CN108446461B - 飞行器颤振分析网格模型建模方法 - Google Patents

飞行器颤振分析网格模型建模方法 Download PDF

Info

Publication number
CN108446461B
CN108446461B CN201810172981.6A CN201810172981A CN108446461B CN 108446461 B CN108446461 B CN 108446461B CN 201810172981 A CN201810172981 A CN 201810172981A CN 108446461 B CN108446461 B CN 108446461B
Authority
CN
China
Prior art keywords
vibration
flutter
grid points
axial
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810172981.6A
Other languages
English (en)
Other versions
CN108446461A (zh
Inventor
史忠科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Feisida Automation Engineering Co Ltd
Original Assignee
Xian Feisida Automation Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Feisida Automation Engineering Co Ltd filed Critical Xian Feisida Automation Engineering Co Ltd
Priority to CN201810172981.6A priority Critical patent/CN108446461B/zh
Publication of CN108446461A publication Critical patent/CN108446461A/zh
Application granted granted Critical
Publication of CN108446461B publication Critical patent/CN108446461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

为了克服现有技术不能有效表达气动力和强度变化影响下复杂颤振模型的问题,本发明提供了一种飞行器颤振分析网格模型建模方法,该方法在飞行器机体轴系选择多个网格点,在不同飞行速度、大气密度、气流环境、不同温度等气动力和强度变化影响下按照机体轴系分解方法表示复杂颤振网格模型,根据建立该模型的要求提出安装传感器和数据、图像记录要求,通过有效颤振飞行试验获取数据,通过气流传感器测量值获得激励函数,采用给定函数对振动变量进行逼近和等效描述,按照结构辨识和参数辨识方法确定机体轴系坐标网格点处三个轴向振动方程的结构系数函数,解决了现有技术不能有效表达气动力和强度变化影响下复杂颤振模型的技术问题。

Description

飞行器颤振分析网格模型建模方法
技术领域
本发明涉及民用飞机、战斗机、无人机等飞行器飞行安全地面综合试验方法,特别涉及飞行器颤振分析网格模型建模方法,属于航空航天与信息技术领域。
背景技术
颤振是弹性结构在均匀气流中受到空气动力、弹性力和惯性力的耦合作用而发生的一种大幅度振动现象。对于飞机而言,在飞行中受到不确定扰动后会发生振动。此时,由于气流的作用,飞机的弹性结构如机翼、尾翼或操纵面将会产生附加气动力;作为一种激振力,附加气动力将加剧结构的振动。同时空气对飞机结构的阻尼力又试图减弱振动;在低速飞行时,由于阻尼力占优,扰动后的振动逐渐消失;当达到某一飞行速度即颤振临界速度颤振边界后,激振力占优,平衡位置失稳,将产生大幅度振动,导致飞机在数秒内解体,酿成灾难性后果;可以说,从航空工业起步的那一天起,颤振就一直是航空界研究的热门问题。
为避免颤振事故发生,新机研制必须经历颤振试验环节,以确定不发生飞行颤振的稳定飞行包线;开展颤振问题研究主要有两类途径,一是数值计算:这需要对分析对象进行数学建模,此过程需要在结构、气动等方面引入一定的假设,难以考虑真实存在的各种非线性因素和建模误差的影响,分析结果具有一定的参考价值,但可能与实际情况有较大的偏差;二是试验手段:与颤振有关的试验主要有风洞试验和飞行试验。风洞试验可以考虑气动力影响,但此方法要求将试验对象进行缩比设计,缩比模型与真实结构存在一定的差别,且由于风洞洞壁与支架的干扰气动力难免失真;此外对于高速、热环境等情况,风洞试验模拟费用昂贵且实施困难。飞行试验可以完全模拟试验对象的真实工作环境,但试验的条件受限、费用高且风险大,飞机一旦在空中发生颤振,会在几秒甚至更短的时间内解体,飞行员几乎没有处置时间,逃脱概率基本为零。
地面颤振模拟试验就是一种可以有效弥补传统试验不足的、极具生命力的颤振研究方法。地面试验以飞行器地面颤振试验系统为研究对象,以多学科设计优化理论研究为核心,密切结合飞行器地面颤振试验系统的工程特点,突破等效试验建模方法、多点分布式气动力建模与控制、颤振试验一体化检测方法等关键技术,着力解决飞行器颤振气动力模型难实现、多点激振力无法精确控制、颤振试验结果无法反复回放等问题,提高总体设计水平。
航空界、力学界虽然较早对避免颤振的问题进行了研究,但目前的研究还是初级阶段,没有形成一个系统的理论方法体系;现有的方法缺乏飞行器等价地面颤振试验方法和评价;特别是现有技术方法难以描述飞行器在不同飞行速度、大气密度、气流环境、不同温度等气动力和强度变化影响下的复杂颤振模型,使得颤振地面试验研究难以有工程化进展。
发明内容
为了克服现有技术不能有效表达气动力和强度变化影响下复杂颤振模型的问题,本发明提供了一种飞行器颤振分析网格模型建模方法,该方法在飞行器机体轴系选择多个网格点,在不同飞行速度、大气密度、气流环境、不同温度等气动力和强度变化影响下按照机体轴系分解方法表示复杂颤振网格模型,根据建立该模型的要求提出安装传感器和数据、图像记录要求,通过有效颤振飞行试验获取数据,通过气流传感器测量值获得激励函数,采用给定函数对振动变量进行逼近和等效描述,按照结构辨识和参数辨识方法确定机体轴系坐标网格点处三个轴向振动方程的结构系数函数,解决了现有技术不能有效表达气动力和强度变化影响下复杂颤振模型的技术问题。
本发明解决其技术问题采用的技术方案是,一种飞行器颤振分析网格模型建模方法,其特征包括以下步骤:
步骤1:以飞行器机体轴系
Figure DEST_PATH_IMAGE001
分析复杂颤振模型,在机体轴系选取
Figure DEST_PATH_IMAGE002
个网格点:
Figure DEST_PATH_IMAGE003
, 振动时网格点动态三轴位置分量
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
为时间
Figure DEST_PATH_IMAGE006
和其它两轴位置的函数,为了便于表达,以
Figure DEST_PATH_IMAGE007
为例,下标
Figure DEST_PATH_IMAGE008
为网格点标号,下标第二个字母
Figure DEST_PATH_IMAGE009
分别表示振动在机体轴系
Figure 746888DEST_PATH_IMAGE001
的三个轴分量,为了简化问题,考虑第
Figure 169779DEST_PATH_IMAGE008
个网格点的
Figure DEST_PATH_IMAGE010
轴方向振动时,
Figure DEST_PATH_IMAGE011
,考虑第
Figure 245313DEST_PATH_IMAGE008
个网格点的
Figure DEST_PATH_IMAGE012
轴方向振动时,
Figure DEST_PATH_IMAGE013
Figure DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE015
,考虑第
Figure 425235DEST_PATH_IMAGE008
个网格点的
Figure DEST_PATH_IMAGE016
轴方向振动时,
Figure DEST_PATH_IMAGE017
在网格点邻域内建立的近似模型为:
Figure DEST_PATH_IMAGE018
式中,
Figure DEST_PATH_IMAGE019
为在机体轴系坐标
Figure DEST_PATH_IMAGE020
网格点的邻域内
Figure DEST_PATH_IMAGE021
轴向振动函数,
Figure DEST_PATH_IMAGE022
Figure DEST_PATH_IMAGE023
Figure 357243DEST_PATH_IMAGE021
轴向振动方程的结构系数函数,
Figure DEST_PATH_IMAGE024
分别为在机体轴系坐标网格点
Figure 498505DEST_PATH_IMAGE003
Figure 920390DEST_PATH_IMAGE021
轴向振动时对应于
Figure 156199DEST_PATH_IMAGE020
的变化值;
Figure DEST_PATH_IMAGE025
为在机体轴系坐标
Figure 511089DEST_PATH_IMAGE020
网格点的邻域内
Figure DEST_PATH_IMAGE026
轴向振动函数,
Figure DEST_PATH_IMAGE027
Figure DEST_PATH_IMAGE028
Figure 226847DEST_PATH_IMAGE026
轴向振动方程的结构系数函数,
Figure DEST_PATH_IMAGE029
分别为在机体轴系坐标网格点
Figure 198345DEST_PATH_IMAGE003
Figure 441108DEST_PATH_IMAGE026
轴向振动时对应于
Figure 119345DEST_PATH_IMAGE020
的变化值;
Figure DEST_PATH_IMAGE030
为在机体轴系坐标
Figure 130639DEST_PATH_IMAGE020
网格点的邻域内
Figure DEST_PATH_IMAGE031
轴向振动函数,
Figure DEST_PATH_IMAGE032
Figure DEST_PATH_IMAGE033
Figure 182909DEST_PATH_IMAGE031
轴向振动方程的结构系数函数,
Figure DEST_PATH_IMAGE034
分别为在机体轴系坐标网格点
Figure 776832DEST_PATH_IMAGE003
Figure 575155DEST_PATH_IMAGE031
轴向振动时对应于
Figure 947230DEST_PATH_IMAGE020
的变化值;
Figure DEST_PATH_IMAGE035
为在
Figure 890391DEST_PATH_IMAGE020
网格点的等效激励函数,
Figure 756847DEST_PATH_IMAGE006
为时间;
Figure DEST_PATH_IMAGE036
为参数向量,
Figure DEST_PATH_IMAGE037
表示
Figure 534310DEST_PATH_IMAGE020
网格点的温度,
Figure DEST_PATH_IMAGE038
为飞行高度,
Figure DEST_PATH_IMAGE039
为马赫数,
Figure DEST_PATH_IMAGE040
Figure 243333DEST_PATH_IMAGE020
网格点的气流环境影响,
Figure DEST_PATH_IMAGE041
为大气密度;
步骤2:对应步骤1的机体轴系网格点坐标
Figure 879982DEST_PATH_IMAGE003
,安装微型温度传感器,安装
Figure 799397DEST_PATH_IMAGE021
Figure 306732DEST_PATH_IMAGE026
Figure 20610DEST_PATH_IMAGE031
轴向的气流和振动传感器,在机翼上下方和所有舵面两边安装微型
Figure 878976DEST_PATH_IMAGE021
Figure 336502DEST_PATH_IMAGE026
Figure 695415DEST_PATH_IMAGE031
轴向的气流和振动传感器,同时在机身加装大于1000帧/秒的图像传感器记录观测机翼翼尖、所有舵面的振动幅值和频率;飞机机载传感器记录时间、飞行高度、马赫数,大气密度;
步骤3:将飞行器到达给定高度和马赫数后颤振试验的过程表达成有效颤振飞行试验,有效颤振飞行试验数据采样时间为
Figure DEST_PATH_IMAGE042
Figure DEST_PATH_IMAGE043
为记录数据的采样周期,
Figure DEST_PATH_IMAGE044
为有效颤振飞行试验的总采样次数;通过颤振飞行试验获得采样时间
Figure 65348DEST_PATH_IMAGE042
时刻机体轴系
Figure 394698DEST_PATH_IMAGE003
网格点的
Figure DEST_PATH_IMAGE045
Figure DEST_PATH_IMAGE046
Figure DEST_PATH_IMAGE047
Figure DEST_PATH_IMAGE048
的测试值;
步骤4:确定
Figure 623291DEST_PATH_IMAGE042
时刻机体轴系
Figure 88908DEST_PATH_IMAGE003
的激励函数
Figure DEST_PATH_IMAGE049
Figure 692059DEST_PATH_IMAGE019
Figure 508705DEST_PATH_IMAGE025
Figure 58766DEST_PATH_IMAGE030
分别采用给定函数逼近,得到:
Figure DEST_PATH_IMAGE050
Figure DEST_PATH_IMAGE051
Figure DEST_PATH_IMAGE052
Figure DEST_PATH_IMAGE053
关于
Figure 861113DEST_PATH_IMAGE006
连续可导;这样,可得:
Figure DEST_PATH_IMAGE054
Figure DEST_PATH_IMAGE055
以及
Figure DEST_PATH_IMAGE056
;
步骤5: 令:
Figure DEST_PATH_IMAGE057
以及
Figure DEST_PATH_IMAGE058
可将(1)式描述成:
Figure DEST_PATH_IMAGE059
(2)
根据(2)式,确定
Figure DEST_PATH_IMAGE060
表达
Figure DEST_PATH_IMAGE061
,按照结构辨识和参数辨识方法确定机体轴系坐标网格点
Figure 801211DEST_PATH_IMAGE003
Figure 590306DEST_PATH_IMAGE021
Figure 193326DEST_PATH_IMAGE026
Figure 649846DEST_PATH_IMAGE031
轴向振动方程的结构系数函数
Figure 47330DEST_PATH_IMAGE060
Figure DEST_PATH_IMAGE062
Figure DEST_PATH_IMAGE063
本发明的有益结果是:在飞行器机体轴系选择多个网格点,考虑不同飞行速度、大气密度、气流环境、不同温度等气动力和强度变化影响下按照机体轴系分解方法表示复杂颤振网格模型,根据建立该模型的要求提出安装传感器和数据、图像记录要求,通过有效颤振飞行试验获取数据,通过气流传感器测量值获得激励函数,采用给定函数对振动变量进行逼近和等效描述,按照结构辨识和参数辨识方法确定机体轴系坐标网格点处三个轴向振动方程的结构系数函数,给出了完整的复杂颤振模型网格模型建模技术方案,解决了现有技术不能有效表达气动力和强度变化影响下复杂颤振模型的技术问题。
下面结合具体实例对本发明作详细说明。
具体实施方式
步骤1:以飞行器机体轴系
Figure 179846DEST_PATH_IMAGE001
分析复杂颤振模型,在机体轴系选取
Figure 71710DEST_PATH_IMAGE002
个网格点:
Figure 632004DEST_PATH_IMAGE003
, 振动时网格点动态三轴位置分量
Figure 419963DEST_PATH_IMAGE004
Figure 698497DEST_PATH_IMAGE005
为时间
Figure 394052DEST_PATH_IMAGE006
和其它两轴位置的函数,为了便于表达,以
Figure 808853DEST_PATH_IMAGE007
为例,下标
Figure 561521DEST_PATH_IMAGE008
为网格点标号,下标第二个字母
Figure 530614DEST_PATH_IMAGE009
分别表示振动在机体轴系
Figure 13548DEST_PATH_IMAGE001
的三个轴分量,为了简化问题,考虑第
Figure 299167DEST_PATH_IMAGE008
个网格点的
Figure 209354DEST_PATH_IMAGE010
轴方向振动时,
Figure 947634DEST_PATH_IMAGE011
,考虑第
Figure 703100DEST_PATH_IMAGE008
个网格点的
Figure 843226DEST_PATH_IMAGE012
轴方向振动时,
Figure 189893DEST_PATH_IMAGE013
Figure 412540DEST_PATH_IMAGE014
Figure 237276DEST_PATH_IMAGE015
,考虑第
Figure 231908DEST_PATH_IMAGE008
个网格点的
Figure 749477DEST_PATH_IMAGE016
轴方向振动时,
Figure 180459DEST_PATH_IMAGE017
在网格点邻域内建立的近似模型为:
Figure DEST_PATH_IMAGE064
式中,
Figure 621935DEST_PATH_IMAGE019
为在机体轴系坐标
Figure 471074DEST_PATH_IMAGE020
网格点的邻域内
Figure 159544DEST_PATH_IMAGE021
轴向振动函数,
Figure 368501DEST_PATH_IMAGE022
Figure 535041DEST_PATH_IMAGE023
Figure 504265DEST_PATH_IMAGE021
轴向振动方程的结构系数函数,
Figure 363636DEST_PATH_IMAGE024
分别为在机体轴系坐标网格点
Figure 785522DEST_PATH_IMAGE003
Figure 490172DEST_PATH_IMAGE021
轴向振动时对应于
Figure 313903DEST_PATH_IMAGE020
的变化值;
Figure 344176DEST_PATH_IMAGE025
为在机体轴系坐标
Figure 250428DEST_PATH_IMAGE020
网格点的邻域内
Figure 758769DEST_PATH_IMAGE026
轴向振动函数,
Figure 702586DEST_PATH_IMAGE027
Figure 372601DEST_PATH_IMAGE028
Figure 18346DEST_PATH_IMAGE026
轴向振动方程的结构系数函数,
Figure 81111DEST_PATH_IMAGE029
分别为在机体轴系坐标网格点
Figure 128702DEST_PATH_IMAGE003
Figure 251510DEST_PATH_IMAGE026
轴向振动时对应于
Figure 853392DEST_PATH_IMAGE020
的变化值;
Figure 716919DEST_PATH_IMAGE030
为在机体轴系坐标
Figure 619016DEST_PATH_IMAGE020
网格点的邻域内
Figure 912725DEST_PATH_IMAGE031
轴向振动函数,
Figure 267483DEST_PATH_IMAGE032
Figure 937630DEST_PATH_IMAGE033
Figure 163075DEST_PATH_IMAGE031
轴向振动方程的结构系数函数,
Figure 876953DEST_PATH_IMAGE034
分别为在机体轴系坐标网格点
Figure 735318DEST_PATH_IMAGE003
Figure 192845DEST_PATH_IMAGE031
轴向振动时对应于
Figure 551757DEST_PATH_IMAGE020
的变化值;
Figure 702116DEST_PATH_IMAGE035
为在
Figure 782198DEST_PATH_IMAGE020
网格点的等效激励函数,
Figure 246678DEST_PATH_IMAGE006
为时间;
Figure 728606DEST_PATH_IMAGE036
为参数向量,
Figure 49866DEST_PATH_IMAGE037
表示
Figure 351665DEST_PATH_IMAGE020
网格点的温度,
Figure 416573DEST_PATH_IMAGE038
为飞行高度,
Figure 471117DEST_PATH_IMAGE039
为马赫数,
Figure 457220DEST_PATH_IMAGE040
Figure 761163DEST_PATH_IMAGE020
网格点的气流环境影响,
Figure 114915DEST_PATH_IMAGE041
为大气密度;
步骤2:对应步骤1的机体轴系网格点坐标
Figure 555124DEST_PATH_IMAGE003
,安装微型温度传感器,安装
Figure 968918DEST_PATH_IMAGE021
Figure 963419DEST_PATH_IMAGE026
Figure 120862DEST_PATH_IMAGE031
轴向的气流和振动传感器,在机翼上下方和所有舵面两边安装微型
Figure 681157DEST_PATH_IMAGE021
Figure 997344DEST_PATH_IMAGE026
Figure 275878DEST_PATH_IMAGE031
轴向的气流和振动传感器,同时在机身加装大于Luxima公司的LUX2100-CMOS芯片组成的相机,该芯片在1920 × 1080彩色分辨率下可以实现1000帧/秒的图像采集和记录,可以观测机翼翼尖、所有舵面的振动幅值和频率;飞机机载传感器记录时间、飞行高度、马赫数,大气密度;
步骤3:将飞行器到达给定高度和马赫数后颤振试验的过程表达成有效颤振飞行试验,有效颤振飞行试验数据采样时间为
Figure 689542DEST_PATH_IMAGE042
Figure 855076DEST_PATH_IMAGE043
为记录数据的采样周期,
Figure 594361DEST_PATH_IMAGE044
为有效颤振飞行试验的总采样次数;通过颤振飞行试验获得采样时间
Figure 845345DEST_PATH_IMAGE042
时刻机体轴系
Figure 62700DEST_PATH_IMAGE003
网格点的
Figure 82740DEST_PATH_IMAGE045
Figure 258506DEST_PATH_IMAGE046
Figure 993856DEST_PATH_IMAGE047
Figure 93531DEST_PATH_IMAGE048
的测试值;
步骤4:确定
Figure 482924DEST_PATH_IMAGE042
时刻机体轴系
Figure 298433DEST_PATH_IMAGE003
的激励函数
Figure 258430DEST_PATH_IMAGE049
Figure 630636DEST_PATH_IMAGE019
Figure 874536DEST_PATH_IMAGE025
Figure 139908DEST_PATH_IMAGE030
分别采用给定函数逼近,得到:
Figure 446255DEST_PATH_IMAGE050
Figure 522620DEST_PATH_IMAGE051
Figure 621026DEST_PATH_IMAGE052
Figure 591387DEST_PATH_IMAGE053
关于
Figure 244085DEST_PATH_IMAGE006
连续可导;这样,可得:
Figure DEST_PATH_IMAGE065
Figure DEST_PATH_IMAGE066
以及
Figure DEST_PATH_IMAGE067
;
步骤5: 令:
Figure DEST_PATH_IMAGE068
以及
Figure DEST_PATH_IMAGE069
可将(1)式描述成:
Figure 705897DEST_PATH_IMAGE059
(2)
根据(2)式,确定
Figure 675121DEST_PATH_IMAGE060
表达
Figure 3334DEST_PATH_IMAGE061
Figure DEST_PATH_IMAGE070
候选模型选为:
Figure DEST_PATH_IMAGE071
Figure DEST_PATH_IMAGE072
候选模型选为:
Figure DEST_PATH_IMAGE073
,按照结构辨识和参数辨识方法确定机体轴系坐标网格点
Figure 359973DEST_PATH_IMAGE003
Figure 330203DEST_PATH_IMAGE021
Figure 153934DEST_PATH_IMAGE026
Figure 653048DEST_PATH_IMAGE031
轴向振动方程的结构系数函数
Figure 562229DEST_PATH_IMAGE060
Figure 804992DEST_PATH_IMAGE062
Figure 998076DEST_PATH_IMAGE063

Claims (1)

1.一种飞行器颤振分析网格模型建模方法,其特征包括以下步骤:
步骤1:以飞行器机体轴系
Figure 327500DEST_PATH_IMAGE001
分析复杂颤振模型,在机体轴系选取
Figure 707666DEST_PATH_IMAGE002
个网格点:
Figure 36010DEST_PATH_IMAGE003
, 振动时网格点动态三轴位置分量
Figure 552442DEST_PATH_IMAGE004
Figure 672320DEST_PATH_IMAGE005
为时间
Figure 539782DEST_PATH_IMAGE006
和其它两轴位置的函数,为了便于表达,以
Figure 406238DEST_PATH_IMAGE007
为例,下标
Figure 777177DEST_PATH_IMAGE008
为网格点标号,下标第二个字母
Figure 320154DEST_PATH_IMAGE009
分别表示振动在机体轴系
Figure 691223DEST_PATH_IMAGE001
的三个轴分量,为了简化问题,考虑第
Figure 813900DEST_PATH_IMAGE008
个网格点的
Figure 117974DEST_PATH_IMAGE010
轴方向振动时,
Figure 300693DEST_PATH_IMAGE011
,考虑第
Figure 890550DEST_PATH_IMAGE008
个网格点的
Figure 348076DEST_PATH_IMAGE012
轴方向振动时,
Figure 693607DEST_PATH_IMAGE013
Figure 329119DEST_PATH_IMAGE014
Figure 127310DEST_PATH_IMAGE015
,考虑第
Figure 139260DEST_PATH_IMAGE008
个网格点的
Figure 870455DEST_PATH_IMAGE016
轴方向振动时,
Figure 676869DEST_PATH_IMAGE017
在网格点邻域内建立的近似模型为:
Figure 493515DEST_PATH_IMAGE018
式中,
Figure 306226DEST_PATH_IMAGE019
为在机体轴系坐标
Figure 891928DEST_PATH_IMAGE020
网格点的邻域内
Figure 587351DEST_PATH_IMAGE021
轴向振动函数,
Figure 642026DEST_PATH_IMAGE022
Figure 713887DEST_PATH_IMAGE023
Figure 904828DEST_PATH_IMAGE021
轴向振动方程的结构系数函数,
Figure 567891DEST_PATH_IMAGE024
分别为在机体轴系坐标网格点
Figure 844282DEST_PATH_IMAGE003
Figure 250993DEST_PATH_IMAGE021
轴向振动时对应于
Figure 305230DEST_PATH_IMAGE020
的变化值;
Figure 608035DEST_PATH_IMAGE025
为在机体轴系坐标
Figure 620990DEST_PATH_IMAGE020
网格点的邻域内
Figure 785387DEST_PATH_IMAGE026
轴向振动函数,
Figure 200187DEST_PATH_IMAGE027
Figure 955785DEST_PATH_IMAGE028
Figure 456036DEST_PATH_IMAGE026
轴向振动方程的结构系数函数,
Figure 955282DEST_PATH_IMAGE029
分别为在机体轴系坐标网格点
Figure 693431DEST_PATH_IMAGE003
Figure 869197DEST_PATH_IMAGE026
轴向振动时对应于
Figure 604548DEST_PATH_IMAGE020
的变化值;
Figure 360014DEST_PATH_IMAGE030
为在机体轴系坐标
Figure 500139DEST_PATH_IMAGE020
网格点的邻域内
Figure 581228DEST_PATH_IMAGE031
轴向振动函数,
Figure 806804DEST_PATH_IMAGE032
Figure 365961DEST_PATH_IMAGE033
Figure 891752DEST_PATH_IMAGE031
轴向振动方程的结构系数函数,
Figure 878162DEST_PATH_IMAGE034
分别为在机体轴系坐标网格点
Figure 574723DEST_PATH_IMAGE003
Figure 950953DEST_PATH_IMAGE031
轴向振动时对应于
Figure 783780DEST_PATH_IMAGE020
的变化值;
Figure 222983DEST_PATH_IMAGE035
为在
Figure 406839DEST_PATH_IMAGE020
网格点的等效激励函数,
Figure 589690DEST_PATH_IMAGE006
为时间;
Figure 808182DEST_PATH_IMAGE036
为参数向量,
Figure 136395DEST_PATH_IMAGE037
表示
Figure 558280DEST_PATH_IMAGE020
网格点的温度,
Figure 528510DEST_PATH_IMAGE038
为飞行高度,
Figure 349311DEST_PATH_IMAGE039
为马赫数,
Figure 379584DEST_PATH_IMAGE040
Figure 757607DEST_PATH_IMAGE020
网格点的气流环境影响,
Figure 531528DEST_PATH_IMAGE041
为大气密度;
步骤2:对应步骤1的机体轴系网格点坐标
Figure 209765DEST_PATH_IMAGE003
,安装微型温度传感器,安装
Figure 410939DEST_PATH_IMAGE021
Figure 807416DEST_PATH_IMAGE026
Figure 853870DEST_PATH_IMAGE031
轴向的气流和振动传感器,在机翼上下方和所有舵面两边安装微型
Figure 635881DEST_PATH_IMAGE021
Figure 236320DEST_PATH_IMAGE026
Figure 369361DEST_PATH_IMAGE031
轴向的气流和振动传感器,同时在机身加装大于1000帧/秒的图像传感器记录观测机翼翼尖、所有舵面的振动幅值和频率;飞机机载传感器记录时间、飞行高度、马赫数,大气密度;
步骤3:将飞行器到达给定高度和马赫数后颤振试验的过程表达成有效颤振飞行试验,有效颤振飞行试验数据采样时间为
Figure 953926DEST_PATH_IMAGE042
Figure 606755DEST_PATH_IMAGE043
为记录数据的采样周期,
Figure 618574DEST_PATH_IMAGE044
为有效颤振飞行试验的总采样次数;通过颤振飞行试验获得采样时间
Figure 989643DEST_PATH_IMAGE042
时刻机体轴系
Figure 112320DEST_PATH_IMAGE045
网格点的
Figure 337765DEST_PATH_IMAGE046
Figure 67955DEST_PATH_IMAGE047
Figure 378850DEST_PATH_IMAGE048
Figure 305218DEST_PATH_IMAGE049
的测试值;
步骤4:确定
Figure 929710DEST_PATH_IMAGE050
时刻机体轴系
Figure 283331DEST_PATH_IMAGE003
的激励函数
Figure 81523DEST_PATH_IMAGE051
Figure 93472DEST_PATH_IMAGE019
Figure 293509DEST_PATH_IMAGE025
Figure 349190DEST_PATH_IMAGE030
分别采用给定函数逼近,得到:
Figure 385410DEST_PATH_IMAGE052
Figure 653580DEST_PATH_IMAGE053
Figure 239283DEST_PATH_IMAGE054
Figure 951018DEST_PATH_IMAGE055
关于
Figure 254960DEST_PATH_IMAGE006
连续可导;这样,可得:
Figure 61242DEST_PATH_IMAGE056
Figure 514833DEST_PATH_IMAGE057
以及
Figure 381158DEST_PATH_IMAGE058
;
步骤5: 令:
Figure 641238DEST_PATH_IMAGE059
以及
Figure 533101DEST_PATH_IMAGE060
将(1)式描述成:
Figure 562237DEST_PATH_IMAGE061
(2)
根据(2)式,确定
Figure 865043DEST_PATH_IMAGE062
表达
Figure 628730DEST_PATH_IMAGE063
按照结构辨识和参数辨识方法确定机体轴系坐标网格点
Figure 42394DEST_PATH_IMAGE003
Figure 926037DEST_PATH_IMAGE021
Figure 681634DEST_PATH_IMAGE026
Figure 650727DEST_PATH_IMAGE031
轴向振动方程的结构系数函数
Figure 881464DEST_PATH_IMAGE062
Figure 885192DEST_PATH_IMAGE064
Figure 60958DEST_PATH_IMAGE065
CN201810172981.6A 2018-03-02 2018-03-02 飞行器颤振分析网格模型建模方法 Active CN108446461B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810172981.6A CN108446461B (zh) 2018-03-02 2018-03-02 飞行器颤振分析网格模型建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810172981.6A CN108446461B (zh) 2018-03-02 2018-03-02 飞行器颤振分析网格模型建模方法

Publications (2)

Publication Number Publication Date
CN108446461A CN108446461A (zh) 2018-08-24
CN108446461B true CN108446461B (zh) 2022-02-25

Family

ID=63193455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810172981.6A Active CN108446461B (zh) 2018-03-02 2018-03-02 飞行器颤振分析网格模型建模方法

Country Status (1)

Country Link
CN (1) CN108446461B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110084986B (zh) * 2019-04-29 2021-11-09 西人马联合测控(泉州)科技有限公司 一种周界安防方法及装置
CN112800543B (zh) * 2021-01-27 2022-09-13 中国空气动力研究与发展中心计算空气动力研究所 一种基于改进Goman模型的非线性非定常气动力建模方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182560A (zh) * 2014-01-08 2014-12-03 中国商用飞机有限责任公司北京民用飞机技术研究中心 飞行器颤振预测分析方法和装置
CN105843073A (zh) * 2016-03-23 2016-08-10 北京航空航天大学 一种基于气动力不确定降阶的机翼结构气动弹性稳定性分析方法
CN106240839A (zh) * 2015-06-04 2016-12-21 波音公司 用于分析颤振试验数据的系统和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054785B2 (en) * 2003-06-24 2006-05-30 The Boeing Company Methods and systems for analyzing flutter test data using non-linear transfer function frequency response fitting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182560A (zh) * 2014-01-08 2014-12-03 中国商用飞机有限责任公司北京民用飞机技术研究中心 飞行器颤振预测分析方法和装置
CN106240839A (zh) * 2015-06-04 2016-12-21 波音公司 用于分析颤振试验数据的系统和方法
CN105843073A (zh) * 2016-03-23 2016-08-10 北京航空航天大学 一种基于气动力不确定降阶的机翼结构气动弹性稳定性分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
飞机颤振模态参数识别方法研究;唐炜;《中国优秀博硕士学位论文全文数据库 (博士) 信息科技辑》;20070415;第13-30页 *
飞机颤振模态参数辨识研究;卢明辉;《中国优秀博硕士学位论文全文数据库 (硕士) 工程科技Ⅱ辑》;20050815;第25-29、49-54页 *

Also Published As

Publication number Publication date
CN108446461A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
Foster et al. Dynamics modeling and simulation of large transport airplanes in upset conditions
RU2615220C1 (ru) Способ определения управляющего сигнала по углу крена модели гиперзвукового летательного аппарата (ГЛА) для контроля аэродинамической идентичности по числам Рейнольдса траекторий полёта модели и натурного изделия при проведении опережающих лётных исследований
CN108318203B (zh) 飞行器等价地面颤振综合试验方法
CN108333945B (zh) 飞机颤振试验分布式充分激励输入信号设计方法
CN108446461B (zh) 飞行器颤振分析网格模型建模方法
Winter et al. Stability of a flying wing uav in icing conditions
Felt et al. Aeroservoelastic encounters
CN108303897B (zh) 飞行器颤振分析网格模型拉盖尔建模方法
Lind et al. Incorporating flight data into a robust aeroelastic model
Sobron On Subscale Flight Testing: Applications in Aircraft Conceptual Design
CN108388741B (zh) 飞行器颤振分析网格模型沃尔什建模方法
CN108387359B (zh) 飞行器颤振分析网格模型傅里埃建模方法
Duncan Jr The effects of step excrescences on swept-wing boundary-layer transition
CN108341073A (zh) 飞机颤振高温试验图像测试方法
Meyer et al. Optical in-flight wing deformation measurements with the image pattern correlation technique
Abraham et al. In-flight estimation of helicopter gross weight and mass center location
CN108398231B (zh) 飞行器颤振分析网格模型Hartley建模方法
CN108387360B (zh) 飞行器颤振分析网格模型切比雪夫建模方法
Krueger et al. Flight loads analysis and measurements of external stores on an atmospheric research aircraft
CN108446462B (zh) 飞行器颤振分析网格模型埃米特建模方法
CN108399297B (zh) 飞行器颤振分析网格模型勒让德建模方法
CN113525711A (zh) 通过飞行试验辨识飞机气动焦点的方法
Bartasevicius et al. Design and testing of an in-flight thrust measurement system for a pylon-mounted miniature jet engine
Larsson et al. Rapid prototyping in aircraft design using cfd, wind tunnel and flight testing
Sinske et al. Flight Testing Using Fast Online Aeroelastic Identification Techniques with DLR Research Aircraft HALO

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant