CN108470625A - 微孔导电片式电极及其加工工艺 - Google Patents

微孔导电片式电极及其加工工艺 Download PDF

Info

Publication number
CN108470625A
CN108470625A CN201810147137.8A CN201810147137A CN108470625A CN 108470625 A CN108470625 A CN 108470625A CN 201810147137 A CN201810147137 A CN 201810147137A CN 108470625 A CN108470625 A CN 108470625A
Authority
CN
China
Prior art keywords
graphene
metal powder
powder material
electrodes
micropore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810147137.8A
Other languages
English (en)
Inventor
孔星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGDONG MENLO ELECTRIC POWER Co Ltd
Original Assignee
GUANGDONG MENLO ELECTRIC POWER Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUANGDONG MENLO ELECTRIC POWER Co Ltd filed Critical GUANGDONG MENLO ELECTRIC POWER Co Ltd
Publication of CN108470625A publication Critical patent/CN108470625A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种微孔导电片式电极及其加工工艺,包括石墨烯电极本体,所述石墨烯电极本体由石墨烯粉料和金属粉料共同挤压而成,石墨烯电极本体呈板状或片状,石墨烯电极本体具有若干微孔,微孔与石墨烯电极本体表面连通。此款微孔导电片式电极由石墨烯粉料和金属粉料共同挤压结合,由于金属具有较好的延展性,并且,通过添加金属粉料、并在金属粉料被挤压变形后,与部分石墨烯粉料压合在一起,形成骨架,使得石墨烯电极上多个区域角度之间相互牵连,具有较强的咬合力,可以定型于某一形状,从而可以作为电极使用。

Description

微孔导电片式电极及其加工工艺
技术领域
本发明涉及电子材料,特别是一种微孔导电片式电极及其加工工艺。
背景技术
超级电容器又叫电化学电容器、黄金电容、法拉第电容;包括双电层电容器和赝电容器,其通过极化电解质来储能。它是储能过程可逆的一种电化学元件,可以反复充放电数十万次。
超级电容器的核心元件是电极,电极的制造工艺目前分为干电极与湿电极两种技术。干电极技术是仅通过干混活性碳粉和粘合剂加工成电极。湿电极技术在制作电极的过程中,除了活性碳粉和粘合剂还需加入液态的溶剂。由于液态溶剂会影响超级电容器的工作性能,因此还需使用烘箱对其进行干化处理,将溶剂从电极中去除。这意味和干电极技术相比,湿电极技术工序更长,而且有额外的生产成本。另外,烘干处理很难将溶剂彻底去除。在超级电容器工作过程中,溶剂杂质会发生反应产生额外物质,影响电极和电解质的性能。而反应产生的气体更会加速超级电容器的老化。因此,采用湿电极技术的超级电容器相对寿命较短,可靠性低,稳定性差。当日,目前的干电极由于存在粘合剂,粘合剂将会堵塞电极中一定数量的空隙,影响电极的导电导热效果,因此,也会使得超级电容的性能减弱。
发明内容
本发明的一目的在于提供一种结构简单、合理,导电导热性能好、表面积大、成本低的微孔导电片式电极,以克服现有技术的不足。
本发明的一目的是这样实现的:
微孔导电片式电极,包括石墨烯电极本体,其特征在于:所述石墨烯电极本体由石墨烯粉料和金属粉料共同挤压而成,石墨烯电极本体呈板状或片状,石墨烯电极本体具有若干微孔,微孔与石墨烯电极本体表面连通。
本发明的一目的还可以采用以下技术措施解决:
作为更具体的一种方案,所述金属粉料为带磁性的金属粉料。
作为进一步的方案,所述金属粉料为锡粉、铝粉、铜粉中的至少其中一种。
所述金属粉料所占重量比例为0.1%-30%。
所述石墨烯电极本体厚度H为0.1mm-10mm。
本发明的另一目的在于提供一种加工容易、加工成本低的微孔导电片式电极的加工工艺,以克服现有技术的不足。
本发明的另一目的是这样实现的:
一种微孔导电片式电极的加工工艺,其特征在于:将石墨烯粉料和金属粉料以一定比例均匀混合、并放进模腔内,然后通过给模腔内施加一定的压力,使得石墨烯粉料与金属粉料挤压在一起,形成具有多孔结构的石墨烯电极本体。
金属粉料所占重量比例为0.1%-30%。
金属粉料为带磁性的金属粉料,或者,金属粉料为锡粉、铝粉、铜粉中的至少其中一种。
所述压力为10吨至500吨。
所述模腔俯视呈方形,其底部和外周封闭,顶部敞开;将由石墨烯粉料和金属粉料构成的混合料放入模腔后,从模腔顶部放入压板,然后通过压板对所述混合料进行施压,使其形成板状或片状的石墨烯电极本体。
本发明的有益效果如下:
(1)此款微孔导电片式电极由石墨烯粉料和金属粉料共同挤压结合,由于金属具有较好的延展性,并且,通过添加金属粉料、并在金属粉料被挤压变形后,与部分石墨烯粉料压合在一起,形成骨架,使得石墨烯电极上多个区域角度之间相互牵连,具有较强的咬合力,可以定型于某一形状,从而可以作为电极使用;
(2)此款微孔导电片式电极主要应用于超级电容和电池中,作为正极使用,也可以与集电极结合在一起,如需与引脚连接,可以在石墨烯电极本体表面溅射金属层;
(3)此款微孔导电片式电极还可以直接充当导热体使用,如果骨架具有磁性,其还可以作为磁材使用;
(4)此款微孔导电片式电极的加工工艺无需采用粘合剂,并且,石墨烯粉体之间还具有一定的微孔(孔隙),避免堵塞微孔,也不会在其应用在超级电容时产生有害气体,更不会影响其散热和导电性能,所以,制造出来的石墨烯电极导电导热性能好、表面积大、安全可靠;使其作为超级电容电极时,电解液中正离子可以从微孔进出。
附图说明
图1为本发明一实施例侧视结构示意图。
图2为图1中A处放大结构示意图。
图3为本发明加工过程结构示意图。
图4为本发明俯视结构示意图。
图5为本发明用作导热材料时结构示意图。
具体实施方式
下面结合附图及实施例对本发明作进一步描述。
参见图1、图2、和图4所示,微孔导电片式电极,包括石墨烯电极本体10,所述石墨烯电极本体10由石墨烯粉料1和金属粉料2共同挤压而成,石墨烯电极本体10呈板状或片状,石墨烯电极本体10具有若干微孔3,微孔3与石墨烯电极本体10表面连通。
所述金属粉料2为锡粉(也可以是铝粉、铜粉等,也可以是带磁性的金属粉料)。
所述金属粉料2所占重量比例为0.1%-30%。所述石墨烯电极本体10厚度H为0.1mm-10mm。
结合图3所示,一种微孔导电片式电极的加工工艺,将石墨烯粉料1和金属粉料2(金属粉料2所占重量比例为0.1%-30%)以一定比例均匀混合、并放进模腔41内,然后通过给模腔41内施加一定的压力,使得石墨烯粉料1与金属粉料2挤压在一起,形成具有多孔结构的石墨烯电极本体10。
所述模腔俯视呈方形(40cm*40cm),其底部和外周封闭,顶部敞开。从模腔41顶部放入压板5,然后通过压板5沿F箭头方向对混合后的石墨烯粉料1和金属粉料2进行施压(压力为10至500吨),使石墨烯粉料1和金属粉料2形成板状或片状的石墨烯电极本体10。
石墨烯粉料1和金属粉料2混合挤压后还可以作为高导热材料使用,结合图5所示,以高导热散热器为例,包括铝制散热器本体6,铝制散热器本体6上设有多条呈管道状的散热通道61,将由石墨烯粉料和铜粉混合的材料7(铜粉可以替换为其它比铝制散热器本体导热系数高的金属材料)填进散热通道61内,然后,采用10至500吨的压力对铝制散热器本体6进行挤压,上述石墨烯粉料和铜粉混合的材料7即与铝制散热器本体6共同挤压在一起,形成高导热散热器。

Claims (10)

1.微孔导电片式电极,包括石墨烯电极本体(10),其特征在于:所述石墨烯电极本体(10)由石墨烯粉料(1)和金属粉料(2)共同挤压而成,石墨烯电极本体(10)呈板状或片状,石墨烯电极本体(10)具有若干微孔(3),微孔(3)与石墨烯电极本体(10)表面连通。
2.根据权利要求1所述微孔导电片式电极,其特征在于:所述金属粉料(2)为带磁性的金属粉料。
3.根据权利要求1所述微孔导电片式电极,其特征在于:所述金属粉料(2)为锡粉、铝粉、铜粉中的至少其中一种。
4.根据权利要求1所述微孔导电片式电极,其特征在于:所述金属粉料(2)所占重量比例为0.1%-30%。
5.根据权利要求1所述微孔导电片式电极,其特征在于:所述石墨烯电极本体(10)厚度H为0.1mm-10mm。
6.一种根据权利要求1所述微孔导电片式电极的加工工艺,其特征在于:将石墨烯粉料(1)和金属粉料(2)以一定比例均匀混合、并放进模腔(41)内,然后通过给模腔(41)内施加一定的压力,使得石墨烯粉料(1)与金属粉料(2)挤压在一起,形成具有多孔结构的石墨烯电极本体(10)。
7.根据权利要求6所述微孔导电片式电极的加工工艺,其特征在于:金属粉料(2)所占重量比例为0.1%-30%。
8.根据权利要求6所述微孔导电片式电极的加工工艺,其特征在于:金属粉料(2)为带磁性的金属粉料,或者,金属粉料(2)为锡粉、铝粉、铜粉中的至少其中一种。
9.根据权利要求6所述微孔导电片式电极的加工工艺,其特征在于:所述压力为10吨至500吨。
10.根据权利要求9所述微孔导电片式电极的加工工艺,其特征在于:所述模腔(41)俯视呈方形,其底部和外周封闭,顶部敞开;将由石墨烯粉料(1)和金属粉料(2)构成的混合料放入模腔(41)后,从模腔(41)顶部放入压板(5),然后通过压板(5)对所述混合料进行施压,使其形成板状或片状的石墨烯电极本体(10)。
CN201810147137.8A 2018-01-29 2018-02-12 微孔导电片式电极及其加工工艺 Pending CN108470625A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810083926 2018-01-29
CN201810083926X 2018-01-29

Publications (1)

Publication Number Publication Date
CN108470625A true CN108470625A (zh) 2018-08-31

Family

ID=63266375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810147137.8A Pending CN108470625A (zh) 2018-01-29 2018-02-12 微孔导电片式电极及其加工工艺

Country Status (1)

Country Link
CN (1) CN108470625A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050704A (zh) * 2012-12-28 2013-04-17 清华大学深圳研究生院 一种多孔导电添加剂及其制备方法、锂离子电池
CN104200873A (zh) * 2014-09-09 2014-12-10 郑州轻工业学院 大尺寸石墨烯-金属精细颗粒复合膜及其制法与用途
CN106077608A (zh) * 2016-06-15 2016-11-09 苏州洪河金属制品有限公司 一种石墨烯负载的金属复合材料及其制备方法
CN106702195A (zh) * 2017-01-12 2017-05-24 苏州思创源博电子科技有限公司 一种石墨烯铜复合导体的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050704A (zh) * 2012-12-28 2013-04-17 清华大学深圳研究生院 一种多孔导电添加剂及其制备方法、锂离子电池
CN104200873A (zh) * 2014-09-09 2014-12-10 郑州轻工业学院 大尺寸石墨烯-金属精细颗粒复合膜及其制法与用途
CN106077608A (zh) * 2016-06-15 2016-11-09 苏州洪河金属制品有限公司 一种石墨烯负载的金属复合材料及其制备方法
CN106702195A (zh) * 2017-01-12 2017-05-24 苏州思创源博电子科技有限公司 一种石墨烯铜复合导体的制备方法

Similar Documents

Publication Publication Date Title
Zhu et al. Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes
Yang et al. A high energy density all-solid-state asymmetric supercapacitor based on MoS 2/graphene nanosheets and MnO 2/graphene hybrid electrodes
Su et al. Enhancement of the Cyclability of a Si/Graphite@ Graphene composite as anode for Lithium-ion batteries
CN109585779A (zh) 兼顾能量密度和功率密度的锂离子电池电极片及制备方法
Liang et al. High-energy flexible quasi-solid-state lithium-ion capacitors enabled by a freestanding rGO-encapsulated Fe 3 O 4 nanocube anode and a holey rGO film cathode
CN107240721A (zh) 双极性电极及锂离子电池和锂离子电池的制作方法
CN102593464A (zh) 一种集流体及其制备方法
CN104882611B (zh) 一种电化学阳极电极、包含该阳极电极的储能器件及其制备方法
CN104733696B (zh) 一种电化学储能器件及其制备方法
CN102682928A (zh) 一种介孔碳纳米片的制备方法及其作为超级电容器电极材料的应用
Xu et al. Nickel oxide/expanded graphite nanocomposite electrodes for supercapacitor application
CN107317036B (zh) 一种具有超低电阻的极片、其制备方法以及含有这种极片的锂离子电池
Subhash et al. Synergistic effect of NiS/g-C3N4 nanocomposite for high‐performance asymmetric supercapacitors
CN107958993A (zh) 一种复合导电剂分层包覆的锂离子电池正极片及其制备方法
CN112490403B (zh) 一种极耳陶瓷涂层厚度均匀的极片及其制备方法
Xu et al. Facile synthesis and electrochemical performances of binder-free flexible graphene/acetylene black sandwich film
CN102593413A (zh) 一种提高电流密度的极片制备方法
CN104795535A (zh) 电化学储能器件及其制备方法
Zeng et al. Multi-electron/ion conduction channels enabling high-performance flexible supercapacitors
CN105374574B (zh) 一种氢氧化钴/石墨烯柔性电极材料的制备方法及其应用
CN104752073A (zh) 一种锰铁氧化物/碳复合材料的制备方法
CN108231428A (zh) 一种微孔导电片式电极及其加工工艺
JP6969518B2 (ja) 固体電池用電極の製造方法
CN104319398A (zh) 一种聚合物包覆镍铝合金/硫复合电极材料的制备方法
CN108470625A (zh) 微孔导电片式电极及其加工工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180831