CN108465474A - 一种光催化分解甲酸助催化剂、光催化体系及其应用 - Google Patents

一种光催化分解甲酸助催化剂、光催化体系及其应用 Download PDF

Info

Publication number
CN108465474A
CN108465474A CN201710100062.3A CN201710100062A CN108465474A CN 108465474 A CN108465474 A CN 108465474A CN 201710100062 A CN201710100062 A CN 201710100062A CN 108465474 A CN108465474 A CN 108465474A
Authority
CN
China
Prior art keywords
catalyst
formic acid
cop
knot
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710100062.3A
Other languages
English (en)
Other versions
CN108465474B (zh
Inventor
陈勇
曹爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201710100062.3A priority Critical patent/CN108465474B/zh
Publication of CN108465474A publication Critical patent/CN108465474A/zh
Application granted granted Critical
Publication of CN108465474B publication Critical patent/CN108465474B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种光催化分解甲酸助催化剂,所述助催化剂为CoP或CoP‑石墨烯复合物;本发明还公开了一种含有光催化分解甲酸助催化剂的光催化体系,所述体系包括:半导体与助催化剂形成的结,甲酸,和水;所述半导体为CdS纳米粒子。所述光催化体系在光催化分解甲酸中的应用。采用混合搅拌和超声的方法将CoP‑石墨烯复合物和CdS纳米粒子复合形成结,来降低半导体光催化剂CdS纳米粒子在吸收光子后产生的光生电子与空穴对的复合,使光生电子能更好的传递到助催化剂来参与甲酸分解反应,生成大量氢气和副产物二氧化碳。本发明的光催化分解甲酸体系的产氢效率和选择性极高,成本低,无需复杂反应设备,更利于实际应用。

Description

一种光催化分解甲酸助催化剂、光催化体系及其应用
技术领域
本发明属于光催化技术领域。更具体地,涉及一种光催化分解甲酸助催化剂、光催化体系及其应用。
背景技术
发展新能源是解决当今世界能源短缺和环境污染问题的有效途径。太阳能作为一种清洁可持续能源引起了广泛的关注。如何将太阳能转化为其他化学能是一个非常重要的研究方向。甲酸具有低毒、廉价、高稳定性和氢元素含量高等优点成为一种理想的氢气载体。通过合适的催化剂,特别是利用太阳能将甲酸分解为氢气是一个重要的研究领域,甲酸分解的反应式为:HCOOH→H2+CO2;常用的甲酸分解催化剂主要是一些贵金属催化剂,例如,钯(Pd)、银(Ag)和金(Au)等。发展廉价和高效的甲酸分解光催化剂具有重要的研究和应用价值。
目前,利用贵金属的局部表面等离子体共振效应来加强光转换效率的研究已在等离子光催化剂、传感器和光热烧蚀应用中取得了一定成果,例如半导体-贵金属虽然光捕获效率更高,但是成本仍然比较高。因此,研究发展具有价格低廉、高稳定性和卓越催化性能的半导体-金属异质结,成为高效太阳能光催化反应的关键和迫切需求。
发明内容
本发明的第一个目的在于提供一种光催化分解甲酸助催化剂。
本发明的第二个目的在于提供一种含有光催化分解甲酸助催化剂的光催化体系。
本发明的第三个目的在于提供光催化体系在光催化分解甲酸中的应用。
为达到上述第一个目的,本发明采用下述技术方案:
一种光催化分解甲酸助催化剂,所述助催化剂为CoP或CoP-石墨烯复合物。
为达到上述第二个目的,本发明采用下述技术方案:
一种含有光催化分解甲酸助催化剂的光催化体系,所述体系包括:
半导体与助催化剂形成的结,
甲酸,和
水;
所述半导体为CdS纳米粒子,作为光催化体系的光催化剂。
进一步,所述甲酸的浓度为0.7-20mol/L;优选地,所述甲酸的浓度为6.6mol/L,该浓度的甲酸可使本发明的光催化体系分解甲酸的效率达到最高。
进一步,所述半导体与助催化剂形成的结是通过将半导体与助催化剂经物理混合接触方法得到的;具体地,是将助催化剂和半导体进行混合搅拌后再超声处理,得到助催化剂/半导体杂化体,即为结。
所述混合搅拌和超声处理的时间均大于30min,从而使半导体与助催化剂混合均匀。
进一步,所述助催化剂为CoP或CoP-石墨烯复合物;优选地,所述助催化剂为CoP-石墨烯复合物。
进一步,所述助催化剂的用量是结的0.5-16wt%;
为达到上述第三个目的,本发明采用下述技术方案:
一种光催化体系在光催化分解甲酸中的应用。
进一步,所述应用通过如下方法实现:
1)将结、甲酸和水混合;得混合反应液;
2)用光源照射所述混合反应液,生成氢气和二氧化碳。
进一步,所述方法还包括,用惰性气体对混合反应液除气和密封;然后用光源照射所述混合反应液,生成氢气和二氧化碳。
本发明采用混合搅拌和超声的方法将CoP-石墨烯复合物和CdS纳米粒子复合形成结,来降低半导体光催化剂CdS纳米粒子在吸收光子后产生的光生电子与空穴对的复合,使光生电子能更好的传递到助催化剂来参与甲酸分解反应,生成大量氢气和副产物二氧化碳。
进一步,所述惰性气体可采用氩气或氮气,具体根据气相色谱的载气确定。
进一步,所述光源为氙灯、汞灯或LED灯;当所述光源为氙灯和汞灯时,用420nm的滤光片滤去紫外光部分,这是由于光催化体系中所用半导体CdS纳米粒子在可见光波段有很强的吸收,滤去紫外光部分,更利于实际应用。
本发明的有益效果如下:
本发明的光催化分解甲酸体系的产氢效率和选择性极高,成本低,无需复杂反应设备,更利于实际应用。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出了本发明CdS纳米粒子在透射电镜(TEM)下的形貌图(a和b图分别为不同标尺下的形貌图)。
图2示出了本发明CdS纳米粒子的粉末衍射(XRD)光谱。
图3示出了本发明CoP的TEM图。
图4示出了本发明CoP的XRD谱图。
图5示出了CoP-石墨烯复合物的TEM图。
图6示出了CoP-石墨烯复合物的XRD谱图。
图7示出了实施例2的CdS纳米粒子和CoP形成的结在透射电镜下的形貌图。
图8示出了实施例1的CdS纳米粒子和CoP-石墨烯复合物形成的结在透射电镜下的形貌图。
图9示出了实施例1的光催化体系在光源照射过程中气体产生量随时间变化的曲线。
图10示出了实施例2的光催化体系在光源照射过程中气体产生量随时间变化的曲线。
图11示出了实施例2的光催化体系在光源照射过程中气体产生量随CoP-石墨烯复合物质量百分比变化的曲线。
图12示出了实施例2的光催化体系在光源照射过程中气体产生量随甲酸水溶液浓度变化的曲线。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
本发明的光催化体系生成的氢气采用岛津DC-2014C气相色谱检测,所述气相色谱使用0.5nm分子筛柱(3m×2mm),热导池检测器(TCD),载气为氩气。
生成的氢气量用外标法标定。
CdS纳米粒子的合成:可参考文献Journal of Catalysis 266(2009)165–168。CdS纳米粒子的TEM形貌图和XRD谱图分别如图1和图2所示。图1中b图的0.33nm表示CdS纳米粒子的晶格尺寸;图2中100、002和101等处的峰分别表示CdS纳米粒子衍射晶面。
CoP的合成:可参考文献Chemical Communications 51(2015)8708–8711。CoP的TEM形貌图和XRD谱图分别如图3和图4所示。
CoP-石墨烯复合物的合成:现将小粒径Co3O4纳米粒子负载于石墨烯上,得Co3O4-石墨烯复合物;将Co3O4-石墨烯复合物置于瓷舟一侧,瓷舟另一侧放置次磷酸钠将瓷舟转移至管式炉中,用Ar气作为载气,在300℃下加热2小时,即得到CoP-石墨烯复合物;所述Co3O4纳米粒子和石墨烯的质量比为99.5:0.5;所述Co3O4-石墨烯复合物和次磷酸钠的质量比值为1:5。
CoP-石墨烯复合物的TEM形貌图和XRD谱图分别如图5和图6所示。从图6可知,CoP-石墨烯复合物的衍射主要是CoP,石墨烯自身的衍射峰看不到,原因是石墨烯含量很低,检测不到。
本发明的石墨烯作为CoP的载体,一方面,避免了CoP纳米粒子的团聚,有效促进了CoP催化活性位点的暴露;另一方面,当CoP-石墨烯复合物负载半导体CdS纳米粒子后,石墨烯可以作为电子传输介质,促进了CdS纳米粒子与CoP之间的电子传递,从而提高了催化效率。
通过紫外漫反射表征结果,可知本发明的CoP只是负载于CdS纳米粒子表面,并没有对其内部的晶型产生影响。
实施例1
一种含有CoP-石墨烯复合物的光催化体系,包括:
CdS纳米粒子和CoP-石墨烯复合物形成的结,
甲酸,和
所述结通过如下方法制备:将182.7mg的CdS纳米粒子和17.3mg的CoP-石墨烯复合物在研铂中混合研磨,研磨30min后加入200mL水,然后继续超声30min,超声后进行离心分离,得到CdS纳米粒子与CoP-石墨烯复合物形
成的结200mg。所述CoP-石墨烯复合物是结的8.65wt%。
一种含有CoP-石墨烯复合物的光催化体系分解甲酸的方法:包括如下步骤:1)将15mL浓度为6.6mol/L的甲酸水溶液加入60mL的石英管中,然后向石英管中加入CdS纳米粒子和CoP-石墨烯复合物形成的结,得混合液;
2)用氩气对所述混合液进行除空气,去除空气后进行密封,得密封物;利用3W×30个LED灯照射所述密封物,生成氢气和二氧化碳;每隔2h用气相色谱检测生成的气体种类和数量。
CdS纳米粒子与CoP-石墨烯复合物形成结的形貌图如图8所示,从图中可以看出,CdS纳米粒子和CoP-石墨烯复合物紧密接触形成结,CdS纳米粒子的0.33nm晶格宽度归属于其衍射晶面(002),CoP的0.19nm的晶格宽度归属于衍射晶面(211)。
由图9可知,经过10h可见光光照后,所述光催化体系中氢气产生量为1614微摩尔;反应副产物为CO2,CO2的产生量低于理论值,其原因可能是CO2在甲酸溶液中的溶解度比较高。
实施例2
一种含有CoP的光催化体系,包括:
CdS纳米粒子和CoP形成的结,
甲酸,和
所述结通过如下方法制备:将182.7mg的CdS纳米粒子和17.3mg的CoP在研铂中混合研磨,研磨30min后加入200mL水,然后继续超声30min,超声后进行离心分离,得到CdS纳米粒子与CoP形成的结。
一种含有CoP的光催化体系分解甲酸的方法:包括如下步骤:1)将15mL浓度为6.6mol/L的甲酸水溶液加入60mL的石英管中,然后向石英管中加入CdS纳米粒子和CoP形成的结,得混合液;
2)用氩气对所述混合液进行除空气,去除空气后进行密封,得密封物;利用3W×30个LED灯照射所述密封物,生成氢气和二氧化碳;每隔2h用气相色谱检测生成的气体种类和数量。
由图10可知,经过10h可见光光照后,所述光催化体系中氢气产生量为为1130微摩尔;反应副产物为CO2;CO2的产生量低于理论值,其原因可能是CO2在甲酸溶液中的溶解度比较高。
实施例3
同实施例1,区别在于CdS纳米粒子和CoP-石墨烯复合物的质量不同;CoP-石墨烯复合物是结的0.83wt%、4.38wt%、14.06wt%和15.83wt%。图11为不同质量分数的CoP-石墨烯复合物以及CoP对氢气产生量的影响。可以看出,在CoP-石墨烯复合物质量分数为8.65wt%时氢气产生量和产氢效率达到最高,这主要是由于当CoP-石墨烯复合物质量分数从0.83wt%增加到8.65wt%时,CoP-石墨烯复合物可以为产氢提供更多的活性位点和提高CdS的电荷分离;而当CoP-石墨烯复合物继续增多时,则阻碍了CdS的吸光能力,所以导致氢气产生量下降,反应副产物为CO2;CO2的产生量低于理论值,其原因可能是CO2在甲酸溶液中的溶解度比较高。
实施例4
同实施例1,区别在于,甲酸的浓度分别为0.7mol/L、2.0mol/L、4.0mol/L、6.6mol/L、13.0mol/L、20.0mol/L和纯的甲酸。图12为实施例4的不同甲酸浓度对氢气产生量的影响。可以看出,在甲酸浓度为20.0mol/L时氢气产生量和产氢效率达到最高,反应副产物为CO2;CO2的产生量低于理论值,其原因可能是CO2在甲酸溶液中的溶解度比较高。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (9)

1.一种光催化分解甲酸助催化剂,其特征在于,所述助催化剂为CoP或CoP-石墨烯复合物。
2.一种含有权利要求1所述的光催化分解甲酸助催化剂的光催化体系,其特征在于,所述体系包括:
半导体与助催化剂形成的结,
甲酸,和
水;
所述半导体为CdS纳米粒子。
3.根据权利要求2所述的光催化体系,其特征在于,所述甲酸的浓度为0.7-20mol/L。
4.根据权利要求2所述的光催化体系,其特征在于,所述半导体与助催化剂形成的结是通过将半导体与助催化剂经物理混合接触方法得到的。
5.根据权利要求2所述的光催化体系,其特征在于,优选地,所述助催化剂为CoP-石墨烯复合物。
6.根据权利要求4所述的光催化体系,其特征在于,所述助催化剂的用量是结的0.5-16wt%。
7.一种如权利要求2至6任一所述光催化体系在光催化分解甲酸中的应用。
8.根据权利要求7所述的应用,其特征在于,所述应用通过如下方法实现:
1)将结、甲酸和水混合;得混合反应液;
2)用光源照射所述混合反应液,生成氢气和二氧化碳。
9.根据权利要求8所述的应用,其特征在于,所述方法还包括,用惰性气体对混合反应液除气和密封;然后用光源照射所述混合反应液,生成氢气和二氧化碳。
CN201710100062.3A 2017-02-23 2017-02-23 一种光催化分解甲酸助催化剂、光催化体系及其应用 Active CN108465474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710100062.3A CN108465474B (zh) 2017-02-23 2017-02-23 一种光催化分解甲酸助催化剂、光催化体系及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710100062.3A CN108465474B (zh) 2017-02-23 2017-02-23 一种光催化分解甲酸助催化剂、光催化体系及其应用

Publications (2)

Publication Number Publication Date
CN108465474A true CN108465474A (zh) 2018-08-31
CN108465474B CN108465474B (zh) 2021-05-14

Family

ID=63266695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710100062.3A Active CN108465474B (zh) 2017-02-23 2017-02-23 一种光催化分解甲酸助催化剂、光催化体系及其应用

Country Status (1)

Country Link
CN (1) CN108465474B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120288713A1 (en) * 2007-04-17 2012-11-15 Samsung Electronics Co., Ltd. Method for preparing metal phosphide nanocrystal from phosphite compound and method for passivating nanocrystal core with the same
CN103657687A (zh) * 2012-09-19 2014-03-26 中国科学院理化技术研究所 复合型半导体光催化剂及其制法、光催化体系及制氢方法
CN103769167A (zh) * 2014-01-28 2014-05-07 陕西科技大学 一种制备石墨烯包裹硫化镉核壳结构光催化材料的方法
CN105772041A (zh) * 2014-12-25 2016-07-20 中国科学院理化技术研究所 一种光催化产氢助催化剂、光催化体系及产氢的方法
CN105854910A (zh) * 2016-05-20 2016-08-17 宁夏大学 一种CoP/CdS复合光催化剂及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120288713A1 (en) * 2007-04-17 2012-11-15 Samsung Electronics Co., Ltd. Method for preparing metal phosphide nanocrystal from phosphite compound and method for passivating nanocrystal core with the same
CN103657687A (zh) * 2012-09-19 2014-03-26 中国科学院理化技术研究所 复合型半导体光催化剂及其制法、光催化体系及制氢方法
CN103769167A (zh) * 2014-01-28 2014-05-07 陕西科技大学 一种制备石墨烯包裹硫化镉核壳结构光催化材料的方法
CN105772041A (zh) * 2014-12-25 2016-07-20 中国科学院理化技术研究所 一种光催化产氢助催化剂、光催化体系及产氢的方法
CN105854910A (zh) * 2016-05-20 2016-08-17 宁夏大学 一种CoP/CdS复合光催化剂及其制备和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
师进文等,: ""Cr或V掺杂的HMS在甲酸溶液中的光催化产氢性能研究"", 《化学学报》 *
郑先君等,: ""稀土掺杂TiO2光催化剂的制备及产氢性能研究"", 《中国稀土学报》 *
马连波,: ""石墨烯基纳米复合材料的制备与电化学性能研究"", 《万方学位论文数据》 *

Also Published As

Publication number Publication date
CN108465474B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
Liu et al. A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation
Zhang et al. Fabrication of Ag decorated g-C3N4/LaFeO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for degradation of methylene blue and tetracycline hydrochloride
Li et al. Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production
Li et al. Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen
Teo et al. Introducing the novel composite photocatalysts to boost the performance of hydrogen (H2) production
Yu et al. Non-noble metal Bi deposition by utilizing Bi2WO6 as the self-sacrificing template for enhancing visible light photocatalytic activity
CN105772041B (zh) 一种光催化产氢助催化剂、光催化体系及产氢的方法
Zhang et al. Enhanced photocatalytic reduction of CO2 to methanol by ZnO nanoparticles deposited on ZnSe nanosheet
Suryawanshi et al. Doubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes: electronic and morphological effects
Shi et al. Engineering ultrathin oxygen-doped g-C3N4 nanosheet for boosted photoredox catalytic activity based on a facile thermal gas-shocking exfoliation effect
Chen et al. In-situ synthesis of CNT/TiO2 heterojunction nanocomposite and its efficient photocatalytic degradation of Rhodamine B dye
Zhao et al. Carbon doped ultra-small TiO2 coated on carbon cloth for efficient photocatalytic toluene degradation under visible LED light irradiation
Li et al. Boosted charge transfer and selective photocatalytic CO2 reduction to CH4 over sulfur-doped K0. 475WO3 nanorods under visible light: Performance and mechanism insight
Qi et al. Preparation and photocatalytic properties of g-C3N4/BiOCl heterojunction
Zou et al. Hydrothermal synthesis of Zn-doped BiVO4 with mixed crystal phase for enhanced photocatalytic activity
Vaishnav et al. One dimensional CdS/ZnO nanocomposites: an efficient photocatalyst for hydrogen generation
Zhang et al. Microwave-assisted combustion synthesis of Ag/ZnO nanocomposites and their photocatalytic activities under ultraviolet and visible-light irradiation
Huang et al. Carbon quantum dot (CQD)-modified Bi3O4Br nanosheets possessing excellent photocatalytic activity under simulated sunlight
Uddin et al. In2O3/oxygen doped g-C3N4 towards photocatalytic BPA degradation: balance of oxygen between metal oxides and doped g-C3N4
Rameshbabu et al. Black Trumpet Mushroom-like ZnS incorporated with Cu3P: Noble metal free photocatalyst for superior photocatalytic H2 production
Nguyen et al. Preparation and photocatalytic hydrogen production of Pt-Graphene/TiO2 composites from water splitting
Yang et al. Investigation of photocatalytic properties based on Fe and Ce Co-doped ZnO via hydrothermal method and first principles
Vattikuti et al. Binder-free WS2/ZrO2 hybrid as a photocatalyst for organic pollutant degradation under UV/simulated sunlight and tests for H2 evolution
Yang et al. Ascorbic acid-assisted hydrothermal route to create mesopores in polymeric carbon nitride for increased photocatalytic hydrogen generation
Zhang et al. Preparation and photocatalytic performance of silver-modified and nitrogen-doped TiO 2 nanomaterials with oxygen vacancies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant