CN108455698B - 光催化组件及其制备方法 - Google Patents

光催化组件及其制备方法 Download PDF

Info

Publication number
CN108455698B
CN108455698B CN201710097341.9A CN201710097341A CN108455698B CN 108455698 B CN108455698 B CN 108455698B CN 201710097341 A CN201710097341 A CN 201710097341A CN 108455698 B CN108455698 B CN 108455698B
Authority
CN
China
Prior art keywords
metal
layer
titanium dioxide
metal layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710097341.9A
Other languages
English (en)
Other versions
CN108455698A (zh
Inventor
吴文政
何颜玲
万子龙
彭佳慧
唐运湘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern University of Science and Technology
Original Assignee
Southern University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern University of Science and Technology filed Critical Southern University of Science and Technology
Priority to CN201710097341.9A priority Critical patent/CN108455698B/zh
Priority to PCT/CN2017/084727 priority patent/WO2018152975A1/zh
Priority to US16/085,214 priority patent/US11179699B2/en
Publication of CN108455698A publication Critical patent/CN108455698A/zh
Application granted granted Critical
Publication of CN108455698B publication Critical patent/CN108455698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本发明涉及一种光催化组件及其制备方法。该光催化组件包括衬底及层叠在衬底的一侧上的光催化单元,光催化单元包括层叠的二氧化钛层和金属层,二氧化钛的厚度为10纳米~100纳米,金属层由金属纳米粒子堆积形成,金属纳米粒子的材料选自铑、钯、铂、金、银及铝中的一种。上述光催化组件具有较高的光催化效率。

Description

光催化组件及其制备方法
技术领域
本发明涉及水处理领域,特别是涉及一种光催化组件及其制备方法。
背景技术
近年来,随着水资源的污染日益严重,对于水资源净化的研究也受到了越来越多的关注,尤其是对于利用光催化作用降解水中的污染物这一课题。由于二氧化钛(TiO2)是一种环保的廉价材料,且具有化学性质稳定、催化活性高、氧化能力强、无毒性、无二次污染等优点,而被广泛地作为光催化剂应用,在降解水中污染物上具有重要的应用价值。
然而,目前用于光催化的二氧化钛商业用产品大都是粉体材料,原料用量大,并且由于其较宽的带隙(3.0ev~3.2ev),其活化性能只能被紫外光激发,光催化效率受限。为了提高二氧化钛光催化效率,业界尝试了很多方法,主要在于减小二氧化钛的禁带宽度,以增加对近紫外光的吸收,然而仍然不能有效地提高其光催化效率,因此,目前其光催化效率仍然较低。
发明内容
基于此,有必要提供一种光催化效率较高的光催化组件。
此外,还涉及一种光催化组件的制备方法。
一种光催化组件,包括衬底及层叠在所述衬底的一侧上的光催化单元,所述光催化单元包括层叠的二氧化钛层和金属层,所述二氧化钛的厚度为10纳米~100纳米,所述金属层由金属纳米粒子堆积形成,所述金属纳米粒子的材料选自铑、钯、铂、金、银及铝中的一种。
上述光催化组件通过将二氧化钛层的厚度设计为10纳米~100纳米,并使与其层叠的金属层设置为由多个上述金属纳米粒子堆积形成,由于金属纳米粒子存在表面等离子共振现象,这种共振现象在宏观上表现为金属纳米粒子对光的吸收,当共振波长为紫外光时,金属纳米粒子会把更多的紫外光传给纳米二氧化钛层,以起到增强纳米二氧化钛层的光催化的作用,当共振波长为红外光时,金属层会把热传给纳米二氧化钛层以产生热电子,也会起到增强纳米二氧化钛层的光催化的作用,从而有效地增强纳米二氧化钛层在可见光区域的光吸收,以增加纳米二氧化钛层的光催化效率;且由于由金属纳米粒子堆积组成的金属层在二氧化钛层上的表面等离子共振现象的存在,使得能够降低二氧化钛层的厚度,以实现纳米级别的光催化,而厚度为纳米级别的二氧化钛层能够使光生载流子更好地传输,从而表现出良好的催化性能,使得上述光催化组件具有较高的光催化效率。
在其中一个实施例中,所述金属纳米粒子的粒径不超过150纳米。
在其中一个实施例中,所述金属纳米粒子为球状结构或棒状结构。
在其中一个实施例中,所述金属层与所述衬底层叠,以使所述金属层位于在所述衬底和所述二氧化钛层之间;或者,所述二氧化钛层与所述衬底层叠,以使所述二氧化钛层位于在所述衬底和所述金属层之间。
在其中一个实施例中,所述金属层为两个,两个所述金属层分别层叠在所述二氧化钛层的相对的两个表面上,所述衬底与其中一个所述金属层层叠。
一种光催化组件的制备方法,包括如下步骤:
在所述衬底上形成第一金属层,以使所述第一金属层由第一金属纳米粒子堆积形成,所述第一金属纳米粒子选自铑、钯、铂、金、银及铝中的一种;
在所述第一金属层上形成厚度为10纳米~100纳米的二氧化钛层。
在其中一个实施例中,所述在所述衬底上形成第一金属层的方法为热蒸发,其中,蒸发速率为
Figure BDA0001230685660000021
真空度为1×10-6Pa~1×10-5Pa。
在其中一个实施例中,所述在所述金属层上形成二氧化钛层的方法为原子层沉积,工艺参数具体为:氮气条件,反应气压为0.5Torr以下,钛源的温度为70℃~80℃,氧源的温度为20℃~30℃,反应温度为150℃~250℃,所述钛源和所述氧源交替沉积,每个生长循环中,所述钛源的沉积时间为0.1秒,所述氧源的沉积时间为0.015秒,间隔5秒~20秒,每个所述生长循环生长的厚度为
Figure BDA0001230685660000022
在其中一个实施例中,所述在所述金属层上形成二氧化钛层的步骤之后,还包括在所述二氧化钛层上蒸镀形成第二金属层的步骤,所述第二金属层由第二金属纳米粒子堆积形成,所述第二金属纳米粒子的材料选自铑、钯、铂、金、银及铝中的一种。
一种光催化组件的制备方法,包括如下步骤:
在衬底上形成厚度为10纳米~100纳米的二氧化钛层;
在所述二氧化钛层上形成金属层,以使所述金属层由金属纳米粒子堆积形成,所述金属纳米粒子的材料选自铑、钯、铂、金、银及铝中的一种。
附图说明
图1为一实施方式的光催化组件的结构示意图;
图2为另一实施方式的光催化组件的结构示意图;
图3为另一实施方式的光催化组件的结构示意图;
图4为另一实施方式的光催化组件的制备方法的流程图;
图5为另一实施方式的光催化组件的制备方法的流程图;
图6为实施例1的金属层在50万倍下的扫描电镜图;
图7为实施例2的金属层在50万倍下的扫描电镜图;
图8为对比例3的金属层在50万倍下的扫描电镜图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
如图1所示,一实施方式的光催化组件100,包括衬底110及层叠在衬底110的一侧上的光催化单元120。
衬底110能够透过紫外光。具体的,衬底110的材料为石英。
光催化单元120包括层叠的二氧化钛层122和金属层124。具体在图示的实施例中,金属层124与衬底110层叠,以使金属层124位于在衬底110和二氧化钛层122之间。
二氧化钛层122的厚度为10纳米~100纳米。
金属层124由金属纳米粒子堆积形成,金属纳米粒子的材料选自铑、钯、铂、金、银及铝中的一种。其中,金属层124是通过热蒸发(即真空蒸镀)的方法获得的。
由于金属纳米粒子存在表面等离子共振现象,金属的表面等离子体共振吸收与表面自由电子的运动有关,金属可看作自由电子体系,由导带电子决定其光学和电学性质。在金属等离子体理论中,若等离子体内部受到某种电磁扰动而使其一些区域电荷密度不为零,就会产生静电回复力,使其电荷分布发生振荡,当电磁波的频率和等离子体振荡频率相同时,就会产生共振,而这种共振,在宏观上就表现为金属纳米粒子对光的吸收。金属的表面等离子体共振是决定金属纳米粒子光学性质的重要因素。由于金属粒子内部等离子体共振激发或由于带间吸收,它们在紫外-可见光区域具有吸收谱带,且不同的金属粒子具有其特征吸收谱。而由于上述金属层124以金属纳米粒子的形式存在,而不是以薄膜的形式存在的,使得金属层124的厚度不会对二氧化钛层122的光催化作用造成影响,其光陷和共振会影响二氧化钛层122的光催化作用,当共振波长为紫外光时,金属层124会把更多的紫外光传给二氧化钛层122,以起到增强二氧化钛层122的光催化的作用;当共振波长为红外光时,金属层124会把热传给二氧化钛层122以产生热电子,也会起到增强二氧化钛层122的光催化的作用。
进一步的,金属纳米粒子的粒径不超过150纳米。当超过150nm时,就不会形成金属粒子,而是形成金属膜状物,那么等离子增强的效应会消失,起不到等离子增强的效果。
更进一步的,金属纳米粒子的粒径为5纳米~50纳米。该粒径范围的金属纳米粒子的等离子增强的效应最强。
具体的,金属纳米粒子为球状结构或棒状结构。球状结构的金属纳米粒子主要是增强紫外光及可见光的表面等离子共振;而棒状主要是增强可见光及红外的表面等离子共振。
上述光催化组件100通过将二氧化钛层122的厚度设计为10纳米~100纳米,并使与其层叠的金属层124设置为由多个上述金属纳米粒子堆积形成,由于金属纳米粒子存在表面等离子共振现象,这种共振现象在宏观上表现为金属纳米粒子对光的吸收,当共振波长为紫外光时,金属纳米粒子会把更多的紫外光传给纳米二氧化钛层122,以起到增强纳米二氧化钛层122的光催化的作用,当共振波长为红外光时,金属层124会把热传给纳米二氧化钛层122以产生热电子,也会起到增强纳米二氧化钛层122的光催化的作用,从而有效地增强纳米二氧化钛层122在可见光区域的光吸收,以增加纳米二氧化钛层的光催化效率;且由于由金属纳米粒子堆积组成的金属层在二氧化钛层上的表面等离子共振现象的存在,使得能够降低以实现纳米级别的光催化,而厚度为纳米级别的二氧化钛层不仅能够使光生载流子更好地传输,从而表现出良好的催化性能,使得上述光催化组件100具有较高的光催化效率,还能够节省二氧化钛层的用量,降低制作成本。
如图2所示,另一实施方式的光催化组件200与光催化组件100的结构大致相同,区别仅在于,本实施方式的光催化组件200的二氧化钛层210与衬底220层叠,以使二氧化钛层210位于在衬底220和金属层230之间。
由于本实施方式的光催化组件200的结构与光催化组件100的结构相似,因此,光催化组件200也具有光催化组件100的效果。
如图3所示,另一实施方式的光催化组件300与光催化组件100的结构大致相同,区别仅在于,本实施方式的光催化组件300的金属层310为两个,两个金属层310分别层叠在二氧化钛层320的相对的两个表面上,衬底330与其中一个金属层310层叠。每个金属层310的结构都与光催化组件100的金属层124相同。
由于本实施方式的光催化组件300的结构与光催化组件100的结构相似,因此,光催化组件300也具有光催化组件100的效果。
如图4所示,一实施方式的光催化组件的制备方法,包括如下步骤:
步骤S410:在衬底上形成第一金属层,以使第一金属层由第一金属纳米粒子堆积形成。
具体的,在衬底上形成第一金属层的方法为热蒸发,其中,蒸发速率为
Figure BDA0001230685660000061
真空度为1×10-6Pa~1×10-5Pa。在该真空度和蒸发速率下才能够使是金属成核以形成具有特定形状结构的粒子,以使第一金属层由第一金属纳米粒子堆积形成。热蒸发与化学合成方法相比,步骤更加地简单,且不会有残留的化学成分,且通过热蒸发的方法能够在实现第一金属层以金属纳米粒子堆积的形式存在,并通过上述参数以实现金属纳米粒子的颗粒的粒径和第一金属层的结构的有效控制。优选的,蒸发速率为
Figure BDA0001230685660000062
其中,热蒸发时的电源电流为75A~200A。
其中,衬底能够透过紫外光。具体的,衬底的材料为石英。
其中,第一金属纳米粒子的材料选自铑、钯、铂、金、银及铝中的一种。进一步的,第一金属纳米粒子的粒径不超过150纳米。
更进一步的,第一金属纳米粒子的粒径为5纳米~50纳米。该粒径范围的金属纳米粒子的等离子增强的效应最强。
具体的,第一金属纳米粒子为球状结构或棒状结构。
步骤S420:在第一金属层上形成厚度为10纳米~100纳米的二氧化钛层。
具体的,在金属层上形成二氧化钛层的方法为原子层沉积,工艺参数具体为:氮气条件,反应气压为0.5Torr以下,钛源的温度为70℃~80℃,氧源的温度为20℃~30℃,反应温度为150℃~250℃;钛源和氧源交替沉积,每个生长循环中,钛源的沉积时间为0.1秒,氧源的沉积时间为0.015秒,间隔5秒~20秒。即每个生长循环为:一次钛源沉积,沉积时间为0.1秒,间隔5秒~20秒后,再进行一次氧源沉积,氧源沉积的时间为0.015秒。优选的,钛源的温度为75℃;氧源的温度为25℃。
具体的,钛源为四次二甲基胺基钛或四异丙氧基钛;氧源为水、臭氧或氧气。
具体的,每个生长循环生长的厚度为
Figure BDA0001230685660000071
优选为
Figure BDA0001230685660000072
在金属层上形成厚度为10纳米~100纳米的二氧化钛层的步骤中,沉积的循环次数为200~2000个循环。
进一步的,在第一金属层上形成二氧化钛层的步骤之前,还包括用氮气脉冲清洗形成有第一金属层的衬底的步骤:在气压为0.5Torr以下的条件下,将形成有第一金属层的衬底加热至150℃~250℃,控制氮气的流量为200sccm,每次清洗30s,清洗20次,每次清洗间隔5秒。
进一步的,用氮气脉冲清洗形成有第一金属层的衬底的步骤之前,在第一金属层上形成二氧化钛层的步骤之前,还包括使用四次二甲基胺基钛脉冲处理形成有第一金属层的衬底的步骤,每次脉冲处理的时间为0.5秒,重复5次,每次间隔5秒,以清洗衬底和第一金属层上的杂质。
由于目前的粉末状的二氧化钛材料通常是采用化学合成的方法制备得到的,合成方法复杂繁琐,副产物较多,可重复性较差,通过采用原子层沉积的方法能够使二氧化钛的成膜均匀性和保型性良好,且过程易控制,重复性好。
进一步的,在第一金属层上形成二氧化钛层的步骤之后,还包括在二氧化钛层上蒸镀形成第二金属层的步骤,第二金属层由第二金属纳米粒子堆积形成,第二金属纳米粒子的材料选自铂、金、银及铝中的一种。具体的,第二金属层的形成方法与第一金属层的形成方法相同,区别仅在于,第二金属层是蒸镀在二氧化钛层上的。
具体的,第二金属层金属纳米粒子的粒径不超过150纳米。
更进一步的,第二金属纳米粒子的粒径为5纳米~50纳米。
具体的,第二金属纳米粒子为球状结构或棒状结构。
上述制备方法操作简单,易于工业化生产。
如图5所示,另一实施方式的光催化组件的制备方法,包括如下步骤:
步骤S510:在衬底上形成厚度为10纳米~100纳米的二氧化钛层。
具体的,在衬底上形成二氧化钛层的方法与步骤S420的在第一金属层上形成二氧化钛层的步骤大致相同,区别仅在于,步骤S510是直接通过原子层沉积的方法沉积在衬底上的。
步骤S520:在二氧化钛层上形成金属层,以使金属层由金属纳米粒子堆积形成。
具体的,在二氧化钛层上形成金属层的方法与步骤S410的在衬底上形成第一金属层的步骤大致相同,区别仅在于,步骤S520的金属层是通过热蒸发蒸镀在二氧化钛层上的。
上述制备方法操作简单,易于工业化生产。
以下为实施例部分:
实施例1
本实施例的光催化组件的制备过程如下:
(1)抽真空至5×10-6Pa,关闭衬底遮盖板,在蒸发舟中放入金属膜料,调节加热蒸发舟的电源电流至120A,观察探测器的计数频率,当计数频率到达
Figure BDA0001230685660000081
时,保持加热电流,打开衬底遮盖板,开始蒸镀,记录探测器的数值,当衬底上的金属层的厚度达到5nm时,关闭衬底遮盖板,关闭蒸发舟电源,等待10分钟,破真空,得到形成有由金属纳米粒子堆积形成金属层的衬底,且金属纳米粒子为棒状结构,金属纳米粒子的平均粒径为15纳米~30纳米,如图6所示,图6为50万倍下的金属层在衬底上的扫描电镜图,从图6中可以看出,金属层为金属纳米粒子堆积形成,且金属纳米粒子呈棒状结构。衬底为石英,金属膜料为纯度为99.999%的银块。
(2)抽真空至气压为0.5Torr,将形成有金属层的衬底加热至200℃,控制氮气的流量为200sccm,每次清洗30s,清洗20次,每次清洗间隔5秒;然后使用四次二甲基胺基钛脉冲处理形成有金属层的衬底,每次脉冲处理的时间为0.5秒,重复5次,每次间隔5秒;最后,控制钛源的温度为75℃,氧源的温度为25℃,钛源和氧源交替沉积,每个生长循环中,钛源的沉积时间为0.1秒,氧源的沉积时间为0.015秒,间隔10秒,每个生长循环生长的厚度为
Figure BDA0001230685660000082
共沉积200个循环,在金属层上形成厚度为10纳米的二氧化钛层,降温至100℃,取出。其中,钛源为四次二甲基胺基钛,氧源为水。
将本实施例的光催化组件作为催化剂,用甲基蓝溶液模拟有机废水,用氙灯模拟日光光照条件,通过研究甲基蓝溶液的光催化降解过程以获得本实施例制备的光催化组件的光催化效率,其中,该方法具体为:取浓度1mg/ml的甲基蓝溶液,将本实施例的光催化组件浸润在甲基蓝溶液中,在避光的条件下静置30分钟后置于模拟太阳光照中(模拟灯型号为Zolix,Sieius-300P,波长为320~2500nm,光照强度为100mW/cm2)30分钟后,过滤测试该溶液的浓度,其中,通过(初始浓度值-该浓度值)/初始浓度值反应催化组件的光催化效率。本实施例的光催化组件的光催化效率见表1。
实施例2
本实施例的光催化组件的制备过程如下:
(1)抽真空至5×10-6Pa,关闭衬底遮盖板,在蒸发舟中放入金属膜料,调节加热蒸发舟的电源电流至120A,观察探测器的计数频率,当计数频率到达
Figure BDA0001230685660000091
时,保持加热电流,打开衬底遮盖板,开始蒸镀,记录探测器的数值,当衬底上的金属层的厚度达到1纳米时,关闭衬底遮盖板,关闭蒸发舟电源,等待10分钟,破真空,得到形成有由金属纳米粒子堆积形成金属层的衬底,且金属纳米粒子为球状结构,金属纳米粒子的粒径为5~10纳米,如图7所示,图7为50万倍下的金属层在衬底上的扫描电镜图,从图7中可以看出,金属层为金属纳米粒子堆积形成,且金属纳米粒子呈球状结构。衬底为石英,金属膜料为纯度为99.999%的银块。
(2)抽真空至气压为0.5Torr,将形成有金属层的衬底加热至250℃,控制氮气的流量为200sccm,每次清洗30s,清洗20次,每次清洗间隔5秒;然后使用四次二甲基胺基钛脉冲处理形成有金属层的衬底,每次脉冲处理的时间为0.5秒,重复5次,每次间隔5秒;最后,控制钛源的温度为75℃,氧源的温度为25℃,钛源和氧源交替沉积,每个生长循环中,钛源的沉积时间为0.1秒,氧源的沉积时间为0.015秒,间隔15秒,每个生长循环生长的厚度为
Figure BDA0001230685660000092
共沉积400个循环,在金属层上形成厚度为20纳米的二氧化钛层,降温至100℃,取出。其中,钛源为四次二甲基胺基钛,氧源为水。
采用实施例1相同的测试方法得到本实施例的光催化组件的光催化效率见表1。
实施例3
本实施例的光催化组件的制备过程如下:
(1)抽真空至1×10-5Pa,关闭衬底遮盖板,在蒸发舟中放入金属膜料,调节加热蒸发舟的电源电流至75A,观察探测器的计数频率,当计数频率到达
Figure BDA0001230685660000101
时,保持加热电流,打开衬底遮盖板,开始蒸镀,记录探测器的数值,当衬底上的金属层的厚度达到9纳米时,关闭衬底遮盖板,关闭蒸发舟电源,等待10分钟,破真空,得到形成有由金属纳米粒子堆积形成金属层的衬底,且金属纳米粒子为棒状结构,金属纳米粒子的粒径为40纳米~50纳米。衬底为石英,金属膜料为纯度为99.999%的铝块。
(2)抽真空至气压为0.5Torr,将形成有金属层的衬底加热至150℃,控制氮气的流量为200sccm,每次清洗30s,清洗20次,每次清洗间隔5秒;然后使用四次二甲基胺基钛脉冲处理形成有金属层的衬底,每次脉冲处理的时间为0.5秒,重复5次,每次间隔5秒;最后,控制钛源的温度为70℃,氧源的温度为25℃,钛源和氧源交替沉积,每个生长循环中,钛源的沉积时间为0.1秒,氧源的沉积时间为0.015秒,间隔20秒,每个生长循环生长的厚度为
Figure BDA0001230685660000102
共沉积200个循环,在金属层上形成厚度为10纳米的二氧化钛层,降温至100℃,取出。其中,钛源为四次二甲基胺基钛,氧源为水。
采用实施例1相同的测试方法得到本实施例的光催化组件的光催化效率见表1。
实施例4
本实施例的光催化组件的制备过程如下:
(1)抽真空至1×10-5Pa,关闭衬底遮盖板,在蒸发舟中放入金属膜料,调节加热蒸发舟的电源电流至115A,观察探测器的计数频率,当计数频率到达
Figure BDA0001230685660000111
时,保持加热电流,打开衬底遮盖板,开始蒸镀,记录探测器的数值,当衬底上的金属层的厚度达到5纳米时,关闭衬底遮盖板,关闭蒸发舟电源,等待10分钟,破真空,得到形成有由金属纳米粒子堆积形成金属层的衬底,且金属纳米粒子为棒状结构,金属纳米粒子的粒径为15~30纳米。衬底为石英,金属膜料为纯度为99.999%的银块。
(2)抽真空值气压为0.1Torr,将形成有金属层的衬底加热至150℃,控制氮气的流量为200sccm,每次清洗30s,清洗20次,每次清洗间隔5秒;然后使用四次二甲基胺基钛脉冲处理形成有金属层的衬底,每次脉冲处理的时间为0.5秒,重复5次,每次间隔5秒;最后,控制钛源的温度为70℃,氧源的温度为20℃,钛源和氧源交替沉积,每个生长循环中,钛源的沉积时间为0.1秒,氧源的沉积时间为0.015秒,间隔20秒,每个生长循环生长的厚度为
Figure BDA0001230685660000112
沉积5000个循环,在金属层上形成厚度为150纳米的二氧化钛层,降温至100℃,取出。其中,钛源为四异丙氧基钛,氧源为臭氧。
采用实施例1相同的测试方法得到本实施例的光催化组件的光催化效率见表1。
实施例5
本实施例的光催化组件的制备过程如下:
(1)抽真空至3×10-6Pa,关闭衬底遮盖板,在蒸发舟中放入金属膜料,调节加热蒸发舟的电源电流至110A,观察探测器的计数频率,当计数频率到达
Figure BDA0001230685660000113
时,保持加热电流,打开衬底遮盖板,开始蒸镀,记录探测器的数值,当衬底上的金属层的厚度达到5纳米时,关闭衬底遮盖板,关闭蒸发舟电源,等待10分钟,破真空,得到形成有由金属纳米粒子堆积形成金属层的衬底,且金属纳米粒子为棒状结构,金属纳米粒子的粒径为15~30纳米。衬底为石英,金属膜料为纯度为99.999%的金块。
(2)抽真空值气压为0.2Torr,将形成有金属层的衬底加热至250℃,控制氮气的流量为200sccm,每次清洗30s,清洗20次,每次清洗间隔5秒;然后使用四次二甲基胺基钛脉冲处理形成有金属层的衬底,每次脉冲处理的时间为0.5秒,重复5次,每次间隔5秒;最后,控制钛源的温度为80℃,氧源的温度为30℃,钛源和氧源交替沉积,每个生长循环中,钛源的沉积时间为0.1秒,氧源的沉积时间为0.015秒,间隔5秒,每个生长循环生长的厚度为
Figure BDA0001230685660000121
共沉积666个循环,在金属层上形成厚度为40纳米的二氧化钛层,降温至100℃,取出。其中,钛源为四次二甲基胺基钛,氧源为氧气。
采用实施例1相同的测试方法得到本实施例的光催化组件的光催化效率见表1。
实施例6
实施例6的光催化组件的制备过程与实施例1的大致相同,区别仅在,步骤(1)中的蒸发舟的电源电流至200A,金属膜料为纯度为99.999%的铂块。
采用实施例1相同的测试方法得到本实施例的光催化组件的光催化效率见表1。
实施例7
实施例7的光催化组件的制备过程与实施例1的大致相同,区别仅在,步骤(1)中的蒸发舟的电源电流至190A,金属膜料为纯度为99.999%的铑块。
采用实施例1相同的测试方法得到本实施例的光催化组件的光催化效率见表1。
实施例8
实施例8的光催化组件的制备过程与实施例1的大致相同,区别仅在,步骤(1)中的蒸发舟的电源电流至130A,金属膜料为纯度为99.999%的钯块。
采用实施例1相同的测试方法得到本实施例的光催化组件的光催化效率见表1。
实施例9
本实施例的光催化组件的制备过程如下:
(1)抽真空至6×10-6Pa,关闭衬底遮盖板,在蒸发舟中放入金属膜料,调节加热蒸发舟的电源电流至75A,观察探测器的计数频率,当计数频率到达
Figure BDA0001230685660000131
时,保持加热电流,打开衬底遮盖板,开始蒸镀,记录探测器的数值,当衬底上的第一金属层的厚度达到3纳米时,关闭衬底遮盖板,关闭蒸发舟电源,等待10分钟,破真空,得到形成有由第一金属纳米粒子堆积形成第一金属层的衬底,且金属纳米粒子为球状结构,第一金属纳米粒子的粒径为5纳米~15纳米。衬底为石英,金属膜料为纯度为99.999%的铝块。
(2)抽真空值气压为0.4Torr,将形成有第一金属层的衬底加热至250℃,控制氮气的流量为200sccm,每次清洗30s,清洗20次,每次清洗间隔5秒;然后使用四次二甲基胺基钛脉冲处理形成有第一金属层的衬底,每次脉冲处理的时间为0.5秒,重复5次,每次间隔5秒;最后,控制钛源的温度为75℃,氧源的温度为25℃,钛源和氧源交替沉积,每个生长循环中,钛源的沉积时间为0.1秒,氧源的沉积时间为0.015秒,间隔5秒,每个生长循环生长的厚度为
Figure BDA0001230685660000132
沉积循环300次,在第一金属层上形成厚度为15纳米的二氧化钛层,降温至100℃,取出。其中,钛源为四次二甲基胺基钛,氧源为水。
(3)再抽真空至6×10-6Pa,关闭遮盖板,在蒸发舟中放入金属膜料,调节加热蒸发舟的电源电流至75A,观察探测器的计数频率,当计数频率到达
Figure BDA0001230685660000133
时,保持加热电流,打开衬底遮盖板,开始蒸镀,记录探测器的数值,当二氧化钛层上的第二金属层的厚度达到5nm时,关闭遮盖板,关闭蒸发舟电源,等待10分钟,破真空,在二氧化钛层上形成由第二金属纳米粒子堆积形成第二金属层,且第二金属纳米粒子为球状结构,第二金属纳米粒子的粒径为15纳米~30纳米。衬底为石英,金属膜料为纯度为99.999%的铝块。
采用实施例1相同的测试方法得到本实施例的光催化组件的光催化效率见表1。
实施例10
本实施例的光催化组件的制备过程如下:
(1)抽真空至气压为0.5Torr,将衬底加热至200℃,控制氮气的流量为200sccm,每次清洗30s,清洗20次,每次清洗间隔5秒;然后使用四次二甲基胺基钛脉冲处理形成有金属层的衬底,每次脉冲处理的时间为0.5秒,重复5次,每次间隔5秒;最后,控制钛源的温度为75℃,氧源的温度为25℃,钛源和氧源交替沉积,每个生长循环中,钛源的沉积时间为0.1秒,氧源的沉积时间为0.015秒,间隔10秒,每个生长循环生长的厚度为
Figure BDA0001230685660000141
沉积200个循环,在衬底上形成厚度为10纳米的二氧化钛层,降温至100℃,取出。其中,钛源为四次二甲基胺基钛,氧源为水。
(2)抽真空至10-6Pa以下,关闭遮盖板,在蒸发舟中放入金属膜料,调节加热蒸发舟的电源电流至110A,观察探测器的计数频率,当计数频率到达
Figure BDA0001230685660000142
时,保持加热电流,打开遮盖板,开始蒸镀,记录探测器的数值,当二氧化钛层上的金属层的厚度达到5纳米时,关闭衬底遮盖板,关闭蒸发舟电源,等待10分钟,破真空,在二氧化钛层上形成由金属纳米粒子堆积形成金属层,且金属纳米粒子为球状结构,金属纳米粒子的平均粒径约为15纳米~30纳米。衬底为石英,金属膜料为纯度为99.999%的金块。
采用实施例1相同的测试方法得到本实施例的光催化组件的光催化效率见表1。
实施例11
本实施例的光催化组件的制备过程如下:
(1)抽真空至气压为0.5Torr,将衬底加热至200℃,控制氮气的流量为200sccm,每次清洗30s,清洗20次,每次清洗间隔5秒;然后使用四次二甲基胺基钛脉冲处理形成有金属层的衬底,每次脉冲处理的时间为0.5秒,重复5次,每次间隔5秒;最后,控制钛源的温度为75℃,氧源的温度为25℃,钛源和氧源交替沉积,每个生长循环中,钛源的沉积时间为0.1秒,氧源的沉积时间为0.015秒,间隔10秒,每个生长循环生长的厚度为
Figure BDA0001230685660000143
沉积的总时间为80分钟,在衬底上形成厚度为10纳米的二氧化钛层,降温至100℃,取出。其中,钛源为四次二甲基胺基钛,氧源为水。
(2)抽真空至10-6Pa以下,关闭遮盖板,在蒸发舟中放入金属膜料,调节加热蒸发舟的电源电流至200A,观察探测器的计数频率,当计数频率到达
Figure BDA0001230685660000151
时,保持加热电流,打开遮盖板,开始蒸镀,记录探测器的数值,当二氧化钛层上的金属层的厚度达到20纳米时,关闭衬底遮盖板,关闭蒸发舟电源,等待10分钟,破真空,在二氧化钛层上形成由金属纳米粒子堆积形成金属层,且金属纳米粒子为棒状结构,金属纳米粒子的平均粒径约为100纳米~150纳米。衬底为石英,金属膜料为纯度为99.999%的铂块。
采用实施例1相同的测试方法得到本实施例的光催化组件的光催化效率见表1。
对比例1
对比例1的光催化组件为Evonik Industries公司的二氧化钛P25,其中,二氧化钛通过旋涂的方法涂布在与实施例1相同的衬底上,且该对比例的光催化组件的二氧化钛薄膜的厚度为10nm。
采用实施例1相同的测试方法得到对比例1的光催化组件的光催化效率见表1。
对比例2
对比例2的光催化组件的制备过程如下:
抽真空至气压为0.5Torr,将衬底加热至200℃,控制氮气的流量为200sccm,每次清洗30s,清洗20次,每次清洗间隔5秒;然后使用四次二甲基胺基钛脉冲处理形成有金属层的衬底,每次脉冲处理的时间为0.5秒,重复5次,每次间隔5秒;最后,控制钛源的温度为75℃,氧源的温度为25℃,钛源和氧源交替沉积,每个生长循环中,钛源的沉积时间为0.1秒,氧源的沉积时间为0.015秒,间隔20秒,每个生长循环生长的厚度为
Figure BDA0001230685660000152
共沉积200个循环,在衬底上形成厚度为10纳米的二氧化钛层,降温至100℃,取出。其中,钛源为四次二甲基胺基钛,氧源为水。
采用实施例1相同的测试方法得到对比例2的光催化组件的光催化效率见表1。
对比例3
对比例的光催化组件的制备过程如下:
(1)抽真空至5×10-6Pa,关闭衬底遮盖板,在蒸发舟中放入金属膜料,调节加热蒸发舟的电源电流至120A,观察探测器的计数频率,当计数频率到达
Figure BDA0001230685660000161
时,保持加热电流,打开衬底遮盖板,开始蒸镀,记录探测器的数值,当衬底上的金属层的厚度达到35nm时,关闭衬底遮盖板,关闭蒸发舟电源,等待10分钟,破真空,得到形成有金属层的衬底,图8为50万倍下的金属层在衬底上的扫描电镜图,从图8中可以看出,金属层为银金属膜,衬底为石英,金属膜料为纯度为99.999%的银块。
(2)抽真空至气压为0.5Torr,将形成有金属层的衬底加热至200℃,控制氮气的流量为200sccm,每次清洗30s,清洗20次,每次清洗间隔5秒;然后使用四次二甲基胺基钛脉冲处理形成有金属层的衬底,每次脉冲处理的时间为0.5秒,重复5次,每次间隔5秒;最后,控制钛源的温度为75℃,氧源的温度为25℃,钛源和氧源交替沉积,每个生长循环中,钛源的沉积时间为0.1秒,氧源的沉积时间为0.015秒,间隔10秒,每个生长循环生长的厚度为
Figure BDA0001230685660000163
共沉积200个循环,在金属层上形成厚度为10纳米的二氧化钛层,降温至100℃,取出。其中,钛源为四次二甲基胺基钛,氧源为水。
采用实施例1相同的测试方法得到对比例3的光催化组件的光催化效率见表1。
表1表示的是实施例1~11和对比例1、对比例2、对比例3的光催化组件的光催化效率。
表1
Figure BDA0001230685660000162
Figure BDA0001230685660000171
从表1中可以看出,实施例1~实施例11的光催化组件的光催化效率至少为60%,而对比例1和对比例2的光催化组件的光催化效率分别仅为36%和11%,远远低于实施例1~实施例11的光催化组件的光催化效率,而与对比例2的光催化组件的二氧化钛的厚度相等的实施例1的光催化组件的光催化效率高达70%,远远高于对比例2的光催化效率。
而通常二氧化钛层的厚度越大,催化效果越好,实施例1与对比例3的光催化组件相比,区别仅在于,所制备的金属层的结构不同,且对比例3的光催化组件的二氧化钛层的厚度也远大于实施例1,然而实施例1的光催化组件的光催化效率却远远高于对比例3的光催化组件的光催化效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种光催化组件,其特征在于,包括衬底及层叠在所述衬底的一侧上的光催化单元,所述光催化单元包括层叠的二氧化钛层和金属层,所述二氧化钛层的厚度为10纳米~100纳米,所述金属层由金属纳米粒子堆积形成,所述金属纳米粒子的材料选自铑、钯、铂、金、银及铝中的一种,所述金属纳米粒子的粒径不超过150纳米;所述金属层的形成方法为热蒸发,其中,蒸发速率为
Figure FDA0002689319220000011
真空度为1×10-6Pa~1×10-5Pa,所述金属层的厚度为1nm、3nm、5nm、9nm或20nm,所述金属纳米粒子为球状结构或棒状结构;所述二氧化钛层的形成方法为原子层沉积。
2.根据权利要求1所述的光催化组件,其特征在于,金属纳米粒子的粒径为5纳米~50纳米。
3.根据权利要求1所述的光催化组件,其特征在于,所述金属层与所述衬底层叠,以使所述金属层位于所述衬底和所述二氧化钛层之间。
4.根据权利要求1所述的光催化组件,其特征在于,所述二氧化钛层与所述衬底层叠,以使所述二氧化钛层位于在所述衬底和所述金属层之间。
5.根据权利要求1所述的光催化组件,其特征在于,所述金属层为两个,两个所述金属层分别层叠在所述二氧化钛层的相对的两个表面上,所述衬底与其中一个所述金属层层叠。
6.一种光催化组件的制备方法,其特征在于,包括如下步骤:
在衬底上形成第一金属层,以使所述第一金属层由第一金属纳米粒子堆积形成,所述第一金属纳米粒子选自铑、钯、铂、金、银及铝中的一种;
在所述第一金属层上形成厚度为10纳米~100纳米的二氧化钛层;
在所述衬底上形成第一金属层的方法为热蒸发,其中,蒸发速率为
Figure FDA0002689319220000012
真空度为1×10-6Pa~1×10-5Pa,所述第一金属层的厚度为1nm、3nm、5nm、9nm或20nm,所述第一金属纳米粒子的粒径不超过150纳米,所述第一金属纳米粒子为球状结构或棒状结构;所述二氧化钛层的形成方法为原子层沉积。
7.根据权利要求6所述的光催化组件的制备方法,其特征在于,所述蒸发速率为
Figure FDA0002689319220000013
真空度为1×10-6Pa~1×10-5Pa。
8.根据权利要求6所述的光催化组件的制备方法,其特征在于,所述在所述金属层上形成二氧化钛层的方法为原子层沉积,工艺参数具体为:氮气条件,反应气压为0.5Torr以下,钛源的温度为70℃~80℃,氧源的温度为20℃~30℃,反应温度为150℃~250℃,所述钛源和所述氧源交替沉积,每个生长循环中,所述钛源的沉积时间为0.1秒,所述氧源的沉积时间为0.015秒,间隔5秒~20秒,每个所述生长循环生长的厚度为
Figure FDA0002689319220000021
9.根据权利要求6所述的光催化组件的制备方法,其特征在于,所述在所述金属层上形成二氧化钛层的步骤之后,还包括在所述二氧化钛层上蒸镀形成第二金属层的步骤,所述第二金属层由第二金属纳米粒子堆积形成,所述第二金属纳米粒子的材料选自铑、钯、铂、金、银及铝中的一种。
10.一种光催化组件的制备方法,其特征在于,包括如下步骤:
在衬底上形成厚度为10纳米~100纳米的二氧化钛层;
在所述二氧化钛层上形成金属层,以使所述金属层由金属纳米粒子堆积形成,所述金属纳米粒子的材料选自铑、钯、铂、金、银及铝中的一种;
在所述二氧化钛层上形成金属层的方法为热蒸发,其中,蒸发速率为
Figure FDA0002689319220000022
真空度为1×10-6Pa~1×10-5Pa,所述金属层的厚度为1nm、3nm、5nm、9nm或20nm,所述金属纳米粒子的粒径不超过150纳米,所述金属纳米粒子为球状结构或棒状结构;所述二氧化钛层的形成方法为原子层沉积。
CN201710097341.9A 2017-02-22 2017-02-22 光催化组件及其制备方法 Active CN108455698B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710097341.9A CN108455698B (zh) 2017-02-22 2017-02-22 光催化组件及其制备方法
PCT/CN2017/084727 WO2018152975A1 (zh) 2017-02-22 2017-05-17 光催化组件及其制备方法
US16/085,214 US11179699B2 (en) 2017-02-22 2017-05-17 Photocatalytic assembly and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710097341.9A CN108455698B (zh) 2017-02-22 2017-02-22 光催化组件及其制备方法

Publications (2)

Publication Number Publication Date
CN108455698A CN108455698A (zh) 2018-08-28
CN108455698B true CN108455698B (zh) 2020-12-25

Family

ID=63220709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710097341.9A Active CN108455698B (zh) 2017-02-22 2017-02-22 光催化组件及其制备方法

Country Status (3)

Country Link
US (1) US11179699B2 (zh)
CN (1) CN108455698B (zh)
WO (1) WO2018152975A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1485459A (zh) * 2003-09-01 2004-03-31 北京科技大学 一种纳米金属颗粒分散氧化物光学薄膜制备方法
EP1624087A1 (en) * 2004-08-06 2006-02-08 Vaccum Surtec S.r.l. A method for depositing thin layers of titanium dioxide on support surfaces and artefacts obtained by said method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040402A1 (fr) * 1998-12-28 2000-07-13 Asahi Glass Company, Limited Produit en couches
JP4184830B2 (ja) * 2002-04-05 2008-11-19 株式会社村上開明堂 複合材
CN101550546B (zh) 2009-04-08 2010-08-18 北京科技大学 一种表面金属化复合材料的光催化化学镀制备方法
CN102294234A (zh) * 2011-07-15 2011-12-28 刘凡新 复合二氧化钛光催化剂及其制备方法
CN102962045B (zh) * 2011-08-31 2016-05-18 上海世展化工科技有限公司 一种担载有二氧化钛层的无机非金属矿物复合材料、其制备方法及应用
JP6442860B2 (ja) * 2014-04-23 2018-12-26 株式会社リコー 前駆体ゾルゲル溶液、電気機械変換素子、液滴吐出ヘッド、及びインクジェット記録装置
CN105908117A (zh) * 2016-05-20 2016-08-31 绍兴斯普瑞微纳科技有限公司 一种微纳米结构复合涂层及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1485459A (zh) * 2003-09-01 2004-03-31 北京科技大学 一种纳米金属颗粒分散氧化物光学薄膜制备方法
EP1624087A1 (en) * 2004-08-06 2006-02-08 Vaccum Surtec S.r.l. A method for depositing thin layers of titanium dioxide on support surfaces and artefacts obtained by said method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
原子层沉积制备纳米TiO2薄膜研究进展;张王乐等;《化工新型材料》;20160930;第44卷(第9期);28-29页、32页 *

Also Published As

Publication number Publication date
WO2018152975A1 (zh) 2018-08-30
US11179699B2 (en) 2021-11-23
CN108455698A (zh) 2018-08-28
US20190083956A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
Yoon et al. Synthesis of liposome-templated titania nanodisks: optical properties and photocatalytic activities
Yu et al. Simple fabrication of the Ag-Ag2O-TiO2 photocatalyst thin films on polyester fabrics by magnetron sputtering and its photocatalytic activity
Temerov et al. Silver-decorated TiO2 inverse opal structure for visible light-induced photocatalytic degradation of organic pollutants and hydrogen evolution
Ravichandran et al. Cost-effective fabrication of ZnO/g-C3N4 composite film coated stainless steel meshes for visible light responsive photocatalysis
Lee et al. Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 sols
Choi et al. Photocatalytic activity of Au-buffered WO3 thin films prepared by RF magnetron sputtering
Chen et al. ZnO/NiO heterostructures with enhanced photocatalytic activity obtained by ultrasonic spraying of a NiO shell onto ZnO nanorods
CN109612976B (zh) 一种三维多层结构表面增强拉曼基底及其制备方法
Rajamanickam et al. A simple route to synthesis of carbon doped TiO 2 nanostructured thin film for enhanced visible-light photocatalytic activity
Ibrahem et al. Plasmonic-enhanced photocatalysis reactions using gold nanostructured films
Ramkumar et al. Enhanced visible light photocatalytic activity of pristine and silver (Ag) doped WO 3 nanostructured thin films
Prakash et al. Synthesis of ZnO nanostructures by microwave irradiation using albumen as a template
CN108455698B (zh) 光催化组件及其制备方法
CN113145092A (zh) 一种二氧化钛/玻璃纤维布复合材料、制备方法及其用途
US20100247915A1 (en) Particle comprising core and shell
Chi et al. Photoirradiation Caused Controllable Wettability Switching of Sputtered Highly Aligned c‐Axis‐Oriented Zinc Oxide Columnar Films
Singh et al. Effect of annealing on metal-oxide nanocluster
Katsumata et al. Preparation of TiO2 thin films using water‐soluble titanium complexes and their photoinduced properties
Wang et al. Synthesis, wettability and optical properties of xTiO2-(1-x) SiO2 composite thin films
Hussin et al. Photocatalytic activity of bilayer TiO2/ZnO and ZnO TiO2 thin films
Rajamanickam et al. Effect of annealing temperature on the structural, optical and photocatalytic activity of TiO 2 thin films by chemical bath deposition technique
CA2775321A1 (fr) Materiau photocatalytique ultra-poreux, procede de fabrication et utilisations
Liu et al. Nonaqueous synthesis of TiO2 nanorods using inductively coupled plasma
CN110560028B (zh) 一种金红石相二氧化钛/石墨烯薄膜的制备方法
Hajjaji et al. TiO 2 properties and deposition techniques

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant