CN108469425A - 一种近红外光谱原理分析煤质的方法 - Google Patents

一种近红外光谱原理分析煤质的方法 Download PDF

Info

Publication number
CN108469425A
CN108469425A CN201810109420.1A CN201810109420A CN108469425A CN 108469425 A CN108469425 A CN 108469425A CN 201810109420 A CN201810109420 A CN 201810109420A CN 108469425 A CN108469425 A CN 108469425A
Authority
CN
China
Prior art keywords
infrared spectrum
coal
analysis
spectrum analysis
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810109420.1A
Other languages
English (en)
Inventor
管维新
管晔
管明皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810109420.1A priority Critical patent/CN108469425A/zh
Publication of CN108469425A publication Critical patent/CN108469425A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3196Correlating located peaks in spectrum with reference data, e.g. fingerprint data

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种基于近红外光谱原理分析煤质的创新方法,应用于持续输煤情况下定时采制煤样,进行煤质实时多成分分析,包括以下步骤:S1、人工化验;S2、近红外光谱分析;S3、求近红外光谱分析平均值;S4、求校正系数;S5、校正系数补偿。本发明方法具有近距离、短时差、频校正、勤更新的特点,该方法将输煤带自动采集的煤样进行人工取样化验,以其化验数据作为基准,然后将人工化验值、仪器分析值和校正系数值结合,计算出当前煤料准确的近红外光谱分析数据,大大减少了传统人工分析方法繁琐的操作步骤,提高了分析效率和分析结果的准确性。

Description

一种近红外光谱原理分析煤质的方法
技术领域
本发明属于物料分析技术领域,具体涉及一种基于近红外光谱原理分析煤质多成分的创新方法。
背景技术
近红外光谱仪(Near Infrared Spectrum Instrument,NIRS)是介于可见光(Vis)和中红外(MIR)之间的电磁辐射波,美国材料检测协会(ASTM)将近红外光谱区定义为780-2526nm的区域,是人们在吸收光谱中发现的第一个非可见光区。近红外光谱区与有机分子中含氢基团(O-H、N-H、C-H)振动的合频和各级倍频的吸收区一致,通过扫描样品的近红外光谱,可以得到样品中有机分子含氢基团的特征信息,而且利用近红外光谱技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,因此该技术受到越来越多人的青睐。
现有技术中的近红外光谱仪在分析煤质使用时,需要对整个煤料进行取样分析,具体的,首先要选取一定数量的物料,由于不同时段的物料成分特征,经人工化验将其数据参与校正模型的建立。由于物种成分复杂多变,需要取成百上千的标样,校正模型需不时修正优化,麻烦费事,浪费人力,耗费时间,增加费用,难以推广应用。
发明内容
本发明的目的是提供一种基于近红外光谱原理分析煤质的创新方法,解决了现有技术中煤质分析方法不易准确,要求频繁修正数学模型校正系数的技术问题。
本发明所采用的技术方案是,
一种基于近红外光谱原理分析煤质的创新方法,应用于输煤带定时采制煤样,进行煤质实时多成分分析,包括以下步骤:
S1、人工化验:
在每个运行班工作结尾时,输煤带上的煤进行自动采制煤样,进行化验,得到人工化验发热量、挥发分、灰分、水分数据,分别计为HV、HQ、HA、HM
S2、近红外光谱分析:
在运行班内对所取煤样进行全过程光谱分析,一个运行班中分为m个时间单元,对每个时间单元进行n次近红外光谱分析,得到其发热量、挥发分、灰分、水分数据,分别计为FV1、FQ1、FA1、FM1,FV2、FQ2、FA2、FM2,…,FVmn、FQmn、FAmn、FMmn
S3、求近红外光谱分析平均值:
求得运行班内红外光谱分析之发热量、挥发分、灰分、水分数据平均值,计为FV、FQ、FA、FM
S4、求校正系数:
将人工化验值与近红外光谱分析平均值求差,得到煤质校正系数,计为HFV、HFQ、HFA、HFM
S5、校正系数补偿:
在下一个运行班内,持续进行全过程近红外光谱分析,在每次的近红外光谱分析值基础上补偿上一个运行班计算的校正系数,即为当下准确的煤质近红外光谱分析数据。
进一步的,所述一个运行班为6小时,一个时间单元为6分钟。
进一步的,S2步骤中,在一个时间单元内对煤样进行180次近红外光谱分析。
本发明的有益效果是:
本发方法具备近距离、短时差、频校正、勤更新的特点,该方法将输煤带自动采集的煤样进行人工取样化验,以其化验数据作为基准,然后将人工化验值、仪器分析值和校正系数值结合,计算出当前煤料准确的近红外光谱分析数据,大大减少了传统人工分析方法繁琐的操作步骤,提高了分析效率和分析结果的准确性。
具体实施方式
下面通过具体实施方式对本发明作进一步详细叙述。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
下面结合具体实施方式对本发明进行详细说明。
一种基于近红外光谱原理分析煤质的创新方法,应用于持续输煤情况下定时采制煤样,进行煤质实时多成分分析,包括以下步骤:
S1、人工化验:
定每个运行班为6个小时,在每个运行班工作结尾时,输煤带上的煤进行自动采制煤样,进行人工化验,得到人工化验发热量、挥发分、灰分、水分数据,分别计为HV、HQ、HA、HM
S2、近红外光谱分析:
将每个运行班6小时平均分为60个时间单元,即,每个时间单元为6分钟,在单元时间6分钟内对煤样进行180次近红外光谱分析,得到其发热量、挥发分、灰分、水分数据,分别计为FV1、FQ1、FA1、FM1,FV2、FQ2、FA2、FM2,…,FV180、FQ180、FA180、FM180;具体的说,在每个单元时间内对输送带上的煤料进行采样、破碎、缩分后并进行180次近红外光谱分析;
S3、求近红外光谱分析平均值:
将运行班内的近红外光谱分析之发热量、挥发分、灰分、水分数据进行平均求得的平均值,计为FV、FQ、FA、FM
S4、求校正系数:
将人工化验值与近红外光谱分析平均值求差,得到煤质校正系数,计为HFV、HFQ、HFA、HFM
S5、校正系数补偿:
在下一个运行班内,持续进行全过程近红外光谱分析,在每次的近红外光谱分析值基础上补偿上一个运行班计算的校正系数,即为当下准确的煤质近红外光谱分析数据。
在本实施例中,一个运行班为6小时,一个时间单元为6分钟,一天四班次,及时更迭煤料的校正系数,以适应煤料成分的多变,并为精细配料及时提供科学依据。需要说明的是,在其他实施例中,也可以根据实际情况调整运行班次时间、时间单元长度和近红外光谱分析频率。
本发明方法可以拓展至其他物料,如粮食、药材等的近红外光谱分析原理分析煤质的方法中去。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不仅用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (3)

1.一种近红外光谱原理分析煤质的方法,应用于输煤带定时采制煤样,进行煤质实时多成分分析,其特征在于:
包括以下步骤:
S1、人工化验:
在每个运行班工作结尾时,输煤带上的煤进行自动采制煤样,进行化验,得到人工化验发热量、挥发分、灰分、水分数据,分别计为HV、HQ、HA、HM
S2、近红外光谱分析:
在运行班内对所取煤样进行全过程光谱分析,一个运行班中分为m个时间单元,对每个时间单元进行n次近红外光谱分析,得到其发热量、挥发分、灰分、水分数据,分别计为FV1、FQ1、FA1、FM1 ,FV2、FQ2、FA2、FM2,…,FVmn、FQmn、FAmn、FMmn
S3、求近红外光谱分析平均值:
求得运行班内红外光谱分析之发热量、挥发分、灰分、水分数据平均值,计为FV、FQ、FA、FM
S4、求校正系数:
将人工化验值与近红外光谱分析平均值求差,得到煤质校正系数,计为HFV、HFQ、HFA、HFM
S5、校正系数补偿:
在下一个运行班内,持续进行全过程近红外光谱分析,在每次的近红外光谱分析值基础上补偿上一个运行班计算的校正系数,即为当下准确的煤质近红外光谱分析数据。
2.根据权利要求1所述的方法,其特征在于,所述一个运行班为6小时,一个时间单元为6分钟。
3.根据权利要求2所述的方法,其特征在于,S2步骤中,在一个时间单元内对煤样进行180次近红外光谱分析。
CN201810109420.1A 2018-02-05 2018-02-05 一种近红外光谱原理分析煤质的方法 Pending CN108469425A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810109420.1A CN108469425A (zh) 2018-02-05 2018-02-05 一种近红外光谱原理分析煤质的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810109420.1A CN108469425A (zh) 2018-02-05 2018-02-05 一种近红外光谱原理分析煤质的方法

Publications (1)

Publication Number Publication Date
CN108469425A true CN108469425A (zh) 2018-08-31

Family

ID=63266066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810109420.1A Pending CN108469425A (zh) 2018-02-05 2018-02-05 一种近红外光谱原理分析煤质的方法

Country Status (1)

Country Link
CN (1) CN108469425A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540828A (zh) * 2018-10-30 2019-03-29 沈阳环境科学研究院 煤质分析的红外结构参数法
CN112710638A (zh) * 2020-12-19 2021-04-27 华中科技大学 基于光致发光光谱全面解析的煤质快速检测方法
CN112949169A (zh) * 2021-02-04 2021-06-11 长春大学 一种基于光谱分析的煤样化验值预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701910A (zh) * 2009-11-30 2010-05-05 吉林燃料乙醇有限责任公司 一种检测发酵物料的锤度、挥发酸和酒度的方法
CN104390928A (zh) * 2014-10-24 2015-03-04 中华人民共和国黄埔出入境检验检疫局 一种掺杂掺假煤炭的近红外光谱识别方法
CN104568821A (zh) * 2014-10-24 2015-04-29 中华人民共和国黄埔出入境检验检疫局 一种同时快速检测煤炭内多个品质项目的近红外方法
CN105572071A (zh) * 2016-03-14 2016-05-11 华润三九医药股份有限公司 利用近红外光谱法快速检测感冒灵颗粒的提取液的方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701910A (zh) * 2009-11-30 2010-05-05 吉林燃料乙醇有限责任公司 一种检测发酵物料的锤度、挥发酸和酒度的方法
CN104390928A (zh) * 2014-10-24 2015-03-04 中华人民共和国黄埔出入境检验检疫局 一种掺杂掺假煤炭的近红外光谱识别方法
CN104568821A (zh) * 2014-10-24 2015-04-29 中华人民共和国黄埔出入境检验检疫局 一种同时快速检测煤炭内多个品质项目的近红外方法
CN105572071A (zh) * 2016-03-14 2016-05-11 华润三九医药股份有限公司 利用近红外光谱法快速检测感冒灵颗粒的提取液的方法及应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540828A (zh) * 2018-10-30 2019-03-29 沈阳环境科学研究院 煤质分析的红外结构参数法
CN109540828B (zh) * 2018-10-30 2021-06-29 沈阳环境科学研究院 煤质分析的红外结构参数法
CN112710638A (zh) * 2020-12-19 2021-04-27 华中科技大学 基于光致发光光谱全面解析的煤质快速检测方法
CN112949169A (zh) * 2021-02-04 2021-06-11 长春大学 一种基于光谱分析的煤样化验值预测方法
CN112949169B (zh) * 2021-02-04 2023-04-07 长春大学 一种基于光谱分析的煤样化验值预测方法

Similar Documents

Publication Publication Date Title
CN108469425A (zh) 一种近红外光谱原理分析煤质的方法
Huang et al. Identification of waste cooking oil and vegetable oil via Raman spectroscopy
Chen et al. Measurement of total flavone content in snow lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval PLS and genetic algorithm
Ehn et al. An instrumental comparison of mobility and mass measurements of atmospheric small ions
Casale et al. NIR and UV–vis spectroscopy, artificial nose and tongue: comparison of four fingerprinting techniques for the characterisation of Italian red wines
Ouyang et al. Real-time monitoring of process parameters in rice wine fermentation by a portable spectral analytical system combined with multivariate analysis
Sheng et al. Model development for soluble solids and lycopene contents of cherry tomato at different temperatures using near-infrared spectroscopy
CN107589079B (zh) 一种基于烟叶颜色检验评价打叶复烤片烟混合均匀性的方法
CN101210875A (zh) 基于近红外光谱技术的无损测量土壤养分含量的方法
CN101936893A (zh) 一种从油菜籽中检测蛋白质和氨基酸的方法
Chen et al. Simultaneous measurement of total acid content and soluble salt‐free solids content in Chinese vinegar using near‐infrared spectroscopy
CN109374548A (zh) 一种利用近红外快速测定大米中营养成分的方法
Lequeue et al. Determination by near infrared microscopy of the nitrogen and carbon content of tomato (Solanum lycopersicum L.) leaf powder
CN105740898A (zh) 一种利用光谱特征向量结合主成分分析建立分类模型的方法
Lu et al. Feasibility of NIR spectroscopy detection of moisture content in coco-peat substrate based on the optimization characteristic variables
CN101413884A (zh) 近红外光谱分析仪及其分辨率的校正方法
Nie et al. Research on the effects of drying temperature on nitrogen detection of different soil types by near infrared sensors
Chen et al. Rapid identification of three varieties of Chrysanthemum with near infrared spectroscopy
Zhou et al. Spectral database systems: a review
Chen et al. Combination of modified optical path length estimation and correction and moving window partial least squares to waveband selection for the fourier transform near-infrared determination of pectin in shaddock peel
Zimmer et al. Rapid quantification of constituents in tobacco by NIR fiber‐optic probe
CN110455740A (zh) 一种沥青老化时程预测方法
Sensuła et al. Stable carbon isotopes of glucose received from pine tree-rings as bioindicators of local industrial emission of CO2 in Niepołomice Forest (1950–2000)
Xu et al. Rapid and accurate determination methods based on data fusion of laser-induced breakdown spectra and near-infrared spectra for main elemental contents in compound fertilizers
Jie et al. Determination of Nitrogen Concentration in Fresh Pear Leaves by Visible/Near‐Infrared Reflectance Spectroscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180831

RJ01 Rejection of invention patent application after publication