CN108460730A - 一种图像处理方法及其装置 - Google Patents

一种图像处理方法及其装置 Download PDF

Info

Publication number
CN108460730A
CN108460730A CN201710085931.XA CN201710085931A CN108460730A CN 108460730 A CN108460730 A CN 108460730A CN 201710085931 A CN201710085931 A CN 201710085931A CN 108460730 A CN108460730 A CN 108460730A
Authority
CN
China
Prior art keywords
subregion
pixel
transitional region
mapping
gray level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710085931.XA
Other languages
English (en)
Other versions
CN108460730B (zh
Inventor
郭俊
邵喜斌
陈明
栗首
王洁琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Beijing BOE Display Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Beijing BOE Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Beijing BOE Display Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201710085931.XA priority Critical patent/CN108460730B/zh
Priority to EP17859342.2A priority patent/EP3584760A4/en
Priority to PCT/CN2017/108018 priority patent/WO2018149172A1/zh
Priority to US15/768,908 priority patent/US10755394B2/en
Publication of CN108460730A publication Critical patent/CN108460730A/zh
Application granted granted Critical
Publication of CN108460730B publication Critical patent/CN108460730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20004Adaptive image processing
    • G06T2207/20012Locally adaptive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种图像处理方法及其装置,将获取到的待处理图像转换成灰度色度YUV模式图像;根据YUV模式图像中的灰度图像,确定整幅灰度图像的均衡化映射曲线;按照预设规则将整幅灰度图像划分成多个子区域,并确定各子区域内各像素的映射限制参数;根据确定出的整幅灰度图像的均衡化映射曲线以及各子区域内各像素的映射限制参数,对灰度图像中各像素的灰度值进行调整;将调整后的灰度图像转换成原模式的图像;因此,在对图像进行处理时,使用一条均衡化映射曲线与多个映射限制参数,使得处理后的图像细节得到了很好的展现的同时,大大减少了计算量,实现了在高速度低资源消耗的情况下,显示器的图像得到了有效增强且保留了图像细节。

Description

一种图像处理方法及其装置
技术领域
本发明涉及视频图像处理领域,尤指一种图像处理方法及其装置。
背景技术
为了增强图像对比度和动态范围,通常采用直方图均衡算法对图像进行处理。其中,直方图均衡算法主要有两种实现方式:一是全局直方图均衡算法,即整幅图像使用一个均衡化映射曲线和一个与图像信息丰富度有关的映射限制参数对待处理图像进行调整,如此,不仅可以避免增强对比度的同时劣化图像,还可以尽量的减少计算量,但为了避免出现类似于短板效应的问题,处理后的图像细节往往得不到最恰当的增强;二是局部直方图均衡算法,即将图像分成若干个区域,每个区域使用一个均衡化映射曲线和一个与该区域的信息丰富度有关的映射限制参数对待处理图像进行调整,并且每个区域的均衡化映射曲线均由其周围的区域决定,该方法的最大优点为可以使图像细节得到最恰当的增强,但为了完美地凸显细节,往往导致相当大的计算量。
基于此,采用何种方法实现在完美凸显图像细节的同时实现高速有效的计算,是本领域技术人员亟待解决的技术问题。
发明内容
本发明实施例提供一种图像处理方法及其装置,用以解决现有技术中如何利用全局直方图均衡算法和局部直方图均衡算法,在完美凸显图像细节的同时实现高速有效的计算。
本发明实施例提供了一种图像处理方法,包括:
将获取到的待处理图像转换成灰度色度YUV模式图像;
根据所述YUV模式图像中的灰度图像,确定整幅所述灰度图像的均衡化映射曲线;
按照预设规则将整幅所述灰度图像划分成多个子区域,并确定各所述子区域内各像素的映射限制参数;
根据确定出的整幅所述灰度图像的均衡化映射曲线以及各所述子区域内各像素的映射限制参数,对所述灰度图像中各像素的灰度值进行调整;
将调整后的所述灰度图像转换成原模式的图像。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理方法中,所述根据所述YUV模式图像中的灰度图像,确定整幅所述灰度图像的均衡化映射曲线,具体包括:
确定所述YUV模式图像中的灰度图像的像素深度和灰度直方图,以及所述灰度图像中各像素的像素值与灰度值;
采用如下公式计算整幅所述灰度图像的均衡化映射曲线:
其中,i为所述灰度图像中各像素的灰度值,k为所述灰度图像中各像素的灰度值中的最大灰度值,Si为所述灰度图像的映射值,SUM为所述灰度图像总的像素值,H(i)为所述灰度图像中灰度值为i时的像素的个数,D为所述灰度图像的像素深度。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理方法中,所述按照预设规则将整幅所述灰度图像划分成多个子区域,并确定各所述子区域内各像素的映射限制参数,具体包括:
按照预设规则将整幅所述灰度图像划分成多个过渡区域,并确定各所述过渡区域的过渡映射限制参数;
按照预设规则将各所述过渡区域划分成多个子区域,并根据确定出的各所述过渡区域的过渡映射限制参数,以及设定的线性插值运算规则,确定各所述子区域内各像素的映射限制参数。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理方法中,所述确定各所述过渡区域的过渡映射限制参数,具体包括:
确定各所述过渡区域的灰度平均值和灰度标准差;
采用如下公式计算各所述过渡区域的过渡映射限制参数:
L1x=[Mx×Nmin1+(T1-Mx)×Nmax1]/D
L2x=[Sx×Nmin2+(T2-Sx)×Nmax2]/D
其中,x为各所述过渡区域的编号,Mx为第x个过渡区域的灰度平均值,Sx为第x个过渡区域的灰度标准差,Nmin1和Nmax1分别为预设的与各所述过渡区域的灰度平均值对应的最低限制值和最高限制值,Nmin2和Nmax2分别为预设的与各所述过渡区域的灰度标准差对应的最低限制值和最高限制值,T1为预设的与各所述过渡区域的灰度平均值对应的限制阈值,T2为预设的与各所述过渡区域的灰度标准差对应的限制阈值,D为所述灰度图像的像素深度,L1x为与第x个过渡区域的灰度平均值Mx对应的过渡映射限制参数,L2x为与第x个过渡区域的灰度标准差Sx对应的过渡映射限制参数,Lx为第x个过渡区域的过渡映射限制参数。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理方法中,所述根据确定出的各所述过渡区域的过渡映射限制参数,以及设定的线性插值运算规则,确定各所述子区域内各像素的映射限制参数,具体包括:
根据各所述子区域在所述灰度图像中的位置,确定各所述子区域的所属类别,所属类别包括:位于所述灰度图像中的四个顶角位置的子区域,位于所述灰度图像中除四个顶角之外的边缘位置的子区域,位于所述灰度图像中除边缘位置之外的子区域;
根据确定出的各所述过渡区域的过渡映射限制参数,将位于所述灰度图像中的四个顶角位置的子区域内各像素的映射限制参数确定为所属过渡区域的过渡映射限制参数;
根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的一次线性插值运算规则,确定位于所述灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数;
根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的双线性插值运算规则,确定位于所述灰度图像中除边缘位置之外的子区域内各像素的映射限制参数。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理方法中,所述根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的一次线性插值运算规则,确定位于所述灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数,具体包括:
采用如下公式计算位于所述灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数:
其中,n为位于所述灰度图像中边缘位置的各所述过渡区域的编号,t为第n个过渡区域内且位于所述灰度图像中除四个顶角之外的边缘位置的各所述子区域的编号,r为第t个子区域内的像素的编号,Ln为第n个过渡区域的过渡映射限制参数,Ln’为与第n个过渡区域相邻且位于所述灰度图像中边缘位置的过渡区域的过渡映射限制参数,a为位于第t个子区域内的第r个像素到与第t个子区域相邻的过渡区域的中线的距离,b为位于第t个子区域内的第r个像素到所属过渡区域的中线的距离,λtr为位于第t个子区域内的第r个像素的映射限制参数。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理方法中,所述根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的双线性插值运算规则,确定位于所述灰度图像中除边缘位置之外的子区域内各像素的映射限制参数,具体包括:
采用如下公式计算位于所述灰度图像中除边缘位置之外的子区域内各像素的映射限制参数:
其中,x为各所述过渡区域的编号,p为第x个过渡区域内且位于所述灰度图像中除边缘位置之外的各所述子区域的编号,z为位于第p个子区域内的像素的编号,m为与第p个子区域纵向相邻的过渡区域的编号,q为与第p个子区域纵向相邻且位于第m个过渡区域内的子区域的编号,z’为位于第q个子区域内的像素的编号,Lx为第x个过渡区域的过渡映射限制参数,Lx’为与第p个子区域横向相邻的过渡区域的过渡映射限制参数,Lm为第m个过渡区域的过渡映射限制参数,Lm’为与第q个子区域横向相邻的过渡区域的过渡映射限制参数,c为位于第p个子区域内的第z个像素到与第p个子区域横向相邻的过渡区域的纵向中线的距离,d为位于第p个子区域内的第z个像素到所属过渡区域的纵向中线的距离,c’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到与第q个子区域横向相邻的过渡区域的纵向中线的距离,d’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到所属过渡区域的纵向中线的距离,g为位于第p个子区域内的第z个像素到第m个过渡区域的横向中线的距离,h为位于第p个子区域内的第z个像素到所属过渡区域的横向中线的距离,Tpz为位于第p个子区域内的第z个像素的中间映射限制参数,Tqz’为位于第q个子区域内的第z’个像素的中间映射限制参数,Wpz为位于第p个子区域内的第z个像素的映射限制参数。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理方法中,所述根据确定出的整幅所述灰度图像的均衡化映射曲线以及各所述子区域内各像素的映射限制参数,对所述灰度图像中各像素的灰度值进行调整,具体包括:
采用如下公式对所述灰度图像中各像素的灰度值进行调整:
其中,y为像素的编号,iy为所述灰度图像中第y个像素的灰度值,iy’为调整后的所述灰度图像中第y个像素的灰度值,λy为第y个像素的映射限制参数,Si为所述灰度图像的映射值。
本发明实施例还提供了一种图像处理装置,包括:
第一图像转换模块,用于将获取到的待处理图像转换成灰度色度YUV模式图像;
均衡化映射曲线确定模块,用于根据所述YUV模式图像中的灰度图像,确定整幅所述灰度图像的均衡化映射曲线;
映射限制参数确定模块,用于按照预设规则将整幅所述灰度图像划分成多个子区域,并确定各所述子区域内各像素的映射限制参数;
灰度调整模块,用于根据确定出的整幅所述灰度图像的均衡化映射曲线以及各所述子区域内各像素的映射限制参数,对所述灰度图像中各像素的灰度值进行调整;
第二图像转换模块,用于将调整后的所述灰度图像转换成原模式的图像。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理装置中,所述均衡化映射曲线确定模块具体用于确定所述YUV模式图像中的灰度图像的像素深度和灰度直方图,以及所述灰度图像中各像素的像素值与灰度值;采用如下公式计算整幅所述灰度图像的均衡化映射曲线:
其中,i为所述灰度图像中各像素的灰度值,k为所述灰度图像中各像素的灰度值中的最大灰度值,Si为所述灰度图像的映射值,SUM为所述灰度图像总的像素值,H(i)为所述灰度图像中灰度值为i时的像素的个数,D为所述灰度图像的像素深度。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理装置中,所述映射限制参数确定模块具体用于按照预设规则将整幅所述灰度图像划分成多个过渡区域,并确定各所述过渡区域的过渡映射限制参数;按照预设规则将各所述过渡区域划分成多个子区域,并根据确定出的各所述过渡区域的过渡映射限制参数,以及设定的线性插值运算规则,确定各所述子区域内各像素的映射限制参数。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理装置中,所述映射限制参数确定模块具体用于确定各所述过渡区域的灰度平均值和灰度标准差;采用如下公式计算各所述过渡区域的过渡映射限制参数:
L1x=[Mx×Nmin1+(T1-Mx)×Nmax1]/D
L2x=[Sx×Nmin2+(T2-Sx)×Nmax2]/D
其中,x为各所述过渡区域的编号,Mx为第x个过渡区域的灰度平均值,Sx为第x个过渡区域的灰度标准差,Nmin1和Nmax1分别为预设的与各所述过渡区域的灰度平均值对应的最低限制值和最高限制值,Nmin2和Nmax2分别为预设的与各所述过渡区域的灰度标准差对应的最低限制值和最高限制值,T1为预设的与各所述过渡区域的灰度平均值对应的限制阈值,T2为预设的与各所述过渡区域的灰度标准差对应的限制阈值,D为所述灰度图像的像素深度,L1x为与第x个过渡区域的灰度平均值Mx对应的过渡映射限制参数,L2x为与第x个过渡区域的灰度标准差Sx对应的过渡映射限制参数,Lx为第x个过渡区域的过渡映射限制参数。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理装置中,所述映射限制参数确定模块具体用于根据各所述子区域在所述灰度图像中的位置,确定各所述子区域的所属类别,所属类别包括:位于所述灰度图像中的四个顶角位置的子区域,位于所述灰度图像中除四个顶角之外的边缘位置的子区域,位于所述灰度图像中除边缘位置之外的子区域;根据确定出的各所述过渡区域的过渡映射限制参数,将位于所述灰度图像中的四个顶角位置的子区域内各像素的映射限制参数确定为所属过渡区域的过渡映射限制参数;根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的一次线性插值运算规则,确定位于所述灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数;根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的双线性插值运算规则,确定位于所述灰度图像中除边缘位置之外的子区域内各像素的映射限制参数。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理装置中,所述映射限制参数确定模块具体用于采用如下公式计算位于所述灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数:
其中,n为位于所述灰度图像中边缘位置的各所述过渡区域的编号,t为第n个过渡区域内且位于所述灰度图像中除四个顶角之外的边缘位置的各所述子区域的编号,r为第t个子区域内的像素的编号,Ln为第n个过渡区域的过渡映射限制参数,Ln’为与第n个过渡区域相邻且位于所述灰度图像中边缘位置的过渡区域的过渡映射限制参数,a为位于第t个子区域内的第r个像素到与第t个子区域相邻的过渡区域的中线的距离,b为位于第t个子区域内的第r个像素到所属过渡区域的中线的距离,λtr为位于第t个子区域内的第r个像素的映射限制参数。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理装置中,所述映射限制参数确定模块具体用于采用如下公式计算位于所述灰度图像中除边缘位置之外的子区域内各像素的映射限制参数:
其中,x为各所述过渡区域的编号,p为第x个过渡区域内且位于所述灰度图像中除边缘位置之外的各所述子区域的编号,z为位于第p个子区域内的像素的编号,m为与第p个子区域纵向相邻的过渡区域的编号,q为与第p个子区域纵向相邻且位于第m个过渡区域内的子区域的编号,z’为位于第q个子区域内的像素的编号,Lx为第x个过渡区域的过渡映射限制参数,Lx’为与第p个子区域横向相邻的过渡区域的过渡映射限制参数,Lm为第m个过渡区域的过渡映射限制参数,Lm’为与第q个子区域横向相邻的过渡区域的过渡映射限制参数,c为位于第p个子区域内的第z个像素到与第p个子区域横向相邻的过渡区域的纵向中线的距离,d为位于第p个子区域内的第z个像素到所属过渡区域的纵向中线的距离,c’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到与第q个子区域横向相邻的过渡区域的纵向中线的距离,d’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到所属过渡区域的纵向中线的距离,g为位于第p个子区域内的第z个像素到第m个过渡区域的横向中线的距离,h为位于第p个子区域内的第z个像素到所属过渡区域的横向中线的距离,Tpz为位于第p个子区域内的第z个像素的中间映射限制参数,Tqz’为位于第q个子区域内的第z’个像素的中间映射限制参数,Wpz为位于第p个子区域内的第z个像素的映射限制参数。
在一种可能的实施方式中,在本发明实施例提供的上述图像处理装置中,所述灰度调整模块具体用于采用如下公式对所述灰度图像中各像素的灰度值进行调整:
其中,y为像素的编号,iy为所述灰度图像中第y个像素的灰度值,iy’为调整后的所述灰度图像中第y个像素的灰度值,λy为第y个像素的映射限制参数,Si为所述灰度图像的映射值。
本发明有益效果如下:
本发明实施例提供的上述图像处理方法及其装置,首先将获取到的待处理图像转换成灰度色度YUV模式图像;根据YUV模式图像中的灰度图像,确定整幅灰度图像的均衡化映射曲线;按照预设规则将整幅灰度图像划分成多个子区域,并确定各子区域内各像素的映射限制参数;根据确定出的整幅灰度图像的均衡化映射曲线以及各子区域内各像素的映射限制参数,对灰度图像中各像素的灰度值进行调整;将调整后的灰度图像转换成原模式的图像;因此,通过结合全局直方图均衡算法与局部直方图均衡算法,使得在对图像进行处理时,使用一条均衡化映射曲线与多个映射限制参数,在对灰度图像进行灰度调整后,图像的细节得到了很好的展现;同时,由于该方法使用一条均衡化映射曲线与多个映射限制参数,与传统的局部直方图均衡算法相比,大大减少了计算量,实现了在高速度低资源消耗的情况下,显示器的图像得到了有效增强且保留了图像细节。
附图说明
图1为本发明实施例中提供的一种图像处理方法的流程图;
图2a至2c为本发明实施例中提供的灰度图像的分区示意图;
图3为本发明实施例中提供的实施例一的方法的流程图;
图4为本发明实施例中提供的一种图像处理装置的结构示意图。
具体实施方式
下面将结合附图,对本发明实施例提供的一种图像处理及其装置的具体实施方式进行详细地说明。需要说明的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种图像处理方法,如图1所示,可以包括:
S101、将获取到的待处理图像转换成YUV模式图像;
S102、根据YUV模式图像中的灰度图像,确定整幅灰度图像的均衡化映射曲线;
S103、按照预设规则将整幅灰度图像划分成多个子区域,并确定各子区域内各像素的映射限制参数;
S104、根据确定出的整幅灰度图像的均衡化映射曲线以及各子区域内各像素的映射限制参数,对灰度图像中各像素的灰度值进行调整;
S105、将调整后的灰度图像转换成原模式的图像。
本发明实施例提供的上述图像处理方法,通过结合全局直方图均衡算法与局部直方图均衡算法,使得在对图像进行处理时,使用一条均衡化映射曲线与多个映射限制参数,在对灰度图像进行灰度调整后,图像的细节得到了很好的展现;同时,由于该方法使用一条均衡化映射曲线与多个映射限制参数,与传统的局部直方图均衡算法相比,大大减少了计算量,实现了在高速度低资源消耗的情况下,显示器的图像得到了有效增强且保留了图像细节。
在具体实施时,YUV模式图像指的是灰度色度图像,其中“Y”表示图像的灰度,“U”和“V”均表示图像的色度,用于描述图像的色彩和饱和度;具体地,在将获取到的待处理图像转换成YUV模式图像时,待处理图像的模式可以是红绿蓝(Red Green Blue,RGB)模式图像,还可以是其他模式图像,在此不作限定;但不管是何种模式的待处理图像,在对图像进行处理时,首先需要将图像转换成YUV模式图像。
在具体实施时,为了得到整幅灰度图像的均衡化映射曲线,在本发明实施例提供的上述图像处理方法中的步骤S102根据YUV模式图像中的灰度图像,确定整幅灰度图像的均衡化映射曲线,可以具体包括:
确定YUV模式图像中的灰度图像的像素深度和灰度直方图,以及灰度图像中各像素的像素值与灰度值;
采用如下公式计算整幅灰度图像的均衡化映射曲线:
其中,i为灰度图像中各像素的灰度值,k为灰度图像中各像素的灰度值中的最大灰度值,Si为灰度图像的映射值,SUM为灰度图像总的像素值,H(i)为灰度图像中灰度值为i时的像素的个数,D为灰度图像的像素深度。
具体地,本发明实施例提供的上述图像处理方法,主要针对灰度图像进行处理,所以,在对YUV图像处理之前,首先需要获取YUV图像中的灰度图像,通过对获取到的灰度图像的扫描,可以获得灰度图像的一系列参数,包括灰度图像的像素深度和灰度直方图统计结果,以及灰度图像中各像素的像素值和灰度值,进而可以得到灰度图像总的像素值,以便于确定整幅灰度图像的均衡化映射曲线。
进一步地,在计算整幅灰度图像的均衡化映射曲线过程中,需要获得灰度图像的像素深度,而像素深度与灰阶数量有关,当灰度图像的灰阶数量为256位时,灰度图像的像素深度为255,当灰度图像的灰阶数量为1024位时,灰度图像的像素深度为1023,因此,像素深度的选择需要根据具体的灰度图像的灰阶数量来确定,在此不作限定。
在具体实施时,为了得到各子区域内各像素的映射限制参数,在本发明实施例提供的上述图像处理方法中的步骤S103按照预设规则将整幅灰度图像划分成多个子区域,并确定各子区域内各像素的映射限制参数,可以具体包括:
按照预设规则将整幅灰度图像划分成多个过渡区域,并确定各过渡区域的过渡映射限制参数;
按照预设规则将各过渡区域划分成多个子区域,并根据确定出的各过渡区域的过渡映射限制参数,以及设定的线性插值运算规则,确定各子区域内各像素的映射限制参数。
具体地,在按照预设规则将整幅灰度图像划分成多个过渡区域,或按照预设规则将各过渡区域划分成多个子区域时,遵循的预设规则可以是等分,也可以是不等分,例如图2a所示,将整幅灰度图像等分成64个过渡区域,以过渡区域210、过渡区域220、过渡区域230、以及过渡区域240为例,这四个过渡区域的大小均相等。
具体地,为了确定各过渡区域的过渡映射限制参数,在本发明实施例提供的上述图像处理方法中,可以具体包括:
确定各过渡区域的灰度平均值和灰度标准差;
采用如下公式计算各过渡区域的过渡映射限制参数:
L1x=[Mx×Nmin1+(T1-Mx)×Nmax1]/D
L2x=[Sx×Nmin2+(T2-Sx)×Nmax2]/D
其中,x为各过渡区域的编号,Mx为第x个过渡区域的灰度平均值,Sx为第x个过渡区域的灰度标准差,Nmin1和Nmax1分别为预设的与各过渡区域的灰度平均值对应的最低限制值和最高限制值,Nmin2和Nmax2分别为预设的与各过渡区域的灰度标准差对应的最低限制值和最高限制值,T1为预设的与各过渡区域的灰度平均值对应的限制阈值,T2为预设的与各过渡区域的灰度标准差对应的限制阈值,D为灰度图像的像素深度,L1x为与第x个过渡区域的灰度平均值Mx对应的过渡映射限制参数,L2x为与第x个过渡区域的灰度标准差Sx对应的过渡映射限制参数,Lx为第x个过渡区域的过渡映射限制参数。
具体地,在确定各过渡区域的灰度平均值和灰度标准差时,可以采用现有技术中求取灰度平均值和灰度标准差的方法,重复之处不再赘述。
具体地,在计算各过渡区域的过渡映射限制参数时,涉及到的与各过渡区域的灰度平均值对应的最低限制值Nmin1和最高限制值Nmax1、与各过渡区域的灰度标准差对应的最低限制值Nmin2和最高限制值Nmax2分别是根据图像的混乱度而预先设定的经验值,数值可以为整数,也可以为非整数;并且,与各过渡区域的灰度平均值对应的最低限制值Nmin1和与各过渡区域的灰度标准差对应的最低限制值Nmin2可以相等,也可以不相等,与各过渡区域的灰度平均值对应的最高限制值Nmax1和与各过渡区域的灰度标准差对应的最高限制值Nmax2可以相等,也可以不相等;另外,与各过渡区域的灰度平均值对应的限制阈值T1,和与各过渡区域的灰度标准差对应的限制阈值T2同样是预先设定的经验值,当灰度平均值Mx大于其对应的限制阈值T1,或灰度标准差Sx大于其对应的限制阈值T2时,则确定灰度平均值Mx为对应的限制阈值T1,或灰度标准差Sx为对应的限制阈值T2,当灰度平均值Mx小于或等于对应的限制阈值T1,或灰度标准差Sx小于或等于对应的限制阈值T2时,则确定灰度平均值Mx或灰度标准差Sx为各自的数值;并且,与各过渡区域的灰度平均值对应的限制阈值T1,和与各过渡区域的灰度标准差对应的限制阈值T2可以相等,也可以不相等;因此,对于上述六个参数的数值选择,需要根据具体灰度图像而确定,在此不做限定。
具体地,为了确定各子区域内各像素的映射限制参数,并且消除过渡区域之间产生的区块效应,在本发明实施例提供的上述图像处理方法中,根据确定出的各过渡区域的过渡映射限制参数,以及设定的线性插值运算规则,确定各子区域内各像素的映射限制参数,可以具体包括:
根据各子区域在灰度图像中的位置,确定各子区域的所属类别,所属类别包括:位于灰度图像中的四个顶角位置的子区域,位于灰度图像中除四个顶角之外的边缘位置的子区域,位于灰度图像中除边缘位置之外的子区域;
根据确定出的各过渡区域的过渡映射限制参数,将位于灰度图像中的四个顶角位置的子区域内各像素的映射限制参数确定为所属过渡区域的过渡映射限制参数;
根据确定出的各过渡区域的过渡映射限制参数,按照预设的一次线性插值运算规则,确定位于灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数;
根据确定出的各过渡区域的过渡映射限制参数,按照预设的双线性插值运算规则,确定位于灰度图像中除边缘位置之外的子区域内各像素的映射限制参数。
具体地,如图2b为图2a的局部放大图,子区域211、子区域212、子区域213、以及子区域214组成了过渡区域210,子区域221、子区域222、子区域223、以及子区域224组成了过渡区域220,子区域231、子区域232、子区域233、以及子区域234组成了过渡区域230,其中,子区域211位于灰度图像中的顶角位置,因此子区域211内各像素的映射限制参数为子区域211所属的过渡区域210的过渡映射限制参数;子区域212为位于灰度图像中除顶角之外的边缘位置,因此,按照预设的一次线性插值运算规则,确定子区域212内各像素的映射限制参数;子区域214为位于灰度图像中除边缘位置之外的位置,因此,按照预设的双线性插值运算规则,确定子区域214内各像素的映射限制参数。
具体地,为了得到位于灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数,在本发明实施例提供的上述图像处理方法中,根据确定出的各过渡区域的过渡映射限制参数,按照预设的一次线性插值运算规则,确定位于灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数,可以具体包括:
采用如下公式计算位于灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数:
其中,n为位于所述灰度图像中边缘位置的各所述过渡区域的编号,t为第n个过渡区域内且位于所述灰度图像中除四个顶角之外的边缘位置的各所述子区域的编号,r为第t个子区域内的像素的编号,Ln为第n个过渡区域的过渡映射限制参数,Ln’为与第n个过渡区域相邻且位于所述灰度图像中边缘位置的过渡区域的过渡映射限制参数,a为位于第t个子区域内的第r个像素到与第t个子区域相邻的过渡区域的中线的距离,b为位于第t个子区域内的第r个像素到所属过渡区域的中线的距离,λtr为位于第t个子区域内的第r个像素的映射限制参数。
具体地,在做线性插值运算时,包括横向插值运算和纵向插值运算,当做横向插值运算时,a为位于第t个子区域内的第r个像素到与第t个子区域横向相邻的过渡区域的纵向中线的距离,b为位于第t个子区域内的第r个像素到所属过渡区域的纵向中线的距离;当做纵向插值运算时,a为位于第t个子区域内的第r个像素到与第t个子区域纵向相邻的过渡区域的横向中线的距离,b为位于第t个子区域内的第r个像素到所属过渡区域的横向中线的距离。
例如,如图2b为图2a的局部放大图,以确定位于灰度图像中除顶角之外的边缘位置的子区域212内的第r个像素的映射限制参数λ212r为例,需要做横向插值运算,根据插值运算公式:λ212r=(a×L210+b×L220)/(a+b),其中,L210为过渡区域210的过渡映射限制参数,L220为过渡区域220的过渡映射限制参数,a为位于子区域212内的第r个像素到过渡区域220的纵向中线的距离,b为位于子区域212内的第r个像素到过渡区域210的纵向中线的距离,λ212r为子区域212内的第r个像素的映射限制参数。
当确定子区域213内的第r’个像素的映射限制参数时,需要做纵向插值运算,根据插值运算公式:λ213r’=(a’×L210+b’×L230)/(a’+b’),其中,L210为过渡区域210的过渡映射限制参数,L230为过渡区域230的过渡映射限制参数,a为位于子区域213内的第r’个像素到过渡区域230的横向中线的距离,b为位于子区域213内的第r’个像素到过渡区域210的横向中线的距离,得到子区域213内的第r’个像素的映射限制参数λ213r’。
具体地,为了得到位于灰度图像中除边缘位置之外的子区域内各像素的映射限制参数,在本发明实施例提供的上述图像处理方法中,根据确定出的各过渡区域的过渡映射限制参数,按照预设的双线性插值运算规则,确定位于灰度图像中除边缘位置之外的子区域内各像素的映射限制参数,可以具体包括:
采用如下公式计算位于灰度图像中除边缘位置之外的子区域内各像素的映射限制参数:
其中,x为各所述过渡区域的编号,p为第x个过渡区域内且位于所述灰度图像中除边缘位置之外的各所述子区域的编号,z为位于第p个子区域内的像素的编号,m为与第p个子区域纵向相邻的过渡区域的编号,q为与第p个子区域纵向相邻且位于第m个过渡区域内的子区域的编号,z’为位于第q个子区域内的像素的编号,Lx为第x个过渡区域的过渡映射限制参数,Lx’为与第p个子区域横向相邻的过渡区域的过渡映射限制参数,Lm为第m个过渡区域的过渡映射限制参数,Lm’为与第q个子区域横向相邻的过渡区域的过渡映射限制参数,c为位于第p个子区域内的第z个像素到与第p个子区域横向相邻的过渡区域的纵向中线的距离,d为位于第p个子区域内的第z个像素到所属过渡区域的纵向中线的距离,c’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到与第q个子区域横向相邻的过渡区域的纵向中线的距离,d’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到所属过渡区域的纵向中线的距离,g为位于第p个子区域内的第z个像素到第m个过渡区域的横向中线的距离,h为位于第p个子区域内的第z个像素到所属过渡区域的横向中线的距离,Tpz为位于第p个子区域内的第z个像素的中间映射限制参数,Tqz’为位于第q个子区域内的第z’个像素的中间映射限制参数,Wpz为位于第p个子区域内的第z个像素的映射限制参数。
具体地,在按照预设的双线性插值运算规则,确定位于灰度图像中除边缘位置之外的子区域内各像素的映射限制参数时,需要做两次插值运算,其中,第一次插值运算为横向插值运算,在得到两个中间映射限制参数之后,利用这两个中间映射限制参数做第二次插值运算,且该次插值运算为纵向插值运算。
例如,如图2c为图2a的局部放大图,子区域214属于过渡区域210,子区域223属于过渡区域220,子区域232属于过渡区域230,子区域241属于过渡区域240,以计算子区域214内的第z个像素的映射限制参数为例,首先做横向插值运算,根据插值公式:T214z=(c×L210+d×L220)/(c+d)和T232z’=(c’×L230+d’×L240)/(c’+d’),其中,L210为过渡区域210的过渡映射限制参数,L220为过渡区域220的过渡映射限制参数,L230为过渡区域230的过渡映射限制参数,L240为过渡区域240的过渡映射限制参数,c为位于子区域214内的第z个像素到过渡区域220的纵向中线的距离,d为位于子区域214内的第z个像素到过渡区域210的纵向中线的距离,c’为位于子区域232内且与第z个像素处于同一列的第z’个像素到过渡区域240的纵向中线的距离,d’为位于子区域232内且与第z个像素处于同一列的第z’个像素到过渡区域230的纵向中线的距离,通过上述公式得到子区域214内的第z个像素的中间映射限制参数T214z以及子区域232内的第z’个像素的中间映射限制参数T232z’
再次,根据得到的子区域214内的第z个像素的中间映射限制参数T214z以及子区域232内的第z’个像素的中间映射限制参数T232z’,做纵向插值运算,根据插值公式:W214z=(g×T214z+h×T232z’)/(g+h),其中,g为位于子区域214内的第z个像素到过渡区域230的横向中线的距离,h为位于子区域214内的第z个像素到过渡区域210的横向中线的距离,得到子区域214内的第z个像素的映射限制参数W214z;当然还可以用λ214z表示子区域214内的第z个像素的映射限制参数,W214z和λ214z表示的含义一样,均为子区域214内的第z个像素的映射限制参数。
在具体实施时,为了调整灰度图像中各像素的灰度值,在本发明实施例提供的上述图像处理方法中的步骤S104根据确定出的整幅灰度图像的均衡化映射曲线以及各子区域内各像素的映射限制参数,对灰度图像中各像素的灰度值进行调整,可以具体包括:
采用如下公式对灰度图像中各像素的灰度值进行调整:
其中,y为像素的编号,iy为灰度图像中第y个像素的灰度值,iy’为调整后的灰度图像中第y个像素的灰度值,λy为第y个像素的映射限制参数,Si为灰度图像的映射值。
具体地,根据上述计算可知,调整后的灰度图像中第y个像素的灰度值iy’位于第y个像素的灰度值iy和灰度图像的映射值Si之间,当第y个像素的映射限制参数λy越大时,调整后的第y个像素的灰度值iy’越接近灰度图像的映射值Si
下面将结合具体实施例详细说明本发明实施例提供的上述图像处理方法。
实施例一:如图3的方法的流程图。
S301、将获取到的待处理图像转换成YUV模式图像;
S302、获取YUV模式图像中的灰度图像;
S303、根据获取到的灰度图像,确定整幅灰度图像的均衡化映射曲线;
S304、按照预设规则将整幅灰度图像划分成多个过渡区域;
S305、确定各过渡区域的过渡映射限制参数;
S306、按照预设规则将各过渡区域划分成多个子区域;
S307、根据各子区域在灰度图像中的位置,确定各子区域的所属类别;
S308、根据确定出的各过渡区域的过渡映射限制参数,各子区域的所属类别、以及设定的线性插值运算规则,确定各子区域内各像素的映射限制参数;
S309、根据确定出的整幅灰度图像的均衡化映射曲线以及各子区域内各像素的映射限制参数,对灰度图像中各像素的灰度值进行调整;
S310、将调整后的灰度图像转换成原模式的图像。
基于同一发明构思,本发明实施例还提供了一种图像处理装置,由于该装置解决问题的原理与前述一种图像处理方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
具体地,本发明实施例提供的上述图像处理装置,如图4所示,可以包括:
第一图像转换模块401,用于将获取到的待处理图像转换成灰度色度YUV模式图像;
均衡化映射曲线确定模块402,用于根据YUV模式图像中的灰度图像,确定整幅灰度图像的均衡化映射曲线;
映射限制参数确定模块403,用于按照预设规则将整幅灰度图像划分成多个子区域,并确定各子区域内各像素的映射限制参数;
灰度调整模块404,用于根据确定出的整幅灰度图像的均衡化映射曲线以及各子区域内各像素的映射限制参数,对灰度图像中各像素的灰度值进行调整;
第二图像转换模块405,用于将调整后的灰度图像转换成原模式的图像。
在具体实施时,在本发明实施例提供的上述图像处理装置中,均衡化映射曲线确定模块402具体用于确定YUV模式图像中的灰度图像的像素深度和灰度直方图,以及灰度图像中各像素的像素值与灰度值;采用如下公式计算整幅灰度图像的均衡化映射曲线:
其中,i为灰度图像中各像素的灰度值,k为灰度图像中各像素的灰度值中的最大灰度值,Si为灰度图像的映射值,SUM为灰度图像总的像素值,H(i)为灰度图像中灰度值为i时的像素的个数,D为灰度图像的像素深度。
在具体实施时,在本发明实施例提供的上述图像处理装置中,映射限制参数确定模块403具体用于按照预设规则将整幅灰度图像划分成多个过渡区域,并确定各过渡区域的过渡映射限制参数;按照预设规则将各过渡区域划分成多个子区域,并根据确定出的各过渡区域的过渡映射限制参数,以及设定的线性插值运算规则,确定各子区域内各像素的映射限制参数。
具体地,在本发明实施例提供的上述图像处理装置中,映射限制参数确定模块403具体用于确定各过渡区域的灰度平均值和灰度标准差;采用如下公式计算各过渡区域的过渡映射限制参数:
L1x=[Mx×Nmin1+(T1-Mx)×Nmax1]/D
L2x=[Sx×Nmin2+(T2-Sx)×Nmax2]/D
其中,x为各过渡区域的编号,Mx为第x个过渡区域的灰度平均值,Sx为第x个过渡区域的灰度标准差,Nmin1和Nmax1分别为预设的与各过渡区域的灰度平均值对应的最低限制值和最高限制值,Nmin2和Nmax2分别为预设的与各过渡区域的灰度标准差对应的最低限制值和最高限制值,T1为预设的与各过渡区域的灰度平均值对应的限制阈值,T2为预设的与各过渡区域的灰度标准差对应的限制阈值,D为灰度图像的像素深度,L1x为与第x个过渡区域的灰度平均值Mx对应的过渡映射限制参数,L2x为与第x个过渡区域的灰度标准差Sx对应的过渡映射限制参数,Lx为第x个过渡区域的过渡映射限制参数。
具体地,在本发明实施例提供的上述图像处理装置中,映射限制参数确定模块403具体用于根据各子区域在灰度图像中的位置,确定各子区域的所属类别,所属类别包括:位于灰度图像中的四个顶角位置的子区域,位于灰度图像中除四个顶角之外的边缘位置的子区域,位于灰度图像中除边缘位置之外的子区域;根据确定出的各过渡区域的过渡映射限制参数,将位于灰度图像中的四个顶角位置的子区域内各像素的映射限制参数确定为所属过渡区域的过渡映射限制参数;根据确定出的各过渡区域的过渡映射限制参数,按照预设的一次线性插值运算规则,确定位于灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数;根据确定出的各过渡区域的过渡映射限制参数,按照预设的双线性插值运算规则,确定位于灰度图像中除边缘位置之外的子区域内各像素的映射限制参数。
具体地,在本发明实施例提供的上述图像处理装置中,映射限制参数确定模块403具体用于采用如下公式计算位于灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数:
其中,n为位于所述灰度图像中边缘位置的各所述过渡区域的编号,t为第n个过渡区域内且位于所述灰度图像中除四个顶角之外的边缘位置的各所述子区域的编号,r为第t个子区域内的像素的编号,Ln为第n个过渡区域的过渡映射限制参数,Ln’为与第n个过渡区域相邻且位于所述灰度图像中边缘位置的过渡区域的过渡映射限制参数,a为位于第t个子区域内的第r个像素到与第t个子区域相邻的过渡区域的中线的距离,b为位于第t个子区域内的第r个像素到所属过渡区域的中线的距离,λtr为位于第t个子区域内的第r个像素的映射限制参数。
具体地,在本发明实施例提供的上述图像处理装置中,映射限制参数确定模块403具体用于采用如下公式计算位于灰度图像中除边缘位置之外的子区域内各像素的映射限制参数:
其中,x为各所述过渡区域的编号,p为第x个过渡区域内且位于所述灰度图像中除边缘位置之外的各所述子区域的编号,z为位于第p个子区域内的像素的编号,m为与第p个子区域纵向相邻的过渡区域的编号,q为与第p个子区域纵向相邻且位于第m个过渡区域内的子区域的编号,z’为位于第q个子区域内的像素的编号,Lx为第x个过渡区域的过渡映射限制参数,Lx’为与第p个子区域横向相邻的过渡区域的过渡映射限制参数,Lm为第m个过渡区域的过渡映射限制参数,Lm’为与第q个子区域横向相邻的过渡区域的过渡映射限制参数,c为位于第p个子区域内的第z个像素到与第p个子区域横向相邻的过渡区域的纵向中线的距离,d为位于第p个子区域内的第z个像素到所属过渡区域的纵向中线的距离,c’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到与第q个子区域横向相邻的过渡区域的纵向中线的距离,d’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到所属过渡区域的纵向中线的距离,g为位于第p个子区域内的第z个像素到第m个过渡区域的横向中线的距离,h为位于第p个子区域内的第z个像素到所属过渡区域的横向中线的距离,Tpz为位于第p个子区域内的第z个像素的中间映射限制参数,Tqz’为位于第q个子区域内的第z’个像素的中间映射限制参数,Wpz为位于第p个子区域内的第z个像素的映射限制参数。
在具体实施时,在本发明实施例提供的上述图像处理装置中,灰度调整模块404具体用于采用如下公式对灰度图像中各像素的灰度值进行调整:
其中,y为像素的编号,iy为灰度图像中第y个像素的灰度值,iy’为调整后的灰度图像中第y个像素的灰度值,λy为第y个像素的映射限制参数,Si为灰度图像的映射值。
本发明实施例提供了一种图像处理方法及其装置,首先将获取到的待处理图像转换成灰度色度YUV模式图像;根据YUV模式图像中的灰度图像,确定整幅灰度图像的均衡化映射曲线;按照预设规则将整幅灰度图像划分成多个子区域,并确定各子区域内各像素的映射限制参数;根据确定出的整幅灰度图像的均衡化映射曲线以及各子区域内各像素的映射限制参数,对灰度图像中各像素的灰度值进行调整;将调整后的灰度图像转换成原模式的图像;因此,通过结合全局直方图均衡算法与局部直方图均衡算法,使得在对图像进行处理时,使用一条均衡化映射曲线与多个映射限制参数,在对灰度图像进行灰度调整后,图像的细节得到了很好的展现;同时,由于该方法使用一条均衡化映射曲线与多个映射限制参数,与传统的局部直方图均衡算法相比,大大减少了计算量,实现了在高速度低资源消耗的情况下,显示器的图像得到了有效增强且保留了图像细节。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (16)

1.一种图像处理方法,其特征在于,包括:
将获取到的待处理图像转换成灰度色度YUV模式图像;
根据所述YUV模式图像中的灰度图像,确定整幅所述灰度图像的均衡化映射曲线;
按照预设规则将整幅所述灰度图像划分成多个子区域,并确定各所述子区域内各像素的映射限制参数;
根据确定出的整幅所述灰度图像的均衡化映射曲线以及各所述子区域内各像素的映射限制参数,对所述灰度图像中各像素的灰度值进行调整;
将调整后的所述灰度图像转换成原模式的图像。
2.如权利要求1所述的图像处理方法,其特征在于,所述根据所述YUV模式图像中的灰度图像,确定整幅所述灰度图像的均衡化映射曲线,具体包括:
确定所述YUV模式图像中的灰度图像的像素深度和灰度直方图,以及所述灰度图像中各像素的像素值与灰度值;
采用如下公式计算整幅所述灰度图像的均衡化映射曲线:
其中,i为所述灰度图像中各像素的灰度值,k为所述灰度图像中各像素的灰度值中的最大灰度值,Si为所述灰度图像的映射值,SUM为所述灰度图像总的像素值,H(i)为所述灰度图像中灰度值为i时的像素的个数,D为所述灰度图像的像素深度。
3.如权利要求2所述的图像处理方法,其特征在于,所述按照预设规则将整幅所述灰度图像划分成多个子区域,并确定各所述子区域内各像素的映射限制参数,具体包括:
按照预设规则将整幅所述灰度图像划分成多个过渡区域,并确定各所述过渡区域的过渡映射限制参数;
按照预设规则将各所述过渡区域划分成多个子区域,并根据确定出的各所述过渡区域的过渡映射限制参数,以及设定的线性插值运算规则,确定各所述子区域内各像素的映射限制参数。
4.如权利要求3所述的图像处理方法,其特征在于,所述确定各所述过渡区域的过渡映射限制参数,具体包括:
确定各所述过渡区域的灰度平均值和灰度标准差;
采用如下公式计算各所述过渡区域的过渡映射限制参数:
L1x=[Mx×Nmin1+(T1-Mx)×Nmax1]/D
L2x=[Sx×Nmin2+(T2-Sx)×Nmax2]/D
其中,x为各所述过渡区域的编号,Mx为第x个过渡区域的灰度平均值,Sx为第x个过渡区域的灰度标准差,Nmin1和Nmax1分别为预设的与各所述过渡区域的灰度平均值对应的最低限制值和最高限制值,Nmin2和Nmax2分别为预设的与各所述过渡区域的灰度标准差对应的最低限制值和最高限制值,T1为预设的与各所述过渡区域的灰度平均值对应的限制阈值,T2为预设的与各所述过渡区域的灰度标准差对应的限制阈值,D为所述灰度图像的像素深度,L1x为与第x个过渡区域的灰度平均值Mx对应的过渡映射限制参数,L2x为与第x个过渡区域的灰度标准差Sx对应的过渡映射限制参数,Lx为第x个过渡区域的过渡映射限制参数。
5.如权利要求3所述的图像处理方法,其特征在于,所述根据确定出的各所述过渡区域的过渡映射限制参数,以及设定的线性插值运算规则,确定各所述子区域内各像素的映射限制参数,具体包括:
根据各所述子区域在所述灰度图像中的位置,确定各所述子区域的所属类别,所属类别包括:位于所述灰度图像中的四个顶角位置的子区域,位于所述灰度图像中除四个顶角之外的边缘位置的子区域,位于所述灰度图像中除边缘位置之外的子区域;
根据确定出的各所述过渡区域的过渡映射限制参数,将位于所述灰度图像中的四个顶角位置的子区域内各像素的映射限制参数确定为所属过渡区域的过渡映射限制参数;
根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的一次线性插值运算规则,确定位于所述灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数;
根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的双线性插值运算规则,确定位于所述灰度图像中除边缘位置之外的子区域内各像素的映射限制参数。
6.如权利要求5所述的图像处理方法,其特征在于,所述根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的一次线性插值运算规则,确定位于所述灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数,具体包括:
采用如下公式计算位于所述灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数:
其中,n为位于所述灰度图像中边缘位置的各所述过渡区域的编号,t为第n个过渡区域内且位于所述灰度图像中除四个顶角之外的边缘位置的各所述子区域的编号,r为第t个子区域内的像素的编号,Ln为第n个过渡区域的过渡映射限制参数,Ln’为与第n个过渡区域相邻且位于所述灰度图像中边缘位置的过渡区域的过渡映射限制参数,a为位于第t个子区域内的第r个像素到与第t个子区域相邻的过渡区域的中线的距离,b为位于第t个子区域内的第r个像素到所属过渡区域的中线的距离,λtr为位于第t个子区域内的第r个像素的映射限制参数。
7.如权利要求5所述的图像处理方法,其特征在于,所述根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的双线性插值运算规则,确定位于所述灰度图像中除边缘位置之外的子区域内各像素的映射限制参数,具体包括:
采用如下公式计算位于所述灰度图像中除边缘位置之外的子区域内各像素的映射限制参数:
其中,x为各所述过渡区域的编号,p为第x个过渡区域内且位于所述灰度图像中除边缘位置之外的各所述子区域的编号,z为位于第p个子区域内的像素的编号,m为与第p个子区域纵向相邻的过渡区域的编号,q为与第p个子区域纵向相邻且位于第m个过渡区域内的子区域的编号,z’为位于第q个子区域内的像素的编号,Lx为第x个过渡区域的过渡映射限制参数,Lx’为与第p个子区域横向相邻的过渡区域的过渡映射限制参数,Lm为第m个过渡区域的过渡映射限制参数,Lm’为与第q个子区域横向相邻的过渡区域的过渡映射限制参数,c为位于第p个子区域内的第z个像素到与第p个子区域横向相邻的过渡区域的纵向中线的距离,d为位于第p个子区域内的第z个像素到所属过渡区域的纵向中线的距离,c’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到与第q个子区域横向相邻的过渡区域的纵向中线的距离,d’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到所属过渡区域的纵向中线的距离,g为位于第p个子区域内的第z个像素到第m个过渡区域的横向中线的距离,h为位于第p个子区域内的第z个像素到所属过渡区域的横向中线的距离,Tpz为位于第p个子区域内的第z个像素的中间映射限制参数,Tqz’为位于第q个子区域内的第z’个像素的中间映射限制参数,Wpz为位于第p个子区域内的第z个像素的映射限制参数。
8.如权利要求5所述的图像处理方法,其特征在于,所述根据确定出的整幅所述灰度图像的均衡化映射曲线以及各所述子区域内各像素的映射限制参数,对所述灰度图像中各像素的灰度值进行调整,具体包括:
采用如下公式对所述灰度图像中各像素的灰度值进行调整:
其中,y为像素的编号,iy为所述灰度图像中第y个像素的灰度值,iy’为调整后的所述灰度图像中第y个像素的灰度值,λy为第y个像素的映射限制参数,Si为所述灰度图像的映射值。
9.一种图像处理装置,其特征在于,包括:
第一图像转换模块,用于将获取到的待处理图像转换成灰度色度YUV模式图像;
均衡化映射曲线确定模块,用于根据所述YUV模式图像中的灰度图像,确定整幅所述灰度图像的均衡化映射曲线;
映射限制参数确定模块,用于按照预设规则将整幅所述灰度图像划分成多个子区域,并确定各所述子区域内各像素的映射限制参数;
灰度调整模块,用于根据确定出的整幅所述灰度图像的均衡化映射曲线以及各所述子区域内各像素的映射限制参数,对所述灰度图像中各像素的灰度值进行调整;
第二图像转换模块,用于将调整后的所述灰度图像转换成原模式的图像。
10.如权利要求9所述的图像处理装置,其特征在于,所述均衡化映射曲线确定模块具体用于确定所述YUV模式图像中的灰度图像的像素深度和灰度直方图,以及所述灰度图像中各像素的像素值与灰度值;采用如下公式计算整幅所述灰度图像的均衡化映射曲线:
其中,i为所述灰度图像中各像素的灰度值,k为所述灰度图像中各像素的灰度值中的最大灰度值,Si为所述灰度图像的映射值,SUM为所述灰度图像总的像素值,H(i)为所述灰度图像中灰度值为i时的像素的个数,D为所述灰度图像的像素深度。
11.如权利要求10所述的图像处理装置,其特征在于,所述映射限制参数确定模块具体用于按照预设规则将整幅所述灰度图像划分成多个过渡区域,并确定各所述过渡区域的过渡映射限制参数;按照预设规则将各所述过渡区域划分成多个子区域,并根据确定出的各所述过渡区域的过渡映射限制参数,以及设定的线性插值运算规则,确定各所述子区域内各像素的映射限制参数。
12.如权利要求11所述的图像处理装置,其特征在于,所述映射限制参数确定模块具体用于确定各所述过渡区域的灰度平均值和灰度标准差;采用如下公式计算各所述过渡区域的过渡映射限制参数:
L1x=[Mx×Nmin1+(T1-Mx)×Nmax1]/D
L2x=[Sx×Nmin2+(T2-Sx)×Nmax2]/D
其中,x为各所述过渡区域的编号,Mx为第x个过渡区域的灰度平均值,Sx为第x个过渡区域的灰度标准差,Nmin1和Nmax1分别为预设的与各所述过渡区域的灰度平均值对应的最低限制值和最高限制值,Nmin2和Nmax2分别为预设的与各所述过渡区域的灰度标准差对应的最低限制值和最高限制值,T1为预设的与各所述过渡区域的灰度平均值对应的限制阈值,T2为预设的与各所述过渡区域的灰度标准差对应的限制阈值,D为所述灰度图像的像素深度,L1x为与第x个过渡区域的灰度平均值Mx对应的过渡映射限制参数,L2x为与第x个过渡区域的灰度标准差Sx对应的过渡映射限制参数,Lx为第x个过渡区域的过渡映射限制参数。
13.如权利要求11所述的图像处理装置,其特征在于,所述映射限制参数确定模块具体用于根据各所述子区域在所述灰度图像中的位置,确定各所述子区域的所属类别,所属类别包括:位于所述灰度图像中的四个顶角位置的子区域,位于所述灰度图像中除四个顶角之外的边缘位置的子区域,位于所述灰度图像中除边缘位置之外的子区域;根据确定出的各所述过渡区域的过渡映射限制参数,将位于所述灰度图像中的四个顶角位置的子区域内各像素的映射限制参数确定为所属过渡区域的过渡映射限制参数;根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的一次线性插值运算规则,确定位于所述灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数;根据确定出的各所述过渡区域的过渡映射限制参数,按照预设的双线性插值运算规则,确定位于所述灰度图像中除边缘位置之外的子区域内各像素的映射限制参数。
14.如权利要求13所述的图像处理装置,其特征在于,所述映射限制参数确定模块具体用于采用如下公式计算位于所述灰度图像中除四个顶角之外的边缘位置的子区域内各像素的映射限制参数:
其中,n为位于所述灰度图像中边缘位置的各所述过渡区域的编号,t为第n个过渡区域内且位于所述灰度图像中除四个顶角之外的边缘位置的各所述子区域的编号,r为第t个子区域内的像素的编号,Ln为第n个过渡区域的过渡映射限制参数,Ln’为与第n个过渡区域相邻且位于所述灰度图像中边缘位置的过渡区域的过渡映射限制参数,a为位于第t个子区域内的第r个像素到与第t个子区域相邻的过渡区域的中线的距离,b为位于第t个子区域内的第r个像素到所属过渡区域的中线的距离,λtr为位于第t个子区域内的第r个像素的映射限制参数。
15.如权利要求13所述的图像处理装置,其特征在于,所述映射限制参数确定模块具体用于采用如下公式计算位于所述灰度图像中除边缘位置之外的子区域内各像素的映射限制参数:
其中,x为各所述过渡区域的编号,p为第x个过渡区域内且位于所述灰度图像中除边缘位置之外的各所述子区域的编号,z为位于第p个子区域内的像素的编号,m为与第p个子区域纵向相邻的过渡区域的编号,q为与第p个子区域纵向相邻且位于第m个过渡区域内的子区域的编号,z’为位于第q个子区域内的像素的编号,Lx为第x个过渡区域的过渡映射限制参数,Lx’为与第p个子区域横向相邻的过渡区域的过渡映射限制参数,Lm为第m个过渡区域的过渡映射限制参数,Lm’为与第q个子区域横向相邻的过渡区域的过渡映射限制参数,c为位于第p个子区域内的第z个像素到与第p个子区域横向相邻的过渡区域的纵向中线的距离,d为位于第p个子区域内的第z个像素到所属过渡区域的纵向中线的距离,c’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到与第q个子区域横向相邻的过渡区域的纵向中线的距离,d’为位于第q个子区域内且与第p个子区域内的第z个像素处于同一列的第z’个像素到所属过渡区域的纵向中线的距离,g为位于第p个子区域内的第z个像素到第m个过渡区域的横向中线的距离,h为位于第p个子区域内的第z个像素到所属过渡区域的横向中线的距离,Tpz为位于第p个子区域内的第z个像素的中间映射限制参数,Tqz’为位于第q个子区域内的第z’个像素的中间映射限制参数,Wpz为位于第p个子区域内的第z个像素的映射限制参数。
16.如权利要求13所述的图像处理装置,其特征在于,所述灰度调整模块具体用于采用如下公式对所述灰度图像中各像素的灰度值进行调整:
其中,y为像素的编号,iy为所述灰度图像中第y个像素的灰度值,iy’为调整后的所述灰度图像中第y个像素的灰度值,λy为第y个像素的映射限制参数,Si为所述灰度图像的映射值。
CN201710085931.XA 2017-02-17 2017-02-17 一种图像处理方法及其装置 Active CN108460730B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201710085931.XA CN108460730B (zh) 2017-02-17 2017-02-17 一种图像处理方法及其装置
EP17859342.2A EP3584760A4 (en) 2017-02-17 2017-10-27 IMAGE PROCESSING METHOD AND APPARATUS
PCT/CN2017/108018 WO2018149172A1 (zh) 2017-02-17 2017-10-27 图像处理方法及其装置
US15/768,908 US10755394B2 (en) 2017-02-17 2017-10-27 Image processing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710085931.XA CN108460730B (zh) 2017-02-17 2017-02-17 一种图像处理方法及其装置

Publications (2)

Publication Number Publication Date
CN108460730A true CN108460730A (zh) 2018-08-28
CN108460730B CN108460730B (zh) 2020-06-26

Family

ID=63170108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710085931.XA Active CN108460730B (zh) 2017-02-17 2017-02-17 一种图像处理方法及其装置

Country Status (4)

Country Link
US (1) US10755394B2 (zh)
EP (1) EP3584760A4 (zh)
CN (1) CN108460730B (zh)
WO (1) WO2018149172A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951615A (zh) * 2019-04-11 2019-06-28 北京大生在线科技有限公司 一种视频色彩校正方法及系统
CN116823730A (zh) * 2023-06-01 2023-09-29 上海嘉岩供应链管理股份有限公司 一种精密轴承套圈的检测方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10192295B2 (en) * 2016-11-09 2019-01-29 AI Analysis, Inc. Methods and systems for normalizing images
CN107403422B (zh) * 2017-08-04 2020-03-27 上海兆芯集成电路有限公司 用以增强图像对比度的方法及其系统
US10977811B2 (en) * 2017-12-20 2021-04-13 AI Analysis, Inc. Methods and systems that normalize images, generate quantitative enhancement maps, and generate synthetically enhanced images
CN113822799A (zh) * 2020-06-19 2021-12-21 南宁富桂精密工业有限公司 图像放大方法、装置及计算器可读存储介质
CN112215767B (zh) * 2020-09-28 2023-03-14 电子科技大学 一种抗块效应的图像视频增强方法
CN113744274B (zh) * 2021-11-08 2022-02-08 深圳市巨力方视觉技术有限公司 产品外观缺陷检测方法、装置及存储介质
TWI817667B (zh) * 2022-08-19 2023-10-01 大陸商集創北方(深圳)科技有限公司 圖像對比度增強方法、電子晶片以及資訊處理裝置
CN117495984B (zh) * 2023-12-27 2024-03-29 临沂大学 一种同轴式混合光学变焦针孔镜头智能标定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268534A1 (en) * 2006-05-17 2007-11-22 Xerox Corporation Histogram adjustment for high dynamic range image mapping
CN101340510A (zh) * 2008-08-07 2009-01-07 中兴通讯股份有限公司 一种视频增强的方法及其装置
CN101706953A (zh) * 2009-11-13 2010-05-12 北京中星微电子有限公司 基于直方图均衡的图像增强方法和装置
CN103810681A (zh) * 2014-03-12 2014-05-21 中国科学院上海高等研究院 一种低功耗对比度增强方法
US20140270521A1 (en) * 2008-06-30 2014-09-18 Shengqi Yang Color Enhancement for Graphic Images
CN104574326A (zh) * 2013-10-15 2015-04-29 无锡华润矽科微电子有限公司 对图像进行直方图均衡处理的方法和装置
CN105225210A (zh) * 2015-10-14 2016-01-06 南京第五十五所技术开发有限公司 一种基于暗通道的自适应直方图增强去雾方法
CN105407296A (zh) * 2015-11-18 2016-03-16 腾讯科技(深圳)有限公司 实时视频增强方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020090140A1 (en) * 2000-08-04 2002-07-11 Graham Thirsk Method and apparatus for providing clinically adaptive compression of imaging data
JP2008092052A (ja) 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd 階調補正装置および撮像装置
JP2008135987A (ja) * 2006-11-28 2008-06-12 Fujitsu Ltd 情報埋め込み装置、情報埋め込み印刷物、情報埋め込み方法および情報埋め込みプログラム
US8339475B2 (en) * 2008-12-19 2012-12-25 Qualcomm Incorporated High dynamic range image combining
US8280184B2 (en) * 2010-04-01 2012-10-02 Himax Media Solutions, Inc. Image enhancement method and apparatuses utilizing the same
EP2681710B1 (en) * 2011-03-02 2018-09-12 Dolby Laboratories Licensing Corporation Local multiscale tone-mapping operator
US20140348428A1 (en) * 2013-05-24 2014-11-27 Himax Media Solutions, Inc. Dynamic range-adjustment apparatuses and methods
GB2519336B (en) * 2013-10-17 2015-11-04 Imagination Tech Ltd Tone Mapping
US9669585B2 (en) * 2014-02-11 2017-06-06 Adobe Systems Incorporated Method and apparatus for embedding a 2-dimensional image in a 3-dimensional model
CN104952069A (zh) 2015-05-29 2015-09-30 中国农业大学 基于限制对比度直方图均衡化的水下海参图像处理方法
CN106355556B (zh) 2015-07-21 2019-04-12 杭州海康威视数字技术股份有限公司 图像去雾的方法和设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268534A1 (en) * 2006-05-17 2007-11-22 Xerox Corporation Histogram adjustment for high dynamic range image mapping
US20140270521A1 (en) * 2008-06-30 2014-09-18 Shengqi Yang Color Enhancement for Graphic Images
CN101340510A (zh) * 2008-08-07 2009-01-07 中兴通讯股份有限公司 一种视频增强的方法及其装置
CN101706953A (zh) * 2009-11-13 2010-05-12 北京中星微电子有限公司 基于直方图均衡的图像增强方法和装置
CN104574326A (zh) * 2013-10-15 2015-04-29 无锡华润矽科微电子有限公司 对图像进行直方图均衡处理的方法和装置
CN103810681A (zh) * 2014-03-12 2014-05-21 中国科学院上海高等研究院 一种低功耗对比度增强方法
CN105225210A (zh) * 2015-10-14 2016-01-06 南京第五十五所技术开发有限公司 一种基于暗通道的自适应直方图增强去雾方法
CN105407296A (zh) * 2015-11-18 2016-03-16 腾讯科技(深圳)有限公司 实时视频增强方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951615A (zh) * 2019-04-11 2019-06-28 北京大生在线科技有限公司 一种视频色彩校正方法及系统
CN109951615B (zh) * 2019-04-11 2020-10-13 北京大生在线科技有限公司 一种视频色彩校正方法及系统
CN116823730A (zh) * 2023-06-01 2023-09-29 上海嘉岩供应链管理股份有限公司 一种精密轴承套圈的检测方法
CN116823730B (zh) * 2023-06-01 2024-04-05 上海嘉岩供应链管理股份有限公司 一种精密轴承套圈的检测方法

Also Published As

Publication number Publication date
US10755394B2 (en) 2020-08-25
WO2018149172A1 (zh) 2018-08-23
CN108460730B (zh) 2020-06-26
EP3584760A4 (en) 2020-12-02
EP3584760A1 (en) 2019-12-25
US20190080441A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
CN108460730A (zh) 一种图像处理方法及其装置
US7656375B2 (en) Image-processing device and method for enhancing the luminance and the image quality of display panels
CN103942755B (zh) 图像亮度调节方法和装置
US7619641B2 (en) Color display
CN1266950C (zh) 一种视频图像的品质增强系统与方法
CN104618703B (zh) 一种白平衡调整方法
CN1708137A (zh) 饱和度自适应图像改善装置和方法
CN105575314B (zh) 一种灰阶处理方法、灰阶处理装置及显示装置
TW201105115A (en) Method and apparatus for feature-based dynamic contrast enhancement
US9449375B2 (en) Image processing apparatus, image processing method, program, and recording medium
CN106652890A (zh) 扫描卡、led显示屏控制系统及图像数据处理方法
WO2019153731A1 (zh) 图像处理方法及系统
JP4011073B2 (ja) 階調補正装置
KR20200054299A (ko) 색 영역 매핑 방법 및 색 영역 매핑 장치
CN1279764C (zh) 一种视频图像的色饱和度增强系统与方法
CN106157253B (zh) 图像处理装置与图像处理方法
CN104795052B (zh) Rgbw信号转换方法及系统
CN105100763B (zh) 色彩补偿方法及电路、显示装置
CN109313878A (zh) 显示装置和显示装置控制方法
CN106097286A (zh) 一种图像处理的方法及装置
TWI544785B (zh) 影像縮減取樣裝置與方法
CN113068011B (zh) 图像传感器、图像处理方法及系统
CN105023250B (zh) 一种基于fpga的实时图像自适应增强系统及方法
CN1263313C (zh) 一种视频图像的边缘清晰度提升系统与方法
CN104505053B (zh) 显示信号转换方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant