CN108462166A - 一种微电网备用容量计算方法和微电网调控方法 - Google Patents

一种微电网备用容量计算方法和微电网调控方法 Download PDF

Info

Publication number
CN108462166A
CN108462166A CN201810082742.1A CN201810082742A CN108462166A CN 108462166 A CN108462166 A CN 108462166A CN 201810082742 A CN201810082742 A CN 201810082742A CN 108462166 A CN108462166 A CN 108462166A
Authority
CN
China
Prior art keywords
micro
capacitance sensor
power
electricity
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810082742.1A
Other languages
English (en)
Other versions
CN108462166B (zh
Inventor
杨俊�
张宇
沈渭程
董开松
马喜平
胡殿刚
李韶瑜
赵炜
张光儒
李志敏
闵占奎
刘秀良
陈明忠
甄文喜
魏博
同焕珍
姜梅
王斌
杨勇
赵耀
朱宏毅
张赛
刘丽娟
梁有珍
陈柏旭
赵凤展
杜松怀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Agricultural University
State Grid Gansu Electric Power Co Ltd
Electric Power Research Institute of State Grid Gansu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Agricultural University
State Grid Gansu Electric Power Co Ltd
Electric Power Research Institute of State Grid Gansu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Agricultural University, State Grid Gansu Electric Power Co Ltd, Electric Power Research Institute of State Grid Gansu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201810082742.1A priority Critical patent/CN108462166B/zh
Publication of CN108462166A publication Critical patent/CN108462166A/zh
Application granted granted Critical
Publication of CN108462166B publication Critical patent/CN108462166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network

Abstract

本发明提供一种微电网备用容量计算方法和微电网调控方法,其中,微电网备用容量计算方法包括:根据微电网的停运容量概率表计算各系统故障备用的电源故障缺电概率;所述停运容量概率表是根据各电源的容量和强迫停运率获取的;根据任一电源故障缺电概率和最大缺电概率,计算对应的最大预测误差缺电概率;应用该最大预测误差缺电概率在预测误差正态分布表中查询预测误差容量;预测误差正态分布表是根据各电源的出力值和负荷值的预测误差获取的;将各系统故障备用对应的容量与预测误差容量之和的最小值作为所述微电网的备用容量。本发明提供的方法,为微电网备用容量的设置提供了方案,在满足微电网安全运行的同时,保证了微电网容量备用的经济性。

Description

一种微电网备用容量计算方法和微电网调控方法
技术领域
本发明涉及微电网运行控制技术领域,尤其涉及一种微电网备用容量计算方法和微电网调控方法。
背景技术
分布式发电是指利用各种可用和分散存在的能源进行发电,分布式电源以其投资小、清洁环保、供电可靠和发电方式灵活等优点日益成为人们研究的热点。但是,随着大规模分布式电源的接入,分布式电源的随机性、波动性和间歇性会对电能质量、网损、电网保护和实时监控、并网标准等带来问题或影响。
微电网是整合各种分布式能源优势、削弱分布式发电对电网的不利影响、充分挖掘分布式发电综合效益的有效方式。通过整合分布式发电单元与配电网之间的关系,在一个局部区域内直接将分布式发电单元、电力网络和终端用户联系在一起,能够便利结构配置和电力调度的优化,减轻能源动力系统对环境的影响,推动分布式电源上网,降低大电网的负担,改善可靠安全性,并促进社会向绿色、环保和节能方向发展。
目前,对于微电网控制领域的研究主要是针对微电网的协调控制,对微电网的分布式电源相互协调,设计微电网一体化控制流程,合理分担负载功率,实现源、荷、储的功率动态平衡。然而,现有的研究大都忽略了分布式电源例如风和光等能源间歇性出力的不确定性对电网的可靠性的影响。
发明内容
本发明为解决现有技术中存在的微电网可靠性的问题,提供了一种微电网备用容量计算方法和微电网调控方法。
一方面,本发明提出一种微电网备用容量计算方法,包括:根据微电网的停运容量概率表计算预先设定的各系统故障备用对应的电源故障缺电概率;所述停运容量概率表是根据所述微电网中各电源的容量和强迫停运率获取的;根据任一所述系统故障备用对应的电源故障缺电概率和预先设定的最大缺电概率,计算该系统故障备用对应的最大预测误差缺电概率;应用该系统故障备用对应最大预测误差缺电概率在预测误差正态分布表中查询该系统故障备用对应的预测误差容量;所述预测误差正态分布表是根据所述各电源的出力值和负荷值的预测误差获取的;将所述各系统故障备用对应的容量与预测误差容量之和的最小值作为所述微电网的备用容量。
优选地,所述根据任一所述系统故障备用对应的电源故障缺电概率和预先设定的最大缺电概率,计算该系统故障备用对应的最大预测误差缺电概率,进一步包括:应用下式计算任一所述系统故障备用对应的最大预测误差缺电概率:
(1-Pfailure)(1-Perror)≥1-PLOLP
式中,Pfailure为所述电源故障缺电概率,Perror为预测误差缺电概率,PLOLP为所述最大缺电概率,Perror的最大值为所述最大预测误差缺电概率。
优选地,所述应用该系统故障备用对应最大预测误差缺电概率在预测误差正态分布表中查询该系统故障备用对应的预测误差容量前,还包括:分别预测各电源的出力值和负荷值,对应获取各电源的预测出力值和预测负荷值;获取各电源的实际出力值和实际负荷值;分别应用所述各电源的预测出力值和实际出力值、预测负荷值和实际负荷值计算各电源的出力值预测误差和负荷值预测误差;应用所述各电源的出力值和负荷值的预测误差获取预测误差正态分布表。
优选地,所述应用该系统故障备用对应最大预测误差缺电概率在预测误差正态分布表中查询该系统故障备用对应的预测误差容量,进一步包括:基于预测误差正态分布表,根据下式应用该系统故障备用对应最大预测误差缺电概率获取该系统故障备用对应的预测误差容量:
式中,Cerror为所述预测误差容量,Perror为预测误差缺电概率。
另一方面,本发明提出一种微电网调控方法,包括:S1,当微电网的当前功率差大于0时,应用如前所述的方法计算备用容量,并将所述备用容量发送给旋转备用,以使得所述旋转备用能够根据所述备用容量进行储备控制;所述当前功率差为当前可用功率与负荷的差值。
优选地,所述步骤S1前还包括:S01,根据微电网运行数据,向不可中断负荷提供电能;S02,根据配电网发送的能量调度指令向配电网传输电能。
优选地,所述步骤S1还包括:当所述微电网的当前功率差小于0且储能设备能够放电时,若所述储能设备的储能值大于或等于所述当前功率差的绝对值,则控制所述储能设备向微电网传输电能;否则,控制所述储能设备向微电网传输电能,并将当前可用功率与储能值之和作为负荷功率最大值发送到负荷;当所述微电网的当前功率差小于0且储能设备不能放电时,将当前可用功率作为负荷功率最大值发送到负荷。
优选地,所述步骤S1后还包括:当储能设备能够充电时,若所述储能设备能够接收的电量大于或等于所述当前功率差,则对所述储能设备充电;否则,对所述储能设备充电,并进行弃电,弃电量为所述当前功率差与储能设备能够接收的电量之差;当储能设备不能充电时,进行弃电,弃电量为所述当前功率差。
优选地,所述步骤S01前还包括:接收微电网中各设备发送的运行数据,将各设备的运行数据作为微电网运行数据;所述设备包括电源、储能设备和负荷;所述负荷包括不可中断负荷。
优选地,所述设备还包括电动汽车充电桩;对应地,所述步骤S01还包括:根据微电网运行数据,向所述电动汽车充电桩提供电能。
本发明提供的一种微电网备用容量计算方法和微电网调控方法,应用预测误差的正态分布实现了对备用容量的计算,为微电网备用容量的设置提供了方案,在满足微电网安全运行的同时,保证了微电网容量备用的经济性。
附图说明
图1为本发明具体实施例的一种微电网备用容量计算方法的流程示意图;
图2为本发明具体实施例的一种预测误差正态分布曲线示意图
图3为本发明具体实施例的一种微电网调控方法的流程示意图;
图4为本发明具体实施例的一种微电网结构示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
图1为本发明具体实施例的一种微电网备用容量计算方法的流程示意图,如图1所示,一种微电网备用容量计算方法,其特征在于,包括:根据微电网的停运容量概率表计算预先设定的各系统故障备用对应的电源故障缺电概率;所述停运容量概率表是根据所述微电网中各电源的容量和强迫停运率获取的;根据任一所述系统故障备用对应的电源故障缺电概率和预先设定的最大缺电概率,计算该系统故障备用对应的最大预测误差缺电概率;应用该系统故障备用对应最大预测误差缺电概率在预测误差正态分布表中查询该系统故障备用对应的预测误差容量;所述预测误差正态分布表是根据所述各电源的出力值和负荷值的预测误差获取的;将所述各系统故障备用对应的容量与预测误差容量之和的最小值作为所述微电网的备用容量。
具体地,备用容量是电网为在设备检修、事故、调频等情况下仍能保证负荷需求而需要增设的设备容量。所述备用容量的计算方法如下:
首先,根据微电网的停运容量概率表对预先设定的各系统故障备用对应的电源故障缺电概率进行计算。
此处,所述微电网的停运容量概率表用于表征不用电源状态下的停运容量及其对应的概率。预先设定的系统故障备用为若干组,每一系统故障备用能够用于补偿容量小于等于该系统故障备用对应容量的容量缺失,且不对供电可靠性造成影响。因而,假设任一系统故障备用对应的容量为X,则该系统故障备用对应的电源故障缺电概率等于容量大于X的所有故障事件对应的概率之和。
其中,所述停运容量概率表是根据所述微电网中各电源的容量和强迫停运率获取的;电源强迫停运率即发电设备发生强迫停运的时间概率,其值为强迫停运小时与强迫停运小时和运行小时之和的比值,属电源固有参数。
其次,根据上一步骤中获取的任一所述系统故障备用对应的电源故障缺电概率和预先设定的最大缺电概率,计算该系统故障备用对应的最大预测误差缺电概率。
随后,应用该系统故障备用对应最大预测误差缺电概率在预测误差正态分布表中查询该系统故障备用对应的预测误差容量。
此处,所述预测误差正态分布表是根据所述各电源的出力值和负荷值的预测误差获取的,其中正态分布(Normal distribution),也称“常态分布”,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
最后,将任一所述系统故障备用对应的容量和上一步骤中通过查表获取的预测误差容量相加,获取该系统故障备用对应的容量和。从各个系统故障备用对应的容量和中选取最小值,将容量和的最小值作为所述微电网的备用容量。
本发明具体实施例中,应用预测误差的正态分布实现了对备用容量的计算,为微电网备用容量的设置提供了方案,在满足微电网安全运行的同时,保证了微电网容量备用的经济性。
基于上述具体实施例,一种微电网备用容量计算方法,所述根据任一所述系统故障备用对应的电源故障缺电概率和预先设定的最大缺电概率,计算该系统故障备用对应的最大预测误差缺电概率,进一步包括:应用下式计算任一所述系统故障备用对应的最大预测误差缺电概率:
(1-Pfailure)(1-Perror)≥1-PLOLP
式中,Pfailure为所述电源故障缺电概率,Perror为预测误差缺电概率,PLOLP为所述最大缺电概率,Perror的最大值为所述最大预测误差缺电概率。
基于上述具体实施例,一种微电网备用容量计算方法,所述应用该系统故障备用对应最大预测误差缺电概率在预测误差正态分布表中查询该系统故障备用对应的预测误差容量前,还包括:分别预测各电源的出力值和负荷值,对应获取各电源的预测出力值和预测负荷值;获取各电源的实际出力值和实际负荷值;分别应用所述各电源的预测出力值和实际出力值、预测负荷值和实际负荷值计算各电源的出力值预测误差和负荷值预测误差;应用所述各电源的出力值和负荷值的预测误差获取预测误差正态分布表。
具体地,所述预测误差正态分布表的获取方法如下:
首先,对微电网中各电源的出力值和负荷值进行预测,获取各电源的预测出力值和预测负荷值。本发明具体实施例中,所述电源包括风机电源和光伏电源,但不限于此。目前,针对微电网出力值与负荷值的预测方法有多种,例如时间序列法。所述时间序列法是以时间为自变量,以预测目标为应变量建立的数学模型。
与此同时,获取所述微电网中各电源的实际出力值和实际负荷值。
其次,将上一步骤中获取的各电源的预测出力值与实际出力值进行比较,计算出力值预测误差;同样地,将各电源的预测负荷值与实际负荷值进行比较,计算负荷值预测误差。
随后,对上述出力值预测误差和负荷值预测误差进行分析:
以所述微电网中的电源包括风机电源和光伏电源为例,假设所述各风机电源、光伏电源出力值中最大预测误差和负荷中最大预测误差的正态分布为:N(0,(pwt,max×σwt)2)、N(0,(ppv,max×σpv)2)、N(0,(pl,max×σl)2),其中pwt,max、ppv,max、pl,max分别为各风机电源、光伏电源出力值和负荷值中最大预测误差,σwt、σpv、σl分别为其对应的正态分布的方差,由于这三类误差互不关联,因此该时段微电网系统整体预测误差服从如下正态分布:N(0,σ2),其中σ2=(pwt,max×σwt)2+(ppv,max×σpv)2+(pl,max×σl)2
最后,根据系统整体预测误差正态分布:N(0,σ2)获取预测误差正态分布表,以备后续应用最大预测误差缺电概率对对应的预测误差容量进行查询时使用。
本发明具体实施例中,通过对微电网出力值和负荷值进行预测,构建了预测误差正态分布表,为后续备用容量计算奠定了基础。
基于上述任一具体实施例,图2为本发明具体实施例的一种预测误差正态分布曲线示意图,如图2所示,一种微电网备用容量计算方法,所述应用系统故障备用对应最大预测误差缺电概率在预测误差正态分布表中查询该系统故障备用对应的预测误差容量,进一步包括:基于预测误差正态分布表,根据下式应用系统故障备用对应最大预测误差缺电概率获取系统故障备用对应的预测误差容量:
式中,Cerror为所述预测误差容量,Perror为预测误差缺电概率。
具体地,图2中,所述预测误差正态分布曲线的横坐标为预测误差容量,纵坐标为预测误差概率密度。由-∞到所述预测误差容量Cerror的预测误差正态分布曲线的面积为预测误差概率,所述预测误差概率与预测误差缺电概率Perror相加为1,即构成完整的预测误差正态分布曲线。
本发明具体实施例中,应用预测误差的正态分布求取了预测误差缺电概率对应的预测误差容量,为备用容量的计算提供了条件。
为了更好地理解与应用本发明提出的一种微电网备用容量计算方法,本发明进行以下示例,且本发明不仅局限于以下示例。
1)采用时间序列法预测微电网电源的预测出力值和预测负荷值,然后与实际值比较计算误差,经过分析得知电源的出力值、负荷值预测绝对误差服从正态分布,因此得到系统预测误差正态分布表如表1所示,其中:Cerror为预测误差备用容量,Perror为预测误差缺电概率。
表1系统预测误差正态分布表
2)所述微电网内的三个电源的电源参数如表2所示,其中电源强迫停运率p即发电设备发生强迫停运的时间概率,其值为强迫停运小时与强迫停运小时和运行小时之和的比值,属电源固有参数,电源可靠性q=1-p。通过计算得到9种运行状态的概率表如表3所示:
表2电源参数表
表3运行状态概率表
3)根据停运容量将表3分为8种停运状态,得到电源停运容量概率表,如表4所示
表4电源停运容量概率表
4)购买x容量的系统故障备用后,容量小于等于x的电源故障引起的容量缺失可以被弥补,不会影响供电可靠性;而容量大于x的电源故障仍会造成容量缺失,影响供电可靠性。因此,当购买x容量的系统故障备用时,对应的电源故障缺电概率应为容量大于x的所有故障事件对应的概率之和。由此得到每种系统故障备用(Cfailure)与电源故障缺电概率(Pfailure)的对应关系,如表5所示:
表5系统故障备用与电源故障缺电概率的对应关系表
5)对于微电网,其系统备用容量优化模型为:
minCr=Cfailure+Cerror
约束条件为:
(1-Pfailure)(1-Perror)≥1-PLOLP
式中,Cr为备用容量,Pfailure为所述电源故障缺电概率,Perror为预测误差缺电概率,Cerror为,PLOLP为所述最大缺电概率,此处PLOLP=0.1。通过上述约束条件求解Pfailure对应的Perror
6)应用图2所示的预测误差正态分布曲线示意图和表1,求解Perror对应的Cerror
式中,C′error为所述预测误差容量,Perror为预测误差缺电概率。
当预测误差备用容量Cerror取值为预测误差容量Cerror时,预测误差小于Perror的预测误差容量都可以被弥补,不会影响供电可靠性;预测误差大于Perror的预测误差容量依旧大于预测误差备用容量,微电网依旧有误差缺额风险。
7)舍去不符合实际的Cfailure和Cerror,分别将每组电源故障事件对应的可行解Cfailure和Cerror相加得出Cr,然后取其中最小的值作为该时段的备用容量。
本示例中,应用预测误差的正态分布实现了对备用容量的计算,为微电网备用容量的设置提供了方案,在满足微电网安全运行的同时,保证了微电网容量备用的经济性。
基于上述任一具体实施例,一种微电网调控方法,包括:S1,当微电网的当前功率差大于0时,应用如前所述的方法计算备用容量,并将所述备用容量发送给旋转备用,以使得所述旋转备用能够根据所述备用容量进行储备控制;所述当前功率差为当前可用功率与负荷的差值。
具体地,对微电网的当前可用功率和负荷进行比较,若所述当前可用功率大于负荷,即当前功率差大于0,则应用上述方法中的任意一种对所述微电网备用容量进行计算,并将计算所得的备用容量发送给旋转备用。
其中,所述旋转备用(Spinning reserve),指运行正常的发电机维持额定转速,随时可以并网,或已并网但仅带一部分负荷,随时可以加出力至额定容量的发电机组。在系统当前的负荷需求下机组同步运行时的有效生产能力的总和。本发明具体实施例中,所述旋转备用为微型燃气轮机和/或柴油发电机。
所述旋转备用接收到微电网发送的备用容量后,根据所述备用容量进行储备控制。
本发明具体实施例中,通过计算备用容量,应用旋转备用为微电网的可靠性运行提供了保障,有效削弱了微电网运行中风和光等能源间歇性出力的不确定性对微电网造成的影响。
基于上述任一具体实施例,一种微电网调控方法,所述步骤S1前还包括:S01,根据微电网运行数据,向不可中断负荷提供电能;S02,根据配电网发送的能量调度指令向配电网传输电能。
具体地,在计算备用容量进行储备控制前,首先需要根据微电网的运行数据,向不可中断负荷提供电能。此处的不可中断负荷指在微电网运行中必须保证供电的负荷。
在满足不可中断负荷供电的条件下,微电网根据配电网发送的能量调度指令,通过公共连接点向配电网传输电能。其中,公共连接点(Point of Common Coupling,PCC)在电力系统中用于一个以上用户负荷的连接。
本发明具体实施例中,通过首先向不可中断负荷供电,优先保证了不可中断负荷的供电量,进一步提高了微电网的可靠性。
基于上述任一具体实施例,一种微电网调控方法,所述步骤S1还包括:当所述微电网的当前功率差小于0且储能设备能够放电时,若所述储能设备的储能值大于或等于所述当前功率差的绝对值,则控制所述储能设备向微电网传输电能;否则,控制所述储能设备向微电网传输电能,并将当前可用功率与储能值之和作为负荷功率最大值发送到负荷;当所述微电网的当前功率差小于0且储能设备不能放电时,将当前可用功率作为负荷功率最大值发送到负荷。
具体地,对微电网的当前可用功率和负荷进行比较,若所述当前可用功率大于负荷,即当前功率差大于0,则对备用容量进行计算,并将计算所得的备用容量发送给旋转备用。
若所述当前功率小于负荷,即当前功率差小于0,则判断储能设备能否放电:
若储能设备能够放电,则获取所述储能设备的储能值,并进一步判断所述储能设备的储能值能否填充当前可用功率与负荷间的差值,即储能值是否大于或等于当前功率差的绝对值:
若储能值大于或等于当前功率差的绝对值,则控制所述储能设备向微电网传输电能,以填充当前可用功率与负荷间的差值;
若储能值小于当前功率差的绝对值,则控制所述储能设备向微电网传输电能,以填充当前可用功率与负荷间的部分差值,并将当前可用功率与储能值之和作为微电网的负荷功率最大值发送给微电网的负荷,以使得负荷将微电网的负荷功率减小至所述负荷功率最大值,以实现微电网的功率平衡。
若储能设备不能放电,则将当前可用功率作为微电网的负荷功率最大值发送给微电网的负荷,以使得负荷将微电网的负荷功率减小至所述负荷功率最大值,以实现微电网的功率平衡。
其中,应用于微电网的储能设备有多种,例如蓄电池、超级电容器、飞轮储能设备、超导储能设备和压缩空气储能设备等。
本发明具体实施例中,利用储能设备对微电网功率平衡进行动态调控,保证了微电网运行的可靠性。
基于上述任一具体实施例,一种微电网调控方法,所述步骤S1后还包括:当储能设备能够充电时,若所述储能设备能够接收的电量大于或等于所述当前功率差,则对所述储能设备充电;否则,对所述储能设备充电,并进行弃电,弃电量为所述当前功率差与所述储能设备能够接收的电量之差;当储能设备不能充电时,进行弃电,弃电量为所述当前功率差。
具体地,对微电网的当前可用功率和负荷进行比较,若所述当前可用功率大于负荷,即当前功率差大于0,则对备用容量进行计算,并将计算所得的备用容量发送给旋转备用后,判断储能设备能否充电:
若储能设备能够充电,则获取所述储能设备当前能够接收的电量,并比较所述能够接收的电量和当前功率差:
若所述能够接收的电量大于或等于当前功率差,则向所述储能设备充电;
若所述能够接收的电量小于当前功率差,则向所述储能设备充电至充满,并对微电网中多余的电量进行弃电,弃电量为所述当前功率差与储能设备当前能够接收的电量之差。
进一步地,本发明具体实施例中,弃电方法为弃风弃光,但不限于此。
若储能设备不能够充电,则对微电网中多余的电量进行弃电,弃电量为所述当前功率差。
本发明具体实施例中,通过向储能设备充电避免了微电网中多余电量的浪费,维持了微电网的稳定性,有利于提高能源利用效率。
基于上述任一具体实施例,一种微电网调控方法,所述步骤S01前还包括:接收微电网中各设备发送的运行数据,将各设备的运行数据作为微电网运行数据;所述设备包括电源、储能设备和负荷;所述负荷包括不可中断负荷。
具体地,在应用运行数据向不可中断负荷提供电量前,需要接收微电网中各设备发送的运行数据。
进一步地,电源的运行数据包括输出电压、电流、有功功率和无功功率等;储能设备的运行数据包括电压、电流、功率和充放电状态等;负荷的运行数据包括负荷类型、重要性、电压、电流、有功功率和无功功率等。
基于上述任一具体实施例,一种微电网调控方法,所述设备还包括电动汽车充电桩;对应地,所述步骤S01还包括:根据微电网运行数据,向所述电动汽车充电桩提供电能。
具体地,所述设备还包括电动汽车充电桩,所述电动汽车充电桩的运行数据包括电压、电流、功率、充放电状态和计划充放电时间等。
对应地,步骤S01中,在保证向不可中断负荷供电的同时,还根据微电网运行数据,向所述电动汽车充电桩供电,以满足充电桩的计划供电要求。
本发明具体实施例中,满足了计划供电要求,进一步提高了微电网的可靠性。
为了更好地理解与应用本发明提出的一种微电网调控方法,本发明进行以下示例,且本发明不仅局限于以下示例。
图3为本发明具体实施例的一种微电网调控方法的流程示意图,图4为本发明具体实施例的一种微电网结构示意图,如图3、图4所示,一种微电网调控方法,如下:
1)接收微电网中各设备发送的运行数据;所述设备包括电源、储能设备、负荷和电动汽车充电桩。所述各设备的运行数据构成微电网运行数据。
2)分析微电网的运行数据,假设总发电量为PG2,向不可中断负荷提供的电量为PIL、满足充电桩计划充电Pcar,微电网的剩余电量为PG1
3)微电网根据配电网发送的能量调度指令,通过公共连接点向配电网传输功率PDIS,微电网的剩余电量为PG
4)计算ΔP=PG-PL,即判断微电网系统内功率是否平衡:
若ΔP=0,即平衡,继续监测;
若ΔP<0,即供电量小于负荷,则判断储能设备可否放电,若不能则设置负荷功率最大值为PG并下发负荷;若能则判断储能设备内储能PCH是否足够,若PCH≥ΔP,即足够,则储能放电,若PCH<ΔP,即不足,则计算负荷功率最大值PG+PCH并下发负荷监控装置。
5)若ΔP>0,即供电量大于负荷,则对微电网所需备用容量进行计算,并将数值发送给微型燃气轮机(MT)、柴油发电机(DE)进行备用。
6)判断储能设备可否充电:
若不能,则弃多余电量ΔP,主要方法为弃风弃光;
若能,则判断储能设备内储能最大值Pmax-CH是否宽裕:若ΔP’=Pmax-CH-PCH-ΔP≥0,则储能宽裕,若ΔP’<0,则供电量依旧多余,弃多余电量。
本示例中,通过计算备用容量,应用旋转备用为微电网的可靠性运行提供了保障,有效削弱了微电网运行中风和光等能源间歇性出力的不确定性对微电网造成的影响,同时优先为不可中断负荷和计划负荷充电,进一步提高了微电网的稳定性。
最后,本申请的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种微电网备用容量计算方法,其特征在于,包括:
根据微电网的停运容量概率表计算预先设定的各系统故障备用对应的电源故障缺电概率;所述停运容量概率表是根据所述微电网中各电源的容量和强迫停运率获取的;
根据任一所述系统故障备用对应的电源故障缺电概率和预先设定的最大缺电概率,计算该系统故障备用对应的最大预测误差缺电概率;
应用该系统故障备用对应最大预测误差缺电概率在预测误差正态分布表中查询该系统故障备用对应的预测误差容量;所述预测误差正态分布表是根据所述各电源的出力值和负荷值的预测误差获取的;
将所述各系统故障备用对应的容量与预测误差容量之和的最小值作为所述微电网的备用容量。
2.根据权利要求1所述的方法,其特征在于,所述根据任一所述系统故障备用对应的电源故障缺电概率和预先设定的最大缺电概率,计算该系统故障备用对应的最大预测误差缺电概率,进一步包括:
应用下式计算任一所述系统故障备用对应的最大预测误差缺电概率:
(1-Pfailure)(1-Perror)≥1-PLOLP
式中,Pfailure为所述电源故障缺电概率,Perror为预测误差缺电概率,PLOLP为所述最大缺电概率,Perror的最大值为所述最大预测误差缺电概率。
3.根据权利要求1所述的方法,其特征在于,所述应用该系统故障备用对应最大预测误差缺电概率在预测误差正态分布表中查询该系统故障备用对应的预测误差容量前,还包括:
分别预测各电源的出力值和负荷值,对应获取各电源的预测出力值和预测负荷值;获取各电源的实际出力值和实际负荷值;
分别应用所述各电源的预测出力值和实际出力值、预测负荷值和实际负荷值计算各电源的出力值预测误差和负荷值预测误差;
应用所述各电源的出力值和负荷值的预测误差获取预测误差正态分布表。
4.根据权利要求1所述的方法,其特征在于,所述应用该系统故障备用对应最大预测误差缺电概率在预测误差正态分布表中查询该系统故障备用对应的预测误差容量,进一步包括:
基于预测误差正态分布表,根据下式应用该系统故障备用对应最大预测误差缺电概率获取该系统故障备用对应的预测误差容量:
式中,C′error为所述预测误差容量,Perror为预测误差缺电概率。
5.一种微电网调控方法,其特征在于,包括:
S1,当微电网的当前功率差大于0时,应用权利要求1至4中任一权利要求所述的方法计算备用容量,并将所述备用容量发送给旋转备用,以使得所述旋转备用能够根据所述备用容量进行储备控制;所述当前功率差为当前可用功率与负荷的差值。
6.根据权利要求5所述的方法,其特征在于,所述步骤S1前还包括:
S01,根据微电网运行数据,向不可中断负荷提供电能;
S02,根据配电网发送的能量调度指令向配电网传输电能。
7.根据权利要求5所述的方法,其特征在于,所述步骤S1还包括:
当所述微电网的当前功率差小于0且储能设备能够放电时,若所述储能设备的储能值大于或等于所述当前功率差的绝对值,则控制所述储能设备向微电网传输电能;否则,控制所述储能设备向微电网传输电能,并将当前可用功率与储能值之和作为负荷功率最大值发送到负荷;
当所述微电网的当前功率差小于0且储能设备不能放电时,将当前可用功率作为负荷功率最大值发送到负荷。
8.根据权利要求5所述的方法,其特征在于,所述步骤S1后还包括:
当储能设备能够充电时,若所述储能设备能够接收的电量大于或等于所述当前功率差,则对所述储能设备充电;否则,对所述储能设备充电,并进行弃电,弃电量为所述当前功率差与储能设备能够接收的电量之差;
当储能设备不能充电时,进行弃电,弃电量为所述当前功率差。
9.根据权利要求6所述的方法,其特征在于,所述步骤S01前还包括:
接收微电网中各设备发送的运行数据,将各设备的运行数据作为微电网运行数据;
所述设备包括电源、储能设备和负荷;所述负荷包括不可中断负荷。
10.根据权利要求9所述的方法,其特征在于,所述设备还包括电动汽车充电桩;
对应地,所述步骤S01还包括:
根据微电网运行数据,向所述电动汽车充电桩提供电能。
CN201810082742.1A 2018-01-29 2018-01-29 一种微电网备用容量计算方法和微电网调控方法 Active CN108462166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810082742.1A CN108462166B (zh) 2018-01-29 2018-01-29 一种微电网备用容量计算方法和微电网调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810082742.1A CN108462166B (zh) 2018-01-29 2018-01-29 一种微电网备用容量计算方法和微电网调控方法

Publications (2)

Publication Number Publication Date
CN108462166A true CN108462166A (zh) 2018-08-28
CN108462166B CN108462166B (zh) 2020-06-02

Family

ID=63239272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810082742.1A Active CN108462166B (zh) 2018-01-29 2018-01-29 一种微电网备用容量计算方法和微电网调控方法

Country Status (1)

Country Link
CN (1) CN108462166B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110083107A (zh) * 2019-05-17 2019-08-02 南京晓庄学院 一种微电网智能中央策略控制系统及方法
CN115642650A (zh) * 2022-12-26 2023-01-24 中国华能集团清洁能源技术研究院有限公司 一种孤网模式下的微电网运行策略确定方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI816613B (zh) * 2022-11-30 2023-09-21 陳正一 多微電網電力調度系統及多微電網電力調度方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106431A1 (en) * 2011-02-02 2012-08-09 Consert Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
CN102810860A (zh) * 2012-08-21 2012-12-05 国电南瑞科技股份有限公司 间歇式能源与常规能源协调调度模式下备用容量分析方法
CN104899798A (zh) * 2015-06-30 2015-09-09 天津大学 一种考虑旋转备用的风电接入系统的暂态风险控制方法
CN105226632A (zh) * 2015-10-30 2016-01-06 上海电力学院 一种直流微电网系统的多模式切换协调控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106431A1 (en) * 2011-02-02 2012-08-09 Consert Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
CN102810860A (zh) * 2012-08-21 2012-12-05 国电南瑞科技股份有限公司 间歇式能源与常规能源协调调度模式下备用容量分析方法
CN104899798A (zh) * 2015-06-30 2015-09-09 天津大学 一种考虑旋转备用的风电接入系统的暂态风险控制方法
CN105226632A (zh) * 2015-10-30 2016-01-06 上海电力学院 一种直流微电网系统的多模式切换协调控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
元博等: "基于可靠性指标的含风电电力系统的发电和运行备用的协调调度模型", 《电网技术》 *
费翊群: "关于发电系统可靠性评估的一些问题", 《电网技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110083107A (zh) * 2019-05-17 2019-08-02 南京晓庄学院 一种微电网智能中央策略控制系统及方法
CN115642650A (zh) * 2022-12-26 2023-01-24 中国华能集团清洁能源技术研究院有限公司 一种孤网模式下的微电网运行策略确定方法及系统

Also Published As

Publication number Publication date
CN108462166B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
Li et al. Energy management and operational control methods for grid battery energy storage systems
CN110544935B (zh) 一种电-氢多能互补直流微电网协调调度方法
CN105846418B (zh) 一种孤岛型微电网实时调度能量管理系统
CN110190597B (zh) 一种分布式电力管理系统
Perrin et al. Lead–acid batteries in stationary applications: competitors and new markets for large penetration of renewable energies
CN109301853A (zh) 一种平抑功率波动的微电网多时间尺度能量管理方法
CN104242337A (zh) 光伏微网系统的实时协调控制方法
Gbadega et al. Impact of incorporating disturbance prediction on the performance of energy management systems in micro-grid
CN108923470A (zh) 多能源船舶能量管理方法和系统
CN110783959B (zh) 一种新能源发电系统的稳定状态控制系统
González‐Rivera et al. Predictive energy management for a wind turbine with hybrid energy storage system
Teng et al. Key technologies and the implementation of wind, PV and storage co-generation monitoring system
CN108462166A (zh) 一种微电网备用容量计算方法和微电网调控方法
CN105375501A (zh) 多时间尺度微电网分层稳定控制方法
Amir et al. Integration of EVs aggregator with microgrid and impact of V2G power on peak regulation
Wei et al. Research on status and prospects of battery energy storage stations on energy internet
CN104578145A (zh) 一种面向智能用电的连续任务型负荷能量控制方法
Banerji et al. Integrating Renewable Energy and Electric Vehicle Systems into Power Grid: Benefits and Challenges
Yang et al. Multi-time scale integration of robust optimization with MPC for islanded hydrogen-based microgrid
CN103001259B (zh) 一种基于退火算法的并网型微电网优化调度方法
Ran et al. Economic dispatch of off-grid photovoltaic generation system with hybrid energy storage
Yang et al. Collaborative optimization of wind-solar-storage configuration in county distribution network considering near-zero carbon emission
Aurangzeb et al. A Novel Hybrid Approach for Power Quality Improvement in a Vehicle-to-Grid Setup Using Droop-ANN Model
CN109004641A (zh) 一种基于能源优化调度的微网源网荷协调控制方法
Aurangzeb et al. Research Article A Novel Hybrid Approach for Power Quality Improvement in a Vehicle-to-Grid Setup Using Droop-ANN Model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant