be pre-compressed and consolidated;
(b)待试验土样固结完成后,采用静力压入的方法进行压桩,压桩的速度100mm/min,压桩时间为8min,通过在桩顶处设置的位移传感器监测桩体位移;(b) After the consolidation of the test soil sample is completed, use the method of static pressing to carry out pile pressing, the speed of pressing the pile is 100mm/min, the time of pressing the pile is 8 minutes, and the displacement of the pile body is monitored by the displacement sensor set at the top of the pile. ;
(c)压桩完毕,待休止期结束之后,对试验桩进行循环加载试验,开启信号发生器,设置振动波形,打开功率放大器,调节信号幅值大小,开启动态数据采集仪和计算机,记录振动过程中桩顶荷载和桩体位移;(c) After the pile pressing is completed, after the rest period is over, the test pile is subjected to cyclic loading test, the signal generator is turned on, the vibration waveform is set, the power amplifier is turned on, the signal amplitude is adjusted, the dynamic data acquisition instrument and computer are turned on, and the vibration is recorded. Pile top load and pile body displacement during the process;
(d)加大幅值或改变频率,重复上一步骤,直至振动时间或桩顶位移达到要求;(d) Increase the amplitude or change the frequency, and repeat the previous step until the vibration time or pile top displacement meets the requirements;
(e)试验结束后,依次关闭功率放大器,信号发生器和动态数据采集仪,根据桩顶动荷载和桩顶位移,计算单桩动承载力极限,根据桩端土压力传感器和桩身电阻应变片,计算得到沿桩身应力分布以及桩侧摩阻力分布情况。(e) After the test, turn off the power amplifier, signal generator and dynamic data acquisition instrument in turn, calculate the dynamic bearing capacity limit of a single pile according to the dynamic load of the pile top and the displacement of the pile top, and calculate the limit of the dynamic bearing capacity of the single pile according to the soil pressure sensor at the pile end and the resistance strain of the pile body. The stress distribution along the pile body and the friction resistance distribution on the pile side are obtained by calculation.
进一步地,步骤(c)输入的循环荷载的一个周期内计算方法为:Further, the calculation method within one cycle of the cyclic load input in step (c) is:
其中:in:
P(t)是高铁荷载幅值;P(t) is the high-speed rail load amplitude;
t是时间;t is time;
L是高铁转向架轮对之间的距离;L is the distance between the high-speed rail bogie wheels;
v是高铁行进速度;v is the speed of the high-speed rail;
w为高铁荷载对应的频率,w=v/πD,D是高铁轮对直径。w is the frequency corresponding to the high-speed rail load, w=v/πD, and D is the diameter of the high-speed rail wheelset.
与现有技术相比,本发明具有以下特点:Compared with the prior art, the present invention has the following characteristics:
1)本发明适用于小比例尺的任意桩型的单桩循环加载试验,该装置可模拟桩体承受不同振动幅值和频率的荷载的工况,且试验过程中可全面得到桩顶荷载、桩顶位移、桩身应力分布以及桩端所受桩端阻力等多种参数;1) The present invention is suitable for the cyclic loading test of a single pile of any pile type with a small scale. The device can simulate the working conditions of the pile body bearing loads of different vibration amplitudes and frequencies, and can comprehensively obtain the pile top load, pile top load and pile load during the test. Various parameters such as top displacement, pile body stress distribution, and pile tip resistance on the pile tip;
2)本发明通过合理设置传感器监测位置,采用电阻应变片和压力传感器的联合布置,实现对沿桩身应力分布的研究,从而计算得到桩侧摩阻力的分布情况。试验装置及试验过程能够保证所采集数据的有效性,且能多角度反应单桩在循环加载条件下的应力分布及变化情况;2) The present invention realizes the study of the stress distribution along the pile body by reasonably setting the monitoring position of the sensor and adopts the joint arrangement of the resistance strain gauge and the pressure sensor, thereby calculating the distribution of the pile side frictional resistance. The test device and test process can ensure the validity of the collected data, and can reflect the stress distribution and change of the single pile under cyclic loading conditions from multiple angles;
3)本发明涉及到的试验装置各试验部件均可拆卸、调节,操作性强,获取试验数据可靠性强,研究单桩在循环荷载下的承载力和沉降变形情况,对桩基础工程的设计具有重要意义。3) Each test component of the test device involved in the present invention can be disassembled and adjusted, with strong operability and high reliability of obtaining test data. It can study the bearing capacity and settlement deformation of a single pile under cyclic loads, and design the pile foundation engineering. significant.
附图说明Description of drawings
图1为本发明单桩循环加载试验装置的结构示意图;Fig. 1 is the structural representation of the monopile cyclic loading test device of the present invention;
图2为上刚性梁的俯视图;Fig. 2 is the top view of the upper rigid beam;
图中:1-试验箱、2-试验土样、3-试验桩、4-电阻应变片、5-位移传感器、6-激振器、7-固定杆、8-上刚性梁、9-反力架、10-底座、11-功率放大器、12-信号发生器、13-动态数据采集仪、14-计算机、15-排水阀、16-土压力传感器、17-拉压传感器、18-上刚性梁卡口、19-内螺纹孔。In the picture: 1-Test box, 2-Test soil sample, 3-Test pile, 4-Resistance strain gauge, 5-Displacement sensor, 6-Vibration exciter, 7-Fixed rod, 8-Upper rigid beam, 9-Reverse Force frame, 10-base, 11-power amplifier, 12-signal generator, 13-dynamic data acquisition instrument, 14-computer, 15-drain valve, 16-earth pressure sensor, 17-tension and pressure sensor, 18-upper rigidity Beam bayonet, 19-inner threaded hole.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. This embodiment is implemented on the premise of the technical solution of the present invention, and provides a detailed implementation manner and a specific operation process, but the protection scope of the present invention is not limited to the following embodiments.
如图1所示,一种模拟高铁荷载的单桩竖向循环加载试验装置,该装置包括试验箱1、反力架9、上刚性梁8、固定杆7及上部加载单元,试验箱1由四根角钢和若干扁钢焊连成方形钢架,用于填筑试验土样2,并在试验箱1中进行压桩。试验箱底端设有排水阀15,可利用排水阀门控制排水条件和排水速率。两侧设有固定反力架的底座10,底座10上设有卡槽用于固定反力架。反力架通过螺栓固定于底座上,并可通过自身通过螺纹杆调整高度。As shown in Figure 1, a single pile vertical cyclic loading test device simulating high-speed rail load, the device includes a
如图2所示,上刚性梁8两侧有上刚性梁卡口18,通过两侧上刚性梁卡口18可架在反力架9上,用螺纹栓固定,可根据实际情况进行拆卸。上刚性梁中部设有若干内螺纹孔19、固定杆7穿过内螺纹孔19,通过螺纹栓固定。As shown in FIG. 2 , the upper
上部加载单元由激振器6、功率放大器11和信号发生器12三部分构成。激振器连接固定杆7,通过固定杆悬吊于试验箱上方。通过改变固定杆位置,可实现激振器的横向移动。可根据试验要求设置不同的荷载波形、幅值和频率。激振器为JZQ-20型电动式激振器,对试验桩提供激振力。功率放大器采用KD5702型功率放大器作为振动试验和振动测量的大功率激振源,可调节3A至15A的输出电流限制保护,并对输出晶体管、散热器进行温度保护,可指示输出晶体管失效和输出信号削波。信号发生器可采用AFG3000C型函数信号发生器,可以连续地输出任意波形的函数信号。函数信号的频率在10MHz内和幅度均可连续调节。通过固定杆悬吊于试验箱上方的激振器连接外设功率放大器11,功率放大器连接信号发生器12。所输入的循环高铁荷载的一个周期内计算方法为:The upper loading unit is composed of three parts: an
其中:in:
P(t)是高铁荷载幅值;P(t) is the high-speed rail load amplitude;
t是时间;t is time;
L是高铁转向架轮对之间的距离;L is the distance between the high-speed rail bogie wheels;
v是高铁行进速度;v is the speed of the high-speed rail;
w为高铁荷载对应的频率,w=v/πD,D是高铁轮对直径。w is the frequency corresponding to the high-speed rail load, w=v/πD, and D is the diameter of the high-speed rail wheelset.
试验土样2为重塑的黏土,土体可设置为单层或多层。试验桩3桩身材料为有机玻璃。The
量测设备包括拉压传感器17、土压力传感器16、位移传感器5和电阻应变片4。拉压传感器17用于直接测量作用在桩顶上的荷载。土压力传感器16贴于桩底,测量桩端所受到的端阻力。位移传感器5采用YWC型应变式位移传感器,设置于桩顶,测量桩顶位移。电阻应变片4采用BE120-2DB-P300型电阻应变片,对称分布于桩身两侧,用于测量沿桩身的轴力分布,并用环氧树脂覆盖电阻应变片,进行密封防水处理。量测设备均接于动态采集仪13上,进行信号处理后,输入计算机14进行数据输出显示,和进一步的数据处理。The measuring equipment includes a tension and
采用上述单桩循环加载试验装置模拟高铁荷载的单桩竖向循环加载试验,其方法包括如下步骤:The single-pile vertical cyclic loading test using the above-mentioned single-pile cyclic loading test device to simulate the high-speed rail load, the method includes the following steps:
步骤1:根据研究目标,确定试样土样,并测定试验图样含水率、密度,并将试样土样2填入试验箱内至所需高度,并分层压实。填筑完毕后,需要对试验土样2进行预压固结。Step 1: According to the research objective, determine the sample soil sample, measure the moisture content and density of the test pattern, and fill the
步骤2:待试验土样固结完成后,采用静力压入的施工方法进行压桩,压桩的速度100mm/min,压桩时间为8min。在桩顶设置位移传感器,监测桩体位移。Step 2: After the consolidation of the test soil sample is completed, use the construction method of static pressing to carry out pile pressing, the speed of pressing the pile is 100 mm/min, and the time of pressing the pile is 8 minutes. Displacement sensors are arranged on the top of the piles to monitor the displacement of the piles.
步骤3:压桩完毕,待休止期结束之后,对试验桩进行了循环加载试验。开启信号发生器12,设置振动波形,打开功率放大器11,调节信号幅值大小,开启动态数据采集仪13和计算机14,记录振动过程中桩顶荷载和桩体位移。Step 3: After the pile pressing is completed, after the rest period is over, the cyclic loading test is carried out on the test pile. Turn on the
步骤4:加大幅值,或改变频率,重复上一步骤,直至振动时间或桩顶位移达到要求。Step 4: Increase the amplitude, or change the frequency, and repeat the previous step until the vibration time or pile top displacement meets the requirements.
步骤5:试验结束后,依次关闭功率放大器11,信号发生器12和动态数据采集仪13。根据桩顶动荷载和桩顶位移,计算单桩动承载力极限,根据桩端土压力传感器和桩身电阻应变片,计算得到沿桩身应力分布以及桩侧摩阻力分布情况;Step 5: After the test, turn off the
还包括步骤6:根据试验设计,取试验箱中试验土样2,进行液塑限、抗剪强度指标等基本物理力学性质指标试验。通过对比桩周土和远端土的性质,从振动影响角度研究单桩振动前后周围试验土样的变化。It also includes step 6: according to the test design, take the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810349983.8A CN108487335B (en) | 2018-04-18 | 2018-04-18 | A single pile vertical cyclic loading test device and method for simulating high-speed rail load |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810349983.8A CN108487335B (en) | 2018-04-18 | 2018-04-18 | A single pile vertical cyclic loading test device and method for simulating high-speed rail load |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108487335A CN108487335A (en) | 2018-09-04 |
CN108487335B true CN108487335B (en) | 2020-11-27 |
Family
ID=63313757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810349983.8A Active CN108487335B (en) | 2018-04-18 | 2018-04-18 | A single pile vertical cyclic loading test device and method for simulating high-speed rail load |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108487335B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109490111B (en) * | 2018-10-16 | 2021-02-02 | 河海大学 | Two-dimensional pile-soil interaction test system and method based on PIV technology |
CN109142040B (en) * | 2018-10-31 | 2024-04-30 | 西安建筑科技大学 | Remote control's sudden load test device |
CN109706983B (en) * | 2019-01-30 | 2020-12-04 | 中原工学院 | Test device and test method for vertical bearing characteristics of single pile under unloading condition |
CN110629807A (en) * | 2019-09-02 | 2019-12-31 | 江苏省送变电有限公司 | A test device and method for the bearing performance of bored piles in water-bearing soil |
CN110629812B (en) * | 2019-10-25 | 2024-08-30 | 中铁第四勘察设计院集团有限公司 | Loading test device and method for vertical dynamic and static loads of single pile |
CN110777858B (en) * | 2019-11-20 | 2025-01-14 | 厦门安捷建筑工程有限公司 | A pile-soil load regulator for composite pile foundation |
CN110984248B (en) * | 2019-12-10 | 2020-12-04 | 云南大学 | Vibration pile sinking test system |
CN111254995B (en) * | 2020-02-21 | 2021-10-26 | 中国矿业大学 | Pile foundation nondestructive real-time detection system and method based on potential signals |
CN113237773B (en) * | 2021-05-25 | 2022-08-02 | 聊城大学 | A mechanical test device and method for simulating the change of pile end resistance and neutral point |
CN113884320A (en) * | 2021-09-16 | 2022-01-04 | 中铁西北科学研究院有限公司 | Device and method for simulating train load power test |
CN115032009B (en) * | 2022-06-13 | 2023-07-18 | 浙江大学 | High-gravity experimental cabin high-speed railway pile foundation vertical cycle load simulation device and method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002286625A (en) * | 2001-03-28 | 2002-10-03 | Nippon Steel Corp | Construction / loading test method and device on model sand ground, and ground preparation method |
CN101532930B (en) * | 2008-03-14 | 2011-11-16 | 同济大学 | Pile model power-cycle test system |
CN202247966U (en) * | 2011-07-25 | 2012-05-30 | 余闯 | Model test device for simulating pile-supported embankment under complex load condition |
CN105178366A (en) * | 2015-06-12 | 2015-12-23 | 同济大学 | Model test device for vertical long-time settling character test of pile foundation and application of model test device |
CN106013270A (en) * | 2016-06-23 | 2016-10-12 | 同济大学 | Combined load loading device for pile foundation in field testing |
CN107313470B (en) * | 2017-06-16 | 2019-03-29 | 同济大学 | The experimental rig that the preconsolidation simulation Piled-box foundaton Long-term Cyclic Loading that pressurizes acts on |
-
2018
- 2018-04-18 CN CN201810349983.8A patent/CN108487335B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108487335A (en) | 2018-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108487335B (en) | A single pile vertical cyclic loading test device and method for simulating high-speed rail load | |
CN105181498B (en) | Simple instrument and method for stress testing in soil under cyclic loading | |
CN111879536A (en) | Test device and method for simulating operation vibration of subway tunnel train | |
CN103234830B (en) | Anchoring property experiment platform of anchor rod | |
CN103335747B (en) | Prestress wire stretching force intelligent detecting method | |
CN108982264B (en) | P-y curve measuring device based on soil body shear band development | |
CN108444816B (en) | Rock mass structural plane cyclic shear tester and test method | |
CN105696637A (en) | Bucket foundation lateral motional impedance test measurement device and method taking scouring influences into consideration | |
CN109098161B (en) | Device and method for testing shear wave velocity of layered rolling roadbed in all directions | |
CN101520440A (en) | Testing method for consolidation degree of soft soil foundation | |
CN102865952A (en) | Nondestructive testing method for working stress of concrete | |
CN108344852A (en) | A kind of k0Under the conditions of no-Co-alloy steel anisotropy shear wave velocity and relative density joint test experimental rig and method | |
CN106284437A (en) | A kind of bucket base vertically initial impedance,motional assay device and test method | |
CN114034554B (en) | Model device and method for real-time monitoring of soil multiphysics and stiffness state | |
CN103510503A (en) | Method for monitoring rammed point soil stabilization state vibration in real time | |
CN109100423A (en) | Damage of rock test experimental bed under a kind of ultrasonic activation | |
CN103900834B (en) | The large parts fatigue test method of track vehicle body structure and device | |
CN209802887U (en) | Test device for researching influence of blasting on strength of sprayed concrete-surrounding rock interface | |
US8155919B2 (en) | Construction modulus testing apparatus and method | |
CN106759220B (en) | The method of coefficient of static earth pressure is quickly measured using static cone penetration resistance | |
CN203323985U (en) | A test device for simulating tunnel dynamic response under tidal surge | |
CN209741944U (en) | Improved self-balancing pile measuring equipment | |
CN110779800A (en) | Method and device for predicting pullout resistance of compacted grouting soil nail and device application method | |
CN108487333B (en) | A cyclic shear test device and method for the contact surface of a pipe pile and a soil plug | |
CN106525596A (en) | Indoor testing device for reaction coefficients of lateral foundation bed under different stress paths |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |