CN108486567B - 一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法 - Google Patents

一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法 Download PDF

Info

Publication number
CN108486567B
CN108486567B CN201810288217.5A CN201810288217A CN108486567B CN 108486567 B CN108486567 B CN 108486567B CN 201810288217 A CN201810288217 A CN 201810288217A CN 108486567 B CN108486567 B CN 108486567B
Authority
CN
China
Prior art keywords
nano
turbine blade
blade tip
resistant coating
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810288217.5A
Other languages
English (en)
Other versions
CN108486567A (zh
Inventor
王德
谢玉江
王文琴
王明生
陈新贵
迟长泰
陆德平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Applied Physics of Jiangxi Academy of Sciences
Original Assignee
Institute of Applied Physics of Jiangxi Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Applied Physics of Jiangxi Academy of Sciences filed Critical Institute of Applied Physics of Jiangxi Academy of Sciences
Priority to CN201810288217.5A priority Critical patent/CN108486567B/zh
Publication of CN108486567A publication Critical patent/CN108486567A/zh
Application granted granted Critical
Publication of CN108486567B publication Critical patent/CN108486567B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法,所述方法以单晶高温合金涡轮叶片作为基材,以掺杂纳米陶瓷颗粒增强的抗氧化合金复合材料作为涂层材料,采用高能微弧火花沉积工艺制备与基材组织保持定向外延生长的纳米陶瓷颗粒增强耐磨涂层。本发明借助高能微弧火花沉积过程形成的高温度梯度、高冷却速度及接近一维单向快速凝固条件,使纳米陶瓷颗粒均匀分布于涂层中同时保持涂层组织的定向外延生长,获得良好的高温耐磨性,同时因极高的能量密度,涂层与单晶涡轮叶片界面处的热影响区宽度极窄,避免单晶基体的组织变化及热裂纹的产生。

Description

一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法
技术领域
本发明涉及一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法,属金属表面涂层制备技术领域。
背景技术
为了提高航空发动机工作效率、降低油耗与成本,在高速旋转的转子叶片与静子部件之间建立封严涂层体系成为至关重要的一环。封严涂层体系一般由两个部分组成,即涂覆于静子部件上的可磨耗封严涂层和涂覆于压气机与涡轮叶片等转子部件上的耐磨涂层。随着航空发动机性能的逐步提升,进口温度越来越高,单晶高温合金涡轮叶片的使用量也日益增多,叶片叶尖承受很高的工作应力与工作温度且变化频繁、剧烈,同时存在氧化、腐蚀等问题,而与之对磨的ZrO2基、MCrAlY基可磨耗涂层硬度又较高,发动机工作过程中往往发生叶片叶尖的磨短或叶片材料与可磨耗涂层材料的相互转移,影响发动机的使用性能。这些问题使得叶片叶尖的高温耐磨涂层的需求越来越迫切。
叶尖耐磨涂层一般采用金属基陶瓷复合材料,合金基体作为粘结相并提供抗氧化性和耐腐蚀性,陶瓷颗粒则提供高硬度和高耐磨性。对于单晶高温合金这类具有强烈组织取向的材料而言,枝晶的<001>取向平行于主应力方向,该方向的涂层必须保持与基体的定向外延生长才能避免因热应力不匹配造成的热疲劳和热机械疲劳性能的降低。目前,对于制备单晶涡轮叶片在<001>方向上的耐磨涂层主要是激光熔覆技术,然而该技术由于激光熔覆层厚度尺度较大,熔覆层中会出现柱状晶向等轴晶转变,而陶瓷颗粒则起到了促进这种转化进行的作用。高能微弧火花沉积过程的沉积斑厚度范围一般小于60μm,温度梯度107-109K/m,冷却速度105-106K/s,能够保证沉积层全厚度范围内的定向柱晶生长,而纳米陶瓷颗粒则因为超快的凝固前沿速度而被“包裹”进枝晶中,形成均匀分布的纳米陶瓷颗粒增强的具有定向外延生长特征的耐磨涂层。
发明内容
本发明的目的是,为了解决单晶高温合金涡轮叶片叶尖的耐磨涂层制备难题,提出一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法。
实现本发明的技术方案是,一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法,所述方法以单晶高温合金涡轮叶片作为基材,以掺杂纳米陶瓷颗粒增强的抗氧化合金复合材料作为涂层材料,采用高能微弧火花沉积工艺制备与基材组织保持定向外延生长的纳米陶瓷颗粒增强耐磨涂层;具体步骤如下:
(1)制备纳米陶瓷颗粒增强的耐磨涂层复合材料电极;
(2)采用高能微弧火花沉积设备在单晶高温合金涡轮叶片表面制备纳米陶瓷颗粒增强的耐磨涂层。
所述耐磨涂层复合材料电极制备步骤如下:
(1)将纳米级陶瓷颗粒以一定的比例加入到抗氧化合金粉末中,采用行星球磨机对混合粉末进行高能球磨,使纳米陶瓷颗粒与抗氧化合金均匀混合;
(2)将混合后的粉末经过热等静压制备成致密性良好的复合材料合金块体;
(3)在复合材料块体中采用线切割制备一定直径的棒料作为电极。
所述纳米陶瓷颗粒增强的耐磨涂层制备步骤如下:
(1)对单晶高温合金涡轮叶片叶尖表面进行打磨、丙酮或酒精清洗后作为基材接入负极,将纳米陶瓷颗粒增强复合材料电极接入正极;
(2)设置相应的工艺参数后,可在火花放电的作用下将纳米陶瓷颗粒增强的复合材料熔化后喷射到单晶高温合金涡轮叶片叶尖表面形成沉积斑,快速凝固后形成具有冶金结合的涂层,其组织与单晶高温合金基材保持定向外延生长,纳米陶瓷颗粒在涂层中均匀分布。
所述高能微弧火花沉积时工艺参数为电压40-120V,脉冲频率1-1000Hz,电容70-420μf,电极与基材相对移动速度0.5-6mm/s,电极与基材之间保持30°-80°的倾斜角度。
所述纳米级陶瓷颗粒的粒径范围在30nm-100nm,陶瓷颗粒的重量比例为0.5%-30%,陶瓷颗粒为氧化物、氮化物或碳化物高硬度材料。
所述行星球磨参数为转速100-600r/min,球磨时间为1-5小时。
所述合金块体致密度为80%-99%,电极棒材直径为2-6mm。
实现所述方法的装置包括行星球磨机、热等静压设备、线切割机、打磨机和高能微弧火花沉积设备。
所述行星球磨机对混合合金粉末进行高能球磨;球磨好的混合合金粉末送热等静压设备进行高温热压成合金块体;合金块体经线切割机切割成所需要的电极;所述打磨机对需要处理的涡轮机叶片叶尖进行打磨清洗;以叶尖为负极,电极为正极,在高能微弧火花沉积设备上对叶尖进行火花沉积,在涡轮叶片叶尖表面形成纳米陶瓷颗粒增强的耐磨涂层。
本发明的有益效果是,本发明由于采用高能微弧火花沉积工艺,其超高温度梯度和超快冷却速度,使得枝晶能够在整个断面上保持定向外延生长,而不会出现激光熔覆时产生的柱状晶向等轴晶转变的现象。由于枝晶凝固前沿速度很快,能够将纳米陶瓷颗粒“包裹”在枝晶内,从而使纳米陶瓷颗粒均匀分布于涂层内而不会出现“偏聚”现象。本发明由于纳米陶瓷颗粒的加入,能够使抗氧化合金在保持耐高温氧化腐蚀的同时显著提高涂层的高温硬度而提高耐磨性。同时,微弧火花沉积所形成的微纳米枝晶组织也能进一步提高涂层的使用性能。
附图说明
图1为本发明装置及工艺流程图;
图2为本发明实施例1制备耐磨涂层的扫描电镜图;
图2(a)为纳米Y2O3颗粒增强的NiCoCrAlY耐磨封严涂层的低倍组织图;
图2(b)为纳米Y2O3颗粒增强的NiCoCrAlY耐磨封严涂层内部微观组织图;
图2(c)为纳米Y2O3颗粒增强的NiCoCrAlY耐磨封严涂层局部放大组织图;
图3为本发明实施例1制备耐磨涂层的扫描电镜图;
图3(a)为纳米TaC颗粒增强的NiCoCrAlTaY耐磨封严涂层低倍组织图;
图3(b)为纳米TaC颗粒增强的NiCoCrAlTaY耐磨封严涂层微观组织图;
图3(c)为纳米TaC颗粒增强的NiCoCrAlTaY耐磨封严涂层低倍组织图。
具体实施方式
实施例1
将标称粒径为50nm的纳米Y2O3粉末按重量比3%加入到NiCoCrAlY抗氧化粉末中,在行星球磨机中以400r/min的转速球磨4小时后,放入热等静压设备中,加热温度1250 oC,压力100MPa,保压1小时后形成致密度为90%的合金复合材料块体,然后采用线切割制备直径4mm的合金电极棒料。采用高能微弧火花沉积设备,将DD26单晶高温合金涡轮叶片,在叶尖<001>晶面上用1000#砂纸打磨,然后采用丙酮清洗干燥后作为基材接入负极,纳米Y2O3颗粒增强的NiCoCrAlY合金棒材接入正极,在电压100V,电容420μf,脉冲频率300Hz,倾斜角度60°,相对移动速度3mm/s的工艺参数下,制备纳米Y2O3颗粒增强的NiCoCrAlY耐磨封严涂层,涂层内部组织在整个断面上保持定向外延生长,纳米Y2O3颗粒均匀分布与涂层内。其扫描电镜图如图2所示。图2(a)为纳米Y2O3颗粒增强的NiCoCrAlY耐磨封严涂层的低倍组织图,涂层致密。图2(b)为纳米Y2O3颗粒增强的NiCoCrAlY耐磨封严涂层内部微观组织图,可见定向外延生长的枝晶。图2(c)为纳米Y2O3颗粒增强的NiCoCrAlY耐磨封严涂层局部放大组织图,可见纳米级Y2O3颗粒均匀分布在枝晶轴与枝晶间。
实施例2
将标称粒径为100nm的纳米TaC粉末按重量比4%加入到NiCoCrAlTaY抗氧化粉末中,在行星球磨机中以500r/min的转速球磨2小时后,放入热等静压设备中,加热温度1300oC,压力150MPa,保压1.5小时后形成致密度为95%的合金复合材料块体,然后采用线切割制备直径6mm的合金电极棒料。采用高能微弧火花沉积设备,将PWA1484涡轮叶片,在叶尖<001>晶面上用1500#砂纸打磨,然后采用丙酮清洗干燥后作为基材接入负极,纳米TaC颗粒增强的NiCoCrAlTaY合金棒材接入正极,在电压80V,电容350μf,脉冲频率400Hz,倾斜角度60°,相对移动速度4mm/s的工艺参数下,制备纳米TaC颗粒增强的NiCoCrAlTaY耐磨封严涂层,涂层内部组织在整个断面上保持定向外延生长,纳米TaC颗粒均匀分布于涂层内。其扫描电镜图如图3所示。图3(a)为纳米TaC颗粒增强的NiCoCrAlTaY耐磨封严涂层低倍组织图,可见涂层致密。图3(b)为纳米TaC颗粒增强的NiCoCrAlTaY耐磨封严涂层微观组织图,可见枝晶定向外延生长。图3(c)为纳米TaC颗粒增强的NiCoCrAlTaY耐磨封严涂层低倍组织图,可见纳米级TaC颗粒均匀分布于涂层内。

Claims (7)

1.一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法,其特征在于,所述方法以单晶高温合金涡轮叶片作为基材,以掺杂纳米陶瓷颗粒增强的抗氧化合金复合材料作为涂层材料,采用高能微弧火花沉积工艺制备与基材组织保持定向外延生长的纳米陶瓷颗粒增强耐磨涂层;具体步骤如下:
(1)制备纳米陶瓷颗粒增强的耐磨涂层复合材料电极:
a.将纳米级陶瓷颗粒以一定的比例加入到抗氧化合金粉末中,采用行星球磨机对混合粉末进行高能球磨,使纳米陶瓷颗粒与抗氧化合金均匀混合;
b.将混合后的粉末经过热等静压制备成致密性良好的复合材料合金块体;
c.在复合材料块体中采用线切割制备一定直径的棒料作为电极;
(2)采用高能微弧火花沉积设备在单晶高温合金涡轮叶片表面制备纳米陶瓷颗粒增强的耐磨涂层:
a.对单晶高温合金涡轮叶片叶尖表面进行打磨、丙酮或酒精清洗后作为基材接入负极,将纳米陶瓷颗粒增强复合材料电极接入正极;
b.设置相应的工艺参数后,可在火花放电的作用下将纳米陶瓷颗粒增强的复合材料熔化后喷射到单晶高温合金涡轮叶片叶尖表面形成沉积斑,快速凝固后形成具有冶金结合的涂层,其组织与单晶高温合金基材保持定向外延生长,纳米陶瓷颗粒在涂层中均匀分布。
2.根据权利要求1所述一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法,其特征在于,所述高能微弧火花沉积时工艺参数为电压40-120V,脉冲频率1-1000Hz,电容70-420μf,电极与基材相对移动速度0.5-6mm/s,电极与基材之间保持30°-80°的倾斜角度。
3.根据权利要求1所述一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法,其特征在于,所述纳米级陶瓷颗粒的粒径范围在30nm-100nm,陶瓷颗粒的重量比例为0.5%-30%,陶瓷颗粒为氧化物、氮化物或碳化物高硬度材料。
4.根据权利要求1所述一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法,其特征在于,所述行星球磨参数为转速100-600r/min,球磨时间为1-5小时。
5.根据权利要求1所述一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法,其特征在于,所述热等静压参数为加热温度1100-1400℃,压力10-100MPa,保压时间1-3小时。
6.根据权利要求1所述一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法,其特征在于,所述合金块体致密度为80%-99%,电极棒材直径为2-6mm。
7.根据权利要求1所述的一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法,其特征在于,实现所述方法的装置包括行星球磨机、热等静压设备、线切割机、打磨机和高能微弧火花沉积设备;所述行星球磨机对混合合金粉末进行高能球磨;球磨好的混合合金粉末送热等静压设备进行高温热压成合金块体;合金块体经线切割机切割成所需要的电极;所述打磨机对需要处理的涡轮机叶片叶尖进行打磨清洗;以叶尖为负极,电极为正极,在高能微弧火花沉积设备上对叶尖进行火花沉积,在涡轮叶片叶尖表面形成纳米陶瓷颗粒增强的耐磨涂层。
CN201810288217.5A 2018-04-03 2018-04-03 一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法 Active CN108486567B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810288217.5A CN108486567B (zh) 2018-04-03 2018-04-03 一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810288217.5A CN108486567B (zh) 2018-04-03 2018-04-03 一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法

Publications (2)

Publication Number Publication Date
CN108486567A CN108486567A (zh) 2018-09-04
CN108486567B true CN108486567B (zh) 2020-01-03

Family

ID=63318195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810288217.5A Active CN108486567B (zh) 2018-04-03 2018-04-03 一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法

Country Status (1)

Country Link
CN (1) CN108486567B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109435124A (zh) * 2018-10-30 2019-03-08 重庆东星炭素材料有限公司 一种粉体材料成型方法
CN111058039B (zh) * 2020-01-13 2021-09-28 南昌航空大学 一种基于火花放电的陶瓷颗粒种植工艺
CN111636066A (zh) * 2020-07-06 2020-09-08 浙江翰德圣智能再制造技术有限公司 一种净化结合梯度的高Al+Ti高温合金的热障涂层制备方法
CN112126883B (zh) * 2020-08-20 2021-11-19 西安交通大学 一种尖角朝外的超平整叶尖切削涂层及其制备方法
CN112981304A (zh) * 2021-02-24 2021-06-18 哈尔滨汽轮机厂有限责任公司 一种热喷涂封严方法
CN113623022A (zh) * 2021-07-30 2021-11-09 中国航发沈阳发动机研究所 一种具有易磨涂层的涡轮外环

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883872A (zh) * 2005-06-22 2006-12-27 中国科学院金属研究所 燃气轮机高压涡轮叶片叶尖裂纹修复工艺方法
CN101126143A (zh) * 2006-08-16 2008-02-20 中国科学院金属研究所 一种定向凝固柱晶或单晶镍基高温合金修复或涂层方法
CN102039384A (zh) * 2009-10-23 2011-05-04 宝山钢铁股份有限公司 高耐磨结晶器或结晶辊表面复合涂层及其制造方法
CN103184451A (zh) * 2013-03-28 2013-07-03 常州大学 一种抗氧化导电尖晶石涂层的制备工艺
CN107716933A (zh) * 2017-10-23 2018-02-23 江西瑞曼增材科技有限公司 一种单晶高温合金耐磨抗氧化涂层的界面净化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474413A1 (de) * 2011-01-06 2012-07-11 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883872A (zh) * 2005-06-22 2006-12-27 中国科学院金属研究所 燃气轮机高压涡轮叶片叶尖裂纹修复工艺方法
CN101126143A (zh) * 2006-08-16 2008-02-20 中国科学院金属研究所 一种定向凝固柱晶或单晶镍基高温合金修复或涂层方法
CN102039384A (zh) * 2009-10-23 2011-05-04 宝山钢铁股份有限公司 高耐磨结晶器或结晶辊表面复合涂层及其制造方法
CN103184451A (zh) * 2013-03-28 2013-07-03 常州大学 一种抗氧化导电尖晶石涂层的制备工艺
CN107716933A (zh) * 2017-10-23 2018-02-23 江西瑞曼增材科技有限公司 一种单晶高温合金耐磨抗氧化涂层的界面净化方法

Also Published As

Publication number Publication date
CN108486567A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN108486567B (zh) 一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法
US7378132B2 (en) Method for applying environmental-resistant MCrAlY coatings on gas turbine components
US8586172B2 (en) Protective coating with high adhesion and articles made therewith
CN111254379B (zh) 高熵陶瓷涂层的制备方法
US5628814A (en) Coated nickel-base superalloy article and powder and method useful in its preparation
US20060222776A1 (en) Environment-resistant platinum aluminide coatings, and methods of applying the same onto turbine components
EP1634976A1 (en) Method for applying abrasive and environment-resistant coatings onto turbine components
CN101613860B (zh) 燃气轮机钛合金叶片激光硬面涂层工艺方法
CN105603352B (zh) Al2O3/YAG非晶/共晶复合陶瓷涂层及其制备方法
KR20090021086A (ko) 초합금의 일반적인 선삭가공용의 코팅된 절삭공구 인서트
CN112708883B (zh) 超硬碳化硼陶瓷增强铁基合金复合耐磨涂层的制备方法
Cao et al. Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: Relation of densification, microstructures and performance
Wang et al. Effect of operating voltage on microstructure and microhardness of NiCoCrAlYTa-Y2O3 composite coatings on single crystal superalloy produced by electrospark deposition
Ge et al. Electrochemical deep grinding of cast nickel-base superalloys
CN108504886A (zh) 一种TiC-C镍基合金自润滑复合材料的制备方法
CN114737184B (zh) 一种高硬度的纳米TiC颗粒增强磷酸反应槽搅拌桨叶片高熵合金复合涂层及其制备方法
CN107716933B (zh) 一种单晶高温合金耐磨抗氧化涂层的界面净化方法
Duan et al. Microstructure and mechanical properties of functional gradient materials of high entropy alloys prepared by direct energy deposition
Yedida et al. Mechanical and microstructural characterization of YSZ/Al2O3/CeO2 plasma sprayed coatings
He et al. Microstructure and wear behaviors of a WC10%-Ni60AA cermet coating synthesized by laser-directed energy deposition
CN110835756A (zh) 一种单晶高温合金基体上外延生长MCrAlY单晶涂层的制备方法
CN112226766A (zh) 一种高熵合金粉末激光熔覆层的制备方法
CN112501553A (zh) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN110468304A (zh) 一种镍基合金及其制备方法
CN100365153C (zh) 原位自生增强Ni3Al复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 330096 No. 7777 Changdong Avenue, Nanchang City, Jiangxi Province

Applicant after: Inst. of Applied Physics, Jiangxi Prov. Academy of Sciences

Address before: 330046 No. 382 Shangfang Road, Nanchang City, Jiangxi Province

Applicant before: Inst. of Applied Physics, Jiangxi Prov. Academy of Sciences

GR01 Patent grant
GR01 Patent grant