CN108455954A - A kind of reflective coating materials for solar energy double-sided power generation solar double-glass assemblies - Google Patents

A kind of reflective coating materials for solar energy double-sided power generation solar double-glass assemblies Download PDF

Info

Publication number
CN108455954A
CN108455954A CN201810059470.3A CN201810059470A CN108455954A CN 108455954 A CN108455954 A CN 108455954A CN 201810059470 A CN201810059470 A CN 201810059470A CN 108455954 A CN108455954 A CN 108455954A
Authority
CN
China
Prior art keywords
double
nano
titanium dioxide
reflective coating
coating materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810059470.3A
Other languages
Chinese (zh)
Inventor
潘仕荣
周小三
马永龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Material Technology (shanghai) Co Ltd
Original Assignee
Material Technology (shanghai) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Material Technology (shanghai) Co Ltd filed Critical Material Technology (shanghai) Co Ltd
Priority to CN201810059470.3A priority Critical patent/CN108455954A/en
Publication of CN108455954A publication Critical patent/CN108455954A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/29Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention provides a kind of reflective coating materials for solar energy double-sided power generation solar double-glass assemblies, include following components by weight:20 30 parts of aluminium dihydrogen phosphate, 5 12 parts of potassium silicate, the first 49 parts of nano-titanium dioxide, second 16 30 parts of nano-titanium dioxide, the average grain diameter of 110 140 parts of deionized water, first nano-titanium dioxide is 15 25nm, and the average grain diameter of second nano-titanium dioxide is 8 12nm.The present invention also provides a kind of preparation methods of the reflectance coating of solar energy double-sided power generation solar double-glass assemblies, including step:(1) obtained reflectance coating mixture will be stirred evenly for each component of the reflective coating materials of solar energy double-sided power generation solar double-glass assemblies, (2) the reflectance coating mixture is coated on the original sheet glass of solar energy double-sided power generation solar double-glass assemblies, and (3) sinter fine and close reflectance coating into the toughening process of the original sheet glass.The thickness of the reflectance coating of the solar energy double-sided power generation solar double-glass assemblies of the present invention is 10 20 microns, and reflectivity is 88 91%.

Description

A kind of reflective coating materials for solar energy double-sided power generation solar double-glass assemblies
Technical field
The present invention relates to a kind of reflective coating materials, specifically, being related to a kind of for the double glass groups of solar energy double-sided power generation The preparation method of the reflective coating materials of part and a kind of reflectance coating for solar energy double-sided power generation solar double-glass assemblies, belongs to nothing Machine field of material technology.
Background technology
Commonly photovoltaic double-glass assembly refers to:Laminating machine is passed through by two pieces of tempered glass, EVA adhesive film and silicon chip of solar cell High temperature, which is laminated, forms composite layer, and the photovoltaic cell that lead end is formed is pooled to by conducting wire series and parallel between silicon chip of solar cell Component.Common photovoltaic double-glass group includes the first layer toughened glass layer from top to bottom set gradually, second layer PVB or PO or EVA Or ionomer material layer, third layer monocrystalline or polycrystalline battery layer, the 4th layer of PVB or PO or EVA or ionomer material The bed of material and layer 5 tempered glass or high saturating backsheet layer, reflecting layer is realized by white EVA.
Nearest generating electricity on two sides photovoltaic module starts to grow up, and such as double-side assembly Duomax twin, this is a innovative Product is combined on the basis of Trina Solar solar double-glass assemblies with efficient double-sided solar battery technology, and using transparent close Closure material, between efficient double-sided solar battery is packaged in layer glass, enable component front absorb optical energy power it Outside, the also absorbable ground scatter transmitting light of module backside and atmospheric scattering light carry out additional power.Therefore, which is suitable for ground And neighboring buildings reflected light and the stronger area of scattering light make the tow sides of component such as high latitude area and snowy district Generated energy reaches maximization, while being also applied for the special applications such as Photovoltaic Building Integration.Have benefited from its unique design, The generated energy highest of the two-sided solar double-glass assemblies of Duomax twin can be higher by common single sided assemblies 25% or so so that system power generation effect Benefit is significantly increased, to bring more low electric cost.
The output power of photovoltaic module is related with the utilization rate of the light intensity and light that are incident to cell piece surface, improves light Utilize the output power that can effectively improve component.Photovoltaic module is typically to be connected in series or in parallel by multiple cell silicon chips, battery Sunlight can be reflected back on glass by the gap between silicon chip, be reflected on cell piece by the refraction of glass and increased the defeated of component Go out power.In common double wave component photovoltaic module, the gap between cell piece can be increased by white Eva backboards to fill The reflecting rate of solar energy improves the output power of photovoltaic module, but for generating electricity on two sides photovoltaic module, white Eva backboards due to Covering cannot just use, it is necessary to the gap between cell silicon chip is filled in using coating.
Invention content
The object of the present invention is to provide a kind of reflective coating materials for solar energy double-sided power generation solar double-glass assemblies, with the material Expect that obtained reflectance coating can replace the gap that white EVA is filled between generating electricity on two sides solar double-glass assemblies cell piece, improves too It is positive can reflecting rate improve the output power of photovoltaic module.To achieve the purpose of the present invention, the technical scheme is that:One Reflective coating materials of the kind for solar energy double-sided power generation solar double-glass assemblies, the reflective coating materials include with the following group by weight Point:
The average grain diameter of first nano-titanium dioxide is 15-25nm, the average grain of second nano-titanium dioxide Diameter is 8-12nm.
In another preferred embodiment of the present invention, the average grain diameter of first nano-titanium dioxide is 21nm.
In another preferred embodiment of the present invention, the average grain diameter of second nano-titanium dioxide is 10nm.
In another preferred embodiment of the present invention, the index of the aluminium dihydrogen phosphate is as follows:
Appearance:White powder;
Phosphorus pentoxide (P2O5), %:65±2;
Aluminium oxide (Al2O3), %:17±1;
Iron oxide (Fe2O3), %:≤0.02;
Relative density (25 DEG C), %:1.44~1.47;
PH value 1.4.
In another preferred embodiment of the present invention, the index of the potassium silicate is as follows:
Potassium oxide (K2O), %:≥31.0;
Silica (SiO2), %:≥65.5;
Modulus:3.10-3.40.
In another preferred embodiment of the present invention, the index of first nano-titanium dioxide is as follows:
Specific surface area (BET method), m2/g:50±15;
TiO2Content is based on the material after calcination, Wt.%:≥99.5.
Calcination loss, by the material at 105 DEG C after dry 2 hours at 1000 DEG C calcination 2 hours, Wt.%:≤2.0.
In another preferred embodiment of the present invention, the index of second nano-titanium dioxide is as follows:
Specific surface area (BET method), m2/g:85±10;
TiO2Content is based on the material after calcination, Wt.%:≥99.5;
Calcination loss, by the material at 105 DEG C after dry 2 hours at 1000 DEG C calcination 2 hours, Wt.%:≤2.0.
The present invention also provides a kind of preparation method of the reflectance coating for solar energy double-sided power generation solar double-glass assemblies, the party Method includes step:
(1) each component of the above-mentioned reflective coating materials for solar energy double-sided power generation solar double-glass assemblies is stirred evenly obtained Reflectance coating mixture,
(2) the reflectance coating mixture is coated on the original sheet glass of solar energy double-sided power generation solar double-glass assemblies, and
(3) fine and close reflectance coating is sintered into the toughening process of the original sheet glass.
In another preferred embodiment of the present invention, step (1) includes step:First by aluminium dihydrogen phosphate and deionization Water stirs evenly obtained aluminium dihydrogen phosphate aqueous solution, then potassium silicate and deionized water uniform stirring are waited for that potassium silicate is completely dissolved system Potassium silicate solution is obtained, potassium silicate solution is gradually then added dropwise in aluminium dihydrogen phosphate aqueous solution whipping process, is added again after dripping Enter deionized water to continue to stir, finally adds the first nano-titanium dioxide and the second nano-titanium dioxide is dispersed with stirring and uniformly makes It is standby to obtain the reflectance coating mixture.
In another preferred embodiment of the present invention, step (3) includes step:The reflectance coating mixing will be coated The original sheet glass of object is first in 100~200 DEG C of preliminary drying 40-60s, then 80~100s is sintered in 700-750 DEG C of annealing furnace.
In another more preferred of the present invention, in step (3), preliminary drying temperature is 150 DEG C, and preliminary drying time is 50s.In another more preferred of the present invention, step (3) sintering temperature is 720 DEG C, sintering time 90s.
In another preferred embodiment of the present invention, anti-reflective coating thickness obtained is 10-20 microns, and reflectivity is 88-91%.
In another more preferred of the present invention, anti-reflective coating thickness obtained is 15 microns, and reflectivity is 90%.In another more preferred of the present invention, anti-reflective coating thickness obtained is 20 microns, and reflectivity is 91%.In another more preferred of the present invention, anti-reflective coating thickness obtained is 18 microns, and reflectivity is 88%.In another more preferred of the present invention, anti-reflective coating thickness obtained is 13 microns, and reflectivity is 88%.
Aluminium dihydrogen phosphate and potassium silicate in the present invention play the role of inorganic binder can be well by nanometer titanium dioxide Titanium is adhered on glass, and nano-titanium dioxide plays the role of reflected sunlight.
The reflective coating materials of the solar energy double-sided power generation solar double-glass assemblies of the present invention are easy to use, and when use is equal by each component It is coated in after even mixing on the glass (original sheet glass) of solar energy double-sided power generation solar double-glass assemblies, only needs and the glass is together at tempering Reason, does not need additional curing process and hardening time, can sinter layer densification reflectance coating with glass tempering process.It obtains The reflecting effect of reflectance coating is relatively good, and when thickness is 15 microns, reflectivity is up to 90%, when thickness is 18 microns, reflectivity Up to 88%.
Specific implementation mode
The technical solution that the invention is further illustrated by the following examples.
The index of aluminium dihydrogen phosphate used in the following example 1-4 is as follows:Appearance:White powder;Phosphorus pentoxide (P2O5), %:65±2;Aluminium oxide (Al2O3), %:17±1;Iron oxide (Fe2O3), %:≤0.02;Relative density (25 DEG C), %:1.44~1.47;PH value 1.4.The index of potassium silicate used is as follows:Potassium oxide (K2O), %:≥31.0;Titanium dioxide Silicon (SiO2), %:≥65.5;Modulus:3.10-3.40.Average grain diameter used be 21nm nano-titanium dioxide index such as Under:Specific surface area (BET method), m2/g:50±15;TiO2Content is based on the material after calcination, Wt.%:≥99.5;Calcination loss, By the material at 105 DEG C after dry 2 hours at 1000 DEG C calcination 2 hours, Wt.%:≤2.0.Average grain diameter is receiving for 10nm The index of rice titanium dioxide is as follows:Specific surface area (BET method), m2/g:85±10;TiO2Content based on the material after calcination, Wt.%:≥99.5;Calcination loss, by the material at 105 DEG C after dry 2 hours at 1000 DEG C calcination 2 hours, Wt.%:≤ 2.0。
Embodiment 1
A kind of reflective coating materials composition for solar energy solar double-glass assemblies is as follows, by weight, 25 parts of aluminium dihydrogen phosphate, 7 parts of potassium silicate, 5 parts of the first nano-titanium dioxide (average grain diameter 21nm), the second nano-titanium dioxide (average grain diameter 10nm) 20 Part, 125 parts of deionized water.
The method for preparing the reflectance coating for solar energy solar double-glass assemblies is as follows:By weight, aluminium dihydrogen phosphate 25 is first taken Part and 25 parts of deionized waters stir evenly obtained aluminium dihydrogen phosphate aqueous solution, then take 7 parts and 45 parts deionized waters of potassium silicate, uniformly Stirring waits for that potassium silicate is completely dissolved obtained potassium silicate solution, and silicon is gradually then added dropwise in aluminium dihydrogen phosphate aqueous solution whipping process Sour potassium solution adds 55 parts of deionized waters and continues to stir, finally adds the first nano-titanium dioxide (average grain diameter after dripping 21nm) 5 parts and 20 parts of the second nano-titanium dioxide (average grain diameter 10nm) are dispersed with stirring and reflectance coating material are uniformly prepared Material.The reflective coating materials being prepared are coated on original sheet glass, first 150 DEG C of preliminary drying 50s, then reflective coating materials will be coated with Original sheet glass be placed on 90s in 720 DEG C of annealing furnace.Reflectance coating is obtained after cooling, thickness is 15 microns, and reflectivity is 90%.
Embodiment 2
A kind of reflective coating materials composition for solar energy solar double-glass assemblies is as follows, by weight, 30 parts of aluminium dihydrogen phosphate, 12 parts of potassium silicate, 9 parts of the first nano-titanium dioxide (average grain diameter 21nm), the second nano-titanium dioxide (average grain diameter 10nm) 16 Part, 140 parts of deionized water.
The process for preparing the reflectance coating for solar energy solar double-glass assemblies is as follows:By weight, aluminium dihydrogen phosphate 30 is first taken Part and 30 parts of deionized waters stir evenly obtained aluminium dihydrogen phosphate aqueous solution, then take 12 parts and 50 parts deionized waters of potassium silicate, Even stirring waits for that potassium silicate is completely dissolved obtained potassium silicate solution, is then gradually added dropwise in aluminium dihydrogen phosphate aqueous solution whipping process Potassium silicate solution adds 60 parts of deionized waters and continues to stir after dripping, finally add the first nano-titanium dioxide (average grain Diameter 21nm) 9 parts and 16 parts of the second nano-titanium dioxide (average grain diameter 10nm) be dispersed with stirring and reflectance coating be uniformly prepared Material.The reflective coating materials being prepared are coated on original sheet glass, first 150 DEG C of preliminary drying 50s, then reflectance coating material will be coated with The original sheet glass of material is placed on 90s in 720 DEG C of annealing furnace.Reflectance coating is obtained after cooling, thickness is 20 microns, reflectivity It is 91%.
Embodiment 3
A kind of reflective coating materials composition for solar energy solar double-glass assemblies is as follows, by weight, 20 parts of aluminium dihydrogen phosphate, 12 parts of potassium silicate, 4 parts of the first nano-titanium dioxide (average grain diameter 21nm), the second nano-titanium dioxide (average grain diameter 10nm) 30 Part, 130 parts of deionized water.
The process for preparing the reflectance coating for solar energy solar double-glass assemblies is as follows:By weight, aluminium dihydrogen phosphate 20 is first taken Part and 20 parts of deionized waters stir evenly obtained aluminium dihydrogen phosphate aqueous solution, then take 12 parts and 50 parts deionized waters of potassium silicate, Even stirring waits for that potassium silicate is completely dissolved obtained potassium silicate solution, is then gradually added dropwise in aluminium dihydrogen phosphate aqueous solution whipping process Potassium silicate solution adds 60 parts of deionized waters and continues to stir after dripping, finally add the first nano-titanium dioxide (average grain Diameter 21nm) 4 parts and 30 parts of the second nano-titanium dioxide (average grain diameter 10nm) be dispersed with stirring and reflectance coating be uniformly prepared Material.The reflective coating materials being prepared are coated on original sheet glass, first 150 DEG C of preliminary drying 50s, then reflectance coating material will be coated with The original sheet glass of material is placed on 90s in 720 DEG C of annealing furnace.Reflectance coating is obtained after cooling, thickness is 18 microns, reflectivity It is 88%.
Embodiment 4
A kind of reflective coating materials composition for solar energy solar double-glass assemblies is as follows, by weight, 20 parts of aluminium dihydrogen phosphate, 6 parts of potassium silicate, 6 parts of the first nano-titanium dioxide (average grain diameter 21nm), the second nano-titanium dioxide (average grain diameter 10nm) 23 Part, 110 parts of deionized water.
The process for preparing the reflectance coating for solar energy solar double-glass assemblies is as follows:By weight, aluminium dihydrogen phosphate 20 is first taken Part and 20 parts of deionized waters stir evenly obtained aluminium dihydrogen phosphate aqueous solution, then take 6 parts and 45 parts deionized waters of potassium silicate, uniformly Stirring waits for that potassium silicate is completely dissolved obtained potassium silicate solution, and silicon is gradually then added dropwise in aluminium dihydrogen phosphate aqueous solution whipping process Sour potassium solution adds 45 parts of deionized waters and continues to stir, finally adds the first nano-titanium dioxide (average grain diameter after dripping 21nm) 6 parts and 23 parts of the second nano-titanium dioxide (average grain diameter 10nm) are dispersed with stirring and reflectance coating material are uniformly prepared Material.The reflective coating materials being prepared are coated on original sheet glass, first 150 DEG C of preliminary drying 50s, then reflective coating materials will be coated with Original sheet glass be placed on 90s in 720 DEG C of annealing furnace.Reflectance coating is obtained after cooling, thickness is 13 microns, and reflectivity is 88%.
Embodiment 5
The index of each component used in the present embodiment is identical with embodiment 1-4, the difference is that the first nano-titanium dioxide With the average grain diameter of the first nano-titanium dioxide.
Reflective coating materials composition of the present embodiment for solar energy solar double-glass assemblies is as follows, by weight, aluminium dihydrogen phosphate 22 parts, 8 parts of potassium silicate, 8 parts of the first nano-titanium dioxide (average grain diameter 15nm), the second nano-titanium dioxide (average grain diameter 8nm) 26 parts, 125 parts of deionized water.
The process for preparing the reflectance coating for solar energy solar double-glass assemblies is as follows:By weight, aluminium dihydrogen phosphate 22 is first taken Part and 45 parts of deionized waters stir evenly obtained aluminium dihydrogen phosphate aqueous solution, then take 8 parts and 45 parts deionized waters of potassium silicate, uniformly Stirring waits for that potassium silicate is completely dissolved obtained potassium silicate solution, and silicon is gradually then added dropwise in aluminium dihydrogen phosphate aqueous solution whipping process Sour potassium solution adds remaining deionized water and continues to stir after dripping, finally add 8 parts of the first nano-titanium dioxide and Two 26 parts of nano-titanium dioxides, which are dispersed with stirring, is uniformly prepared reflective coating materials.The reflective coating materials that will be prepared It is coated on original sheet glass, first 200 DEG C of preliminary drying 45s, then the original sheet glass for being coated with reflective coating materials is placed on to 700 DEG C of tempering 98s in stove.Reflectance coating is obtained after cooling, thickness is 15 microns, reflectivity 90%.
Embodiment 6
The index of each component used in the present embodiment is identical with embodiment 1-4, the difference is that the first nano-titanium dioxide With the average grain diameter of the first nano-titanium dioxide.
Reflective coating materials composition of the present embodiment for solar energy solar double-glass assemblies is as follows, by weight, aluminium dihydrogen phosphate 28 parts, 9 parts of potassium silicate, 7 parts of the first nano-titanium dioxide (average grain diameter 25nm), the second nano-titanium dioxide (average grain diameter 12nm) 18 parts, 120 parts of deionized water.
The process for preparing the reflectance coating for solar energy solar double-glass assemblies is as follows:By weight, aluminium dihydrogen phosphate 28 is first taken Part and 40 parts of deionized waters stir evenly obtained aluminium dihydrogen phosphate aqueous solution, then take 9 parts and 50 parts deionized waters of potassium silicate, uniformly Stirring waits for that potassium silicate is completely dissolved obtained potassium silicate solution, and silicon is gradually then added dropwise in aluminium dihydrogen phosphate aqueous solution whipping process Sour potassium solution adds remaining deionized water and continues to stir after dripping, finally add 7 parts of the first nano-titanium dioxide and Two 18 parts of nano-titanium dioxides, which are dispersed with stirring, is uniformly prepared reflective coating materials.The reflective coating materials that will be prepared It is coated on original sheet glass, first 100 DEG C of preliminary drying 60s, then the original sheet glass for being coated with reflective coating materials is placed on to 750 DEG C of tempering 80s in stove.Reflectance coating is obtained after cooling, thickness is 14 microns, reflectivity 89%.
Those skilled in the art can be according to the present disclosure with the art technology grasped in the present invention Appearance makes replacement or modification, but these replacement or modifications are all not regarded as a departure from the design of the present invention, these replacement or modifications In claimed interest field.

Claims (10)

1. a kind of reflective coating materials for solar energy double-sided power generation solar double-glass assemblies, which is characterized in that described anti-by weight It includes following components to penetrate coating material:
The average grain diameter of first nano-titanium dioxide is 15-25nm, and the average grain diameter of second nano-titanium dioxide is 8-12nm。
2. reflective coating materials according to claim 1, which is characterized in that the average grain of first nano-titanium dioxide Diameter is 21nm.
3. reflective coating materials according to claim 1, which is characterized in that the average grain of second nano-titanium dioxide Diameter is 10nm.
4. reflective coating materials according to claim 1, which is characterized in that the index of the aluminium dihydrogen phosphate is as follows:
Appearance:White powder;
Phosphorus pentoxide (P2O5), %:65±2;
Aluminium oxide (Al2O3), %:17±1;
Iron oxide (Fe2O3), %:≤0.02;
Relative density (25 DEG C), %:1.44~1.47;
PH value 1.4.
5. reflective coating materials according to claim 1, which is characterized in that the index of the potassium silicate is as follows:
Potassium oxide (K2O), %:≥31.0;
Silica (SiO2), %:≥65.5;
Modulus:3.10-3.40.
6. reflective coating materials according to claim 1 or 2, which is characterized in that the finger of first nano-titanium dioxide Mark is as follows:
Specific surface area (BET method), m2/g:50±15;
TiO2Content is based on the material after calcination, Wt.%:≥99.5.
Calcination loss, by the material at 105 DEG C after dry 2 hours at 1000 DEG C calcination 2 hours, Wt.%:≤2.0
7. reflective coating materials according to claim 1 or 3, which is characterized in that the finger of second nano-titanium dioxide Mark is as follows:
Specific surface area (BET method), m2/g:85±10;
TiO2Content is based on the material after calcination, Wt.%:≥99.5;
Calcination loss, by the material at 105 DEG C after dry 2 hours at 1000 DEG C calcination 2 hours, Wt.%:≤2.0
8. a kind of preparation method of reflectance coating for solar energy double-sided power generation solar double-glass assemblies, the method comprising the steps of:
(1) each component of claim 1-7 any one of them reflective coating materials obtained reflectance coating is stirred evenly to mix Object,
(2) the reflectance coating mixture is coated on the original sheet glass of solar energy double-sided power generation solar double-glass assemblies, and
(3) fine and close reflectance coating is sintered into the toughening process of the original sheet glass.
9. preparation method according to claim 8, wherein step (1) include step:First by aluminium dihydrogen phosphate and deionization Water stirs evenly obtained aluminium dihydrogen phosphate aqueous solution, then potassium silicate and deionized water uniform stirring are waited for that potassium silicate is completely dissolved system Potassium silicate solution is obtained, potassium silicate solution is gradually then added dropwise in aluminium dihydrogen phosphate aqueous solution whipping process, is added again after dripping Enter deionized water to continue to stir, finally adds the first nano-titanium dioxide and the second nano-titanium dioxide is dispersed with stirring and uniformly makes It is standby to obtain the reflectance coating mixture.
10. preparation method according to claim 8, wherein step (3) include step:The reflectance coating mixing will be coated The original sheet glass of object is first in 100~200 DEG C of preliminary drying 40-60s, then 80~100s is sintered in 700-750 DEG C of annealing furnace.
CN201810059470.3A 2018-01-22 2018-01-22 A kind of reflective coating materials for solar energy double-sided power generation solar double-glass assemblies Pending CN108455954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810059470.3A CN108455954A (en) 2018-01-22 2018-01-22 A kind of reflective coating materials for solar energy double-sided power generation solar double-glass assemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810059470.3A CN108455954A (en) 2018-01-22 2018-01-22 A kind of reflective coating materials for solar energy double-sided power generation solar double-glass assemblies

Publications (1)

Publication Number Publication Date
CN108455954A true CN108455954A (en) 2018-08-28

Family

ID=63238423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810059470.3A Pending CN108455954A (en) 2018-01-22 2018-01-22 A kind of reflective coating materials for solar energy double-sided power generation solar double-glass assemblies

Country Status (1)

Country Link
CN (1) CN108455954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138155A (en) * 2018-11-02 2020-05-12 光之科技(北京)有限公司 Facing layer material, photovoltaic building material and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1259077A (en) * 1985-10-15 1989-09-05 David K. Douden Fired hollow ceramic spheroids
CN102061111A (en) * 2010-10-27 2011-05-18 中山市旌旗纳米材料科技有限公司 Preparation method of self-cleaning ceramic nanometer glass antireflective coating material and preparation method of reflection deducting coating
CN102201469A (en) * 2011-05-07 2011-09-28 中山市格兰特实业有限公司 Crystalline silicon cell double-glass component
CN103880388A (en) * 2014-02-17 2014-06-25 河南省宏达炉业有限公司 High temperature-resisting and wear-resisting paint and preparation method thereof
CN103977826A (en) * 2014-05-30 2014-08-13 上海梅思泰克生态科技有限公司 Modified TiO2 coating and preparation method thereof
CN105153982A (en) * 2015-09-16 2015-12-16 上海回天新材料有限公司 Flexible epoxy adhesive and application thereof
CN205194716U (en) * 2015-11-16 2016-04-27 南京索尔玻璃科技有限公司 Backplate photovoltaic glass and dual -glass photovoltaic assembly
CN106328741A (en) * 2016-08-29 2017-01-11 上海晶澳太阳能科技有限公司 Double-glass assembly of high-efficiency and high-strength solar cell
CN106752210A (en) * 2016-12-28 2017-05-31 郑州北斗七星通讯科技有限公司 A kind of aqueous resistant reflective heat-insulation paint
CN106752526A (en) * 2016-12-23 2017-05-31 沈阳化工研究院有限公司 A kind of aqueous light reflection industrial heat preservation coating and preparation method thereof
CN107572838A (en) * 2017-08-29 2018-01-12 运研材料科技(上海)有限公司 Preparation method with double layers of antireflection coatings glass
US20180171637A1 (en) * 2007-04-02 2018-06-21 Certainteed Corporation Solar heat-reflective roofing granules, solar heat-reflective shingles, and process for producing same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1259077A (en) * 1985-10-15 1989-09-05 David K. Douden Fired hollow ceramic spheroids
US20180171637A1 (en) * 2007-04-02 2018-06-21 Certainteed Corporation Solar heat-reflective roofing granules, solar heat-reflective shingles, and process for producing same
CN102061111A (en) * 2010-10-27 2011-05-18 中山市旌旗纳米材料科技有限公司 Preparation method of self-cleaning ceramic nanometer glass antireflective coating material and preparation method of reflection deducting coating
CN102201469A (en) * 2011-05-07 2011-09-28 中山市格兰特实业有限公司 Crystalline silicon cell double-glass component
CN103880388A (en) * 2014-02-17 2014-06-25 河南省宏达炉业有限公司 High temperature-resisting and wear-resisting paint and preparation method thereof
CN103977826A (en) * 2014-05-30 2014-08-13 上海梅思泰克生态科技有限公司 Modified TiO2 coating and preparation method thereof
CN105153982A (en) * 2015-09-16 2015-12-16 上海回天新材料有限公司 Flexible epoxy adhesive and application thereof
CN205194716U (en) * 2015-11-16 2016-04-27 南京索尔玻璃科技有限公司 Backplate photovoltaic glass and dual -glass photovoltaic assembly
CN106328741A (en) * 2016-08-29 2017-01-11 上海晶澳太阳能科技有限公司 Double-glass assembly of high-efficiency and high-strength solar cell
CN106752526A (en) * 2016-12-23 2017-05-31 沈阳化工研究院有限公司 A kind of aqueous light reflection industrial heat preservation coating and preparation method thereof
CN106752210A (en) * 2016-12-28 2017-05-31 郑州北斗七星通讯科技有限公司 A kind of aqueous resistant reflective heat-insulation paint
CN107572838A (en) * 2017-08-29 2018-01-12 运研材料科技(上海)有限公司 Preparation method with double layers of antireflection coatings glass

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
奚同庚等: "《新型无机涂层》", 31 March 1981, 上海科学技术出版社 *
朱丽等: "《聚光光伏——原理、系统与应用》", 31 August 2012, 天津大学出版社 *
王杏: "《纳米二氧化钛的生产与应用》", 31 July 2014, 贵州科技出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138155A (en) * 2018-11-02 2020-05-12 光之科技(北京)有限公司 Facing layer material, photovoltaic building material and preparation method thereof
CN111138155B (en) * 2018-11-02 2022-02-18 光之科技(北京)有限公司 Facing layer material, photovoltaic building material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN104736338B (en) Be suitable to solar energy system has colour reflective and the laminated windows of high sunlight transmissivity
WO2020155628A1 (en) Power generation building material and manufacturing method therefor
CN101967041B (en) Anti-reflection high-transmittance coated solar super-white embossed glass and manufacturing method thereof
CN102531406A (en) Antireflective coating solution and preparation method thereof, as well as photovoltaic glass and preparation method of photovoltaic glass
CN101707223B (en) Color battery assembly with downward-transfer function for spectrum
CN102515548B (en) Surface-plasma-enhanced optical wavelength converting glass ceramic adopting silver nanoparticles and preparation method thereof
CN110571285B (en) Photovoltaic module glass, manufacturing method thereof and photovoltaic module
CN206441745U (en) A kind of high reflection packaging adhesive film for solar cell
CN109801989B (en) Power generation building material and preparation method thereof
CN101913780A (en) Solar cell component packaging glass with double dereflection coatings
CN109786493A (en) A kind of high adhesion force ceramics and glass-reflected coating paste and its preparation method and application
KR101655558B1 (en) Temperature-sensitive color change complex pigment with core-shell structure, method for manufacturing the same and smart color changing paint composition using the same
CN108455954A (en) A kind of reflective coating materials for solar energy double-sided power generation solar double-glass assemblies
JP2021512508A (en) Power generation building materials and their manufacturing methods
CN109904244B (en) Photovoltaic building material and preparation method thereof
CN112635603A (en) Transparent grid backboard of photovoltaic module and preparation method thereof
CN208028077U (en) A kind of generating electricity on two sides solar double-glass assemblies back-panel glass having both antireflective and high reflection
CN109860316B (en) Power generation board adopting optical regulation and control layer and preparation method thereof
CN201956361U (en) Antireflection system for film solar battery
CN111276556B (en) Natural stone imitated solar cell module and preparation method thereof
CN207977329U (en) A kind of arc light accumulating solar cell panel structure
CN206806343U (en) Generating electricity on two sides photovoltaic module
CN202805826U (en) Fluorine film back plate with light reflection function
CN109888048A (en) A kind of power generation plate and preparation method thereof having building materials appearance
CN201758126U (en) Light pollution preventive double-glass solar cell component

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180828